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Abstract

LIGO employs two 4-km long Fabry�Pérot arm cavities, which need to be aligned

in order for an interferometer to be locked on a TEM00 mode. Once the cavity is

locked, alignment signals can be derived from wave-front sensors which measure the

TEM01 mode content. However, the alignment state is not always good enough for

locking on TEM00. Even when this is the case, the alignment can be evaluated using

a free swinging cavity, that shows �ashes when higher-order modes become resonant.

By moving test masses, small changes are made to the mirror orientation, and hence

the TEM00 mode can be optimised iteratively. Currently, this is a manual procedure,

and thus it is very time-consuming. Therefore, this project is aimed to study another

possible way to lock the cavity on the TEM00 mode. Misalignment information can

also be extracted from the power of the higher-order modes transmitted through the

cavity. This report presents an algorithm for this alternative and faster way to derive

the alignment state of the arm cavities.

LIGOLIGO
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1 Introduction

1.1 LIGO

LIGO stands for the Laser Interferometer Gravitational-Wave Observatory. There are
two identical observatories based approximately 3,000 kilometres apart: one is in Liv-
ingston, Louisiana, and its twin is located at the Hanford site, Washington. The Hanford-
site Observatory is the one where this project has been carried out. It is required that,
if a signal is to be reliably defended as an astrophysical gravitational wave, it must be
observed in both observatories. Gravitational-wave signals are so weak that gravitational
wave detectors su�er a lot from background noise: strong earthquakes, or cultural noise
such as tra�c or trains, winds or microseism can negatively impact their performance.
Many e�orts are put into stabilising system to ensure that those e�ects are eliminated or
reduced to minimum.

The Hanford-site detector is an interferometer which contains two 4 km-long arm cavities
formed into �L� shape. The optical con�guration of each detector is a suspended, dual-
recycled Michelson interferometer with Fabry-Pérot cavities for arms. They need to be
aligned, before they can be locked on a fundamental transverse mode, TEM00. Once
the cavity is locked, or controlled on resonance, alignment signals can be derived from
wave-front sensors which measure the TEM01 mode content, which is a superposition
of Hermite-Gaussian TEM01 and TEM10 modes. However, the alignment state is not
always good enough for locking on TEM00. Even when this is the case, the alignment
can be evaluated using a free swinging cavity, that shows �ashes when higher-order modes
become resonant. This requires another round of optimisation, which is currently done
manually.

1.2 Motivation and objectives

The goal of this project was to derive the alignment state from scanning the cavity length
and observing the power build-up of the laser light. By making small changes to the mirror
orientation by moving test masses, the TEM00 mode could be optimized iteratively. If the
alignment state was derived from scanning the cavity length, this would ease the process
of initial alignment. Another goal of the project was to automate the alignment procedure
in order to reduce the manual alignment time, i.e. reduce the time to align a given cavity,
and increase the reliability and repeatability in doing so.

2 Background theory

2.1 Electric �eld

An electric �eld, E, can be described as a sum of the di�erent frequency components
and of the di�erent spatial modes:

E(t, x, y, z) =
∑
j

∑
n,m

ajnmunm(x, y, z)exp(i(ωjt− kjz)),

with unm describing the spatial properties of the beam and ajnm representing the complex
amplitude factors. Here ωj stands for the angular frequency, i.e. ωj = 2πfj , and kj =
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ωj/c de�nes the wave-number. This above notation can be simpli�ed to describe a single
frequency component at one moment in time (t = 0):

E(x, y, z) = exp(−ikz)
∑
n,m

anmunm(x, y, z).

2.2 Gaussian beam

A simple laser beam can be described by the Gaussian beam to a good approximation.
It can be divided into two di�erent sections along the z-axis: a near �eld regime, which
is a region around the beam waist, and a far �eld regime, which is a region far away from
the waist. The length of the near-�eld region (Figure 1) is approximately given by the
Rayleigh range,

zR =
πw2

0

λ
,

where w0 indicates the radius of the beam-waist and λ is the wavelength of the light beam.

Figure 1: Gaussian beam.1

Knowing the Rayleigh range, zR, and the location to the beam waist position, z0, the
following can be calculated:

w(z) = w0

√√√√1 +

(
z − z0

zR

)2

.

This equation gives the size of the beam along the z-axis. In the far-�eld regime, where
z � zR, z0, it can be approximated by a linear equation:

w(z) ≈ w0
z

zR
=

zλ

πw0
.

The angle θ between the z-axis and w(z) is called the di�raction angle, or divergence,
and in the far-�eld regime, it is de�ned as:

θ = arctan

(
w0

zR

)
= arctan

(
λ

πw0

)
≈ w0

zR
.
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2.3 Hermite-Gaussian modes

Hermite-Gaussian modes are the eigenmodes of a general spherical cavity (an optical
cavity with spherical mirrors) that represent an exact solution of the paraxial-wave equa-
tion. One distinguishes between longitudinal modes (along the optical axis) and transverse
electromagnetic modes (TEM), which are the spatial distribution of the light beam per-
pendicular to the optical axis. The higher-order Hermite-Gaussian mode can be expressed
in terms of the lowest-order, or fundamental, mode, u00, which is simply the Gaussian
beam:

E(x, y, z) = E0u00exp(−ikz) = E0

(
1

Rc(z)
− i λ

πω2(z)

)

×exp

(
− ikx

2 + y2

2RC(z)
− x2 + y2

ω2(z)
− ikz

)

(assuming a single frequency and t = 0). Here E0 is the electric �eld of TEM00 mode,
RC(z) is the radius of curvature of the beam's wave-front, and x, y, and z denote three
spatial directions orthogonal to each other.

The Hermite-Gaussian modes are usually given in their orthonormal form as:

unm(x, y, z) = (2n+m+1n!m!π)−1/2 1

w(z)
exp(i(n+m+ 1)Φ(z))

×Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
exp

(
− ik(x2 + y2)

2RC(z)
− x2 + y2

w2(z)

)
,

with n, m being the mode indices. In this case n refers to the modes in the y − z, or
saggital, plane and m to the modes in the x − z, or tangential, plane. In the equation
above, Hn(x) stands for the Hermite polynomials of the order n and Φ(z) is the Gouy
phase.

2.4 Gouy phase-shift

Compared to a plane wave, the Hermite-Gaussian modes have a slightly slower phase
velocity, especially close to the waist, in the near-�eld region. This on-axis longitudinal
phase delay is called the Gouy phase:

Φ(z) = arctan

(
z − z0

zR

)
.

The phase lag φ of a Hermite-Gaussian mode is:

φ = (n+m+ 1)Φ(z),

which is called the Gouy phase-shift. It is an additional phase shift of π in addition to
exp(−ikz), the usual phase shift for a plane wave. This additional phase shift appears due
to the fact that a Gaussian beam passes the beam waist when travelling from the far-�eld
regime on the left to the beam waist to the other far-�eld regime on the right to the beam
waist, or vice versa.
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2.5 Misalignments

In the interferometer, if the optical axes of the beam and the cavity do not overlap
perfectly, the set-up is called misaligned. If the beam size or shape at the cavity does
not match the beam size and shape of the (resonant) fundamental eigenmode, the beam
is then not mode-matched to the cavity.2 There are four possible types of misalignments
of the input axis with respect to the cavity axis: (a) waist size mismatch, (b) axial waist
displacement, (c) transverse displacement in the x(y)-direction, and (d) tilt through an
angle ax(ay).

3

Figure 2: Example of misalignment: transverse displacement.3

Figure 3: Example of misalignment: tilt through an angle α.3

Example plots of two types of misalignment are pictured above. Figure 2 shows the
transverse displacement and Figure 3 shows the misalignment due to the mirror tilt.

3 Experimental method

3.1 Exposition

In order to develop an algorithm, the work was split into smaller tasks. The �rst part
of the project was to understand modal decomposition coe�cients. This was done using
MATLAB programming language4 and a software package called FINESSE.5 In the initial
simulation, a simpli�ed cavity was used, which was later adapted to match the realistic
parameters. The output of this simulation part was a modal decomposition coe�cient
table and their ratio table. The �rst one is shown in Table 3.

The second part of the project was the algorithm development. To create an output
product, Gouy phase shift and Gaussian geometry were used together with various statis-
tical techniques. The outcome of this part was an algorithm, which reads in the power-
distribution data, �nds the peak values and their positions, takes the ratios of the peak
amplitudes with respect to the highest peak, reorders the amplitudes according to their
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relative positions, and after a procedure of matching to the values from the ratio table from
the simulation part, extracts the normalised misalignment parameter. After the algorithm
was developed, further tests were done to improve it and to test its limits of validity.

The algorithm was created using the simulated-data input. Therefore, the objective of
the last part of the project was to adapt the algorithm to the real-data input from the
interferometer. The seven sets of data were collected at the LHO (LIGO Hanford site)
X-arm. In order to make the algorithm work, only one region corresponding to a single-
trip of data needed to be selected. Since the systematic calibration did not work perfectly,
other methods were used to de�ne the data in the required region of fringe scan. The peak-
�nding algorithm also needed to be robuster, therefore, such functions as "anti-resolution"
or "anti-spike" were introduced. And �nally, because the collected data were rough, some
data preparation methods such as interpolation and down-sampling were used and a digital
low-pass Butterworth �lter was applied.

3.2 Software

An important initial step for this project was to choose the right software for the simu-
lation of modal decomposition coe�cients. Two software packages, FINESSE5 and E2E,6

were considered. FINESSE was selected due to its ability to perform calculations for the
higher-order Hermite-Gaussian modes, because its competitor E2E6 could only o�er the
calculations for the fundamental mode HG00. Thus, a lot of from-scratch programming
was avoided. To invoke FINESSE scripts and to produce graphical output, a program-
ming language was necessary. For this purpose, MATLAB was chosen. MATLAB also
has a signal-processing toolbox, which has made the analysis of the real data from the
interferometer easier to deal with.

4 Simulation

4.1 Optical cavity

The starting point for the project was a cavity simulation. Using FINESSE software
package,5 green TEM00 laser light (532 nm) was injected into the optical system from
the end point, i.e. we simulated green light injection from downstream of the end mass,
into the cavity and back towards the input test mass (ITM) in the corner station. End
test mass (ETM) transmitted 32% of the initial beam further to the input test mass. As
only 1.1% of the beam passed through the ITM, most of the beam remained inside the
cavity and was re�ected back and forward multiple times. In a perfectly aligned system,
the output beam should have the same transverse mode as the input beam. However, even
minimal misalignments of the optics could cause the higher-order Hermite-Gaussian modes
to appear. In order to develop an algorithm to minimise the appearance of the higher-order
Hermite-Gaussian modes, a simulation of a misaligned system was modelled.

Since the laser beam could be approximated as a Gaussian beam, the initial step was
to calculate the beam-waist radius and the distance to the beam waist for a simple cavity
with two mirrors with unequal curvatures. The set-up of this simpli�ed cavity is displayed
in Figure 4. Using the formula for confocal parameter, b, and its relation to the beam-waist
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radius, wo,

1

2
b =

πw2
0

λ
=

√
d(R1 − d)(R2 − d)(R1 +R2 − d)

R1 +R2 − 2d
,

w0 =

√
λ

π

4
√
d(R1 − d)(R2 − d)(R1 +R2 − d)√

R1 +R2 − 2d
,

the beam-waist radius was estimated to be w0 = 8.47 mm. Another equation from Kogel-
nik's paper7 enabled us to calculate a distance to the beam-waist radius,

t =
d(R2 − d)

R1 +R2 − 2d
.

Here R2 = 1939.3 m and R1 = 2241.54 m are the radii of curvature for the ITM and ETM
respectively, and d = 4000.0 m is the length of the interferometer arm, i.e. the length
of the cavity. In this particular set-up, this was the distance between the ETM and the
beam-waist radius, which was found to be t = 1841.72 m.

Figure 4: Optical system with two mirrors.7

4.2 Set-up

An example set-up that was used to study modal decomposition coe�cients could be
found in Figure 5. Laser was set to emit 1 W green (λ = 532 nm) light. In this partic-
ular simulation, only one totally-re�ective ITM mirror was used; it was described by the
parameter L, the distance between the laser and the ITM. The amplitude detector was
placed between the laser and the mirror. It plotted the light �eld at the speci�ed frequency,
whose amplitudes were in good agreement with the pre-calculated values. The amplitude
at frequency ωm is a complex number (z), and is calculated as follows:

z =
∑
n

an with n|n ∈ 0, . . . , N ∧ ωn = ωm.
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Here ω0 is the carrier frequency and ω1, ω2, · · · , ωM > 0 are the sidebands. The result can
be written as follows:

S = a exp(iΦ),

with

a =

√∑
n,m

|an,m|2 and Φ = phase

(∑
n,m

an,m

)
.

To check the intensity, which should be proportional to the square of an amplitude,

I ∝ a2 ∝ |E|2,

the photo-detector was placed to the right of the ITM mirror. The intensity at the output
port of the photo-detector was found from

|E|2 = E × E∗ =

N∑
i=0

N∑
j=0

aia
∗
je
i(ωi−ωj)t = A0 +A1e

iω1t +A2e
iω2t + · · · ,

with Ai being the amplitudes of the light power sorted by the beat frequencies ωi.

By default, the plane-wave approximation was used in FINESSE simulation. The order
of the higher-order modes was �nite and it was de�ned by the parameter maxTEM. The
simulation included higher-order modes TEMnm with n+m ≤ maxTEM order.

Figure 5: Simulation set-up.

4.3 Decomposition coe�cients

HG00 mode is a combination of higher-order Hermite-Gaussian modes, where Umn de-
�nes the mode and amn is a modal amplitude factor,

U00(x, y, z) =
∑
m,n

Umn(x′, y′, z′)amn.
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Therefore, the �rst milestone of the project was to study decomposition coe�cients, amn.
Initial simulation was written to calculate those coe�cients for a light re�ected from a �at
mirror located at the beam waist. The motive to use this particular set-up for an initial
simulation was based on FINESSE limitations.

Because of the geometry of the re�ection law, when a �at mirror was located at the
beam waist, the total angle of misalignment was α = 2θ, where θ stood for a tilt angle
of the mirror. A plot showing the distribution of the �rst six TEM modes is shown in
Figure 6. Later, the mirror was moved along the z-axis and its curvature was iterated
correspondingly to match the wave-front of the beam, i.e. the distance to the mirror, L,
was changed from L = t, which was the distance to the beam waist, to L ≈ 10t.

α

α0
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Figure 6: Re�ected power distribution of the �rst six TEM modes for various mirror
misalignments α

α0
.

The x-axis of the plot was a misalignment parameter,∣∣∣i α
α0

+
a

w0

∣∣∣.
Since the radius of the curvature of the mirror was matched to the displacement along the

z-axis, i.e. a
w0

became 0, the misalignment parameter simpli�ed to
∣∣∣i αα0

∣∣∣.
For RETM and RITM , radii of curvatures of the ETM and of the ITM, the misalignment

angle α can be rewritten as

α =
RETMθETM +RITMθITM

RETMRITM − L
,
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where α0 is a divergence angle,

α0 =

√
λ

π
4

√
(RETM +RITM − 2L)2

L(RETM − L)(RITM − L)(RETM +RITM − L)
,

a is a tilt, and w0,

w0 =

√
λ

π
4

√
L(RETM − L)(RITM − L)(RETM +RITM − L)

(RETM +RITM − 2L)2

is the beam-waist radius. Using the approximations

tan(α) ≈ α for a small α,

and

when RITM →∞,
RITM +RETM − 2L

RITM − L
× RITM +RETM − 2L

RITM +RETM − L
→ 1,

the divergence angle becomes

α0 =

√
λ

π
4

√
1

L(RETM − L)
,

and the above equation for the x-axis can be derived.

In order for the optical element (ITM mirror in this case) to match the wave-front of
the beam, its shape had to be corrected accordingly. Since the location of the mirror was
iterated along the z-axis, the radius of its curvature was also iterated:

R(L) = L
[
2 +

(πw2
0

λL

)]
.

Furthermore, in order to compare the plots for di�erent L, the x-axis was normalised using
the normalisation constant, θC ,

θC =

√
1 +

(α0

w0

)2
(L2 − (2×L×t) + (t)2)),

where the variables had their usual meanings de�ned previously.

The power distribution plot is shown in Figure 7. This shows only negligible di�erences
for the mirror placed at di�erent positions, which means that the normalisation has been
done correctly. The results of the obtained decomposition coe�cients, amn, for the �rst 11
higher-order modes (HOM) are laid out in Table 3. The table can be expanded horizontally
by including more HOM and vertically by increasing the value of the maximal tilting angle.
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∣
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Figure 7: Power distribution of HG20 mode for di�erent mirror positions along
the z-axis; x-axis normalised.

5 Algorithm

5.1 Realistic simulation

The second step started with a simulation that used realistic parameters. An original
set-up from the �rst part was taken as a basis, which was adjusted to re�ect realistic
characteristics of the cavity. Both of the mirrors, ETM and ITM, were incorporated
and the cavity length was set to the actual value used at LIGO. In this realistic case,
mirrors were being tilted at various angles, and the output power was studied for several
combinations of tilt angles and a di�erent number of TEM modes. A 3 − D plot of the
power distribution of HG20 mode is shown in Figure 8.

5.2 Set-up

For the realistic simulation, the input was expected to be in the form of a power distribu-
tion at a given position along the interferometer arm. The algorithm should then compare
the amplitudes of the power peaks and the relative peak heights and should output the
misalignment parameter,

O
[( a

w0

)2
+
( α
α0

)2
]
.

The biggest challenge of this part of the project was the extraction of the misalignment
information. This was achieved in stages. The �rst stage, later called 1 − D case, only
looked at the tilt of one mirror, i.e. if αITM 6= 0 then αETM = 0, and vice versa. The



11 5 ALGORITHM

Figure 8: 3−D power distribution of HG20 mode after misaligning both mirrors.

next stage, so called 2−D case, introduced four angles: both ETM and ITM were allowed
to move in two directions making pit and yaw rotations. However, if the pit angles were
chosen freely, yaw angles for both ETM and ITM were restricted. The restrictions were
de�ned by the relations below, so that one plane would show only transverse displacement,
whilst the other plane (perpendicular to the �rst one) would show the tilt through an angle
α. Similar restrictions were applied to the pit angles when yaw angles were chosen freely.

αY
α0

=
RETM · αETM +RITM · αITM

(RETM +RITM − L)× α0
,

αP
α0

=
RETM · αETM −RITM · αITM

(RETM +RITM − L)× α0
,

a

ω0
=

(RETM − t)× (RITM · αITM )− (t− L+RITM )× (RETM · αETM )

(RITM +RETM − L)× ω0
,

where indices P and Y stand for the pit and yaw respectively. And �nally, the 3−D case
corresponded to the case, where both pit- and yaw-angles for both ETM and ITM were
chosen arbitrarily.

The set-up for this part of the simulation is shown in Figure 9. Here L represents the
cavity length, t is the distance to the beam waist, RCETM

= 2241.54 m and RCITM
= 1939.3

m are the radii of the curvatures of the ETM and ITM.

5.3 Development

The idea of the algorithm was to match the peaks found from the fringe scanning to the
modal decomposition coe�cient data obtained in the �rst part of the project and to extract
the information about the normalised misalignment parameter. In order to do that, the
peaks needed to be correctly reordered.
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Figure 9: Realistic cavity set-up.

One of the methods to reorder the input peaks and to match them to the higher-order
HG modes was to use the Gouy phase. The Gouy phase change was evaluated for all TEM
modes considered in the simulation, and the relative peak positions were determined using

Φ(m,n;L) = (m+ n+ 1) arctan(λL/πw2
0),

where (m,n) were the indices of the Hermite-Gaussian modes. Therefore, the �eld ampli-
tude u became:

um,n(r, z) =
w0

w
×Hm

(√
2
x

w

)
Hn

(√
2
y

w

)
×exp

{
− i(kz − (m+ n+ 1)Φ)− r2

( 1

w2
+
ik

2R

)}
.

Also, for identi�cation of the misalignment parameters, Table 3 was used as a reference
table.

The algorithm logic was quite simple. Firstly, the peaks and their locations were found,
as shown in Figure 10 and Figure 11. A vector containing peak amplitudes was called
PKS and another one containing peak locations - LOCS. Then for each row, the ratios
with regard to the highest peak were taken. The peak-ratio vector was called PKR. When
this was done, the re-ordering process began at the PKR element whose value was equal
to 1, PKRi. A pre-calculated Gouy phase-shift was added to the right of the LOCi and
to the left. The direction 'to the right' meant that the Gouy phase-shift was added to the
LOCi and then the modulus operation mod 180 was applied, and 'to the left' meant that
the Gouy phase-shift was subtracted from the LOCi, following with a subsequent modulus
operation, mod 180. After that, two new locations were obtained, LOCL2R and LOCR2L.
The minimisation function was used to �nd the closest element to each of them in the
PKR vector: LOC ′L2R and LOC ′R2L. When those elements were found, the distances
between LOCL2R and LOC ′L2R and between LOCR2L and LOC ′R2L were compared and
the shortest one was kept. If the shortest distance was 'to the left', i.e.

∆(LOCR2L − LOC ′R2L) < ∆(LOCL2R − LOC ′L2R),
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Figure 10: Simulated peaks.
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Figure 11: �ndpeaks �nds peaks and
their locations.

then the PKRi corresponding to the location LOCR2L was added to the maximum PKRi
(or GOUY_PKRi) on the left side, otherwise - on the right side. The new vector that
was being �lled was called GOUY_PKR. The elements that had been assigned to the
GOUY_PKR were deleted from the remaining list of PKR items, so that the re-ordered
values would not be repeated. The same shortest-distance procedure was repeated for the
edge-most elements of the new GOUY_PKR vector until the original PKR vector was
empty and until the GOUY_PKR had the same length as the PKR vector before the
re-ordering procedure. Figure 12 and Figures 13, 14, 15 show the re-ordering procedure.

5.4 Testing

The algorithm was tested using three sets of maxTEM = 15, 20, and 25. It was also tested
for all three cases considered previously: 1−D, 2−D, and 3−D. The plots in Figures 16,
17, 18, and 19 show the limitations for the algorithm to extract the correct misalignment
parameter. As can be seen from the graphs, the algorithm works best when describing the
normalised misalignment in the region where the values of the misalignment are equal to
0.5 - 2.0. It is hypothesised that the algorithm does not work when the misalignment is
very big because the paraxial approximation does not hold any more.

Another sanity check used as a test was a transmittance plot. Transmittance was calcu-
lated using a formula,

T (Φ) = T1T2
1

|1− r1r2e0iΦ|2
=

{
Φ = 0, T1T2

(1−r1r2)2
,

Φ = π, T1T2
(1+r1r2)2

,

with r1 and r2 being the amplitudes.

Tcombined = P0T (Φ) + P1T (Φ +Gouy) + P2T (Φ + 2 ·Gouy)

+ · · ·+ Pn+mT (Φ + (n+m) ·Gouy),

where Gouy meant the Gouy phase shift. If two plots, one obtained using the FINESSE
software and the other one from the pre-calculated transmittance, were completely dif-
ferent, then those cases were assumed as FINESSE failures and were rejected from the
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Figure 12: Scheme of the PKR re-ordering. A question mark identi�es a step,
where the distances to the two candidate elements are being compared resulting
in the closest element being assigned to the GOUY_PKR.

calculation. They would usually correspond to the cases where the combined misalign-
ment parameter was very large. Figure 20 shows a good agreement between a FINESSE
power distribution and a pre-calculated power.

6 Automation

6.1 Data collection

Seven measurements of channel H1_SUS_ETMX_L1_LOCK_L_EXC were taken,
which were later used to adapt the algorithm to the real data entry. The gain that was
used was 3× 106 with a time of 5 s, Dt equal to 1, and a frequency of 1 Hz. Values calcu-
lated from the relative displacements were regarded as the normalised true misalignment
parameter, and a deviation between the true and estimated values was obtained at each
sample point. Results are shown in Table 1.

6.2 Region selection

Calibration of the optical cavity could be evaluated using the information from the
witness sensors,

|WitnessTO −WitnessFROM |
λ

× 360o ≈ 270o.

For a green light, λ = 532 nm, LHO calibration gave 2700 instead of the expected 180o.
Therefore, a new method to select the region of interest without using false calibration was
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Figure 13: Re-ordering scheme: peak selection.

Figure 14: Vectors of peak ratios and their locations, PKR and
LOCS.

Figure 15: Filling the GOUY_PKR.
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Figure 16: Algorithm testing: 1-D case,
maxTEM = 15, 20, 25.

Figure 17: Algorithm testing: 2-D case,
maxTEM = 15, 20, 25.

Figure 18: Algorithm testing: 3-D case,
maxTEM = 15, 20, 25.

Figure 19: Algorithm testing: maxTEM
= 20, 1-D, 2-D, 3-D cases.
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Figure 20: Power calculated with FINESSE and pre-calculated power shows good agree-
ment.
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invented. Power distribution was plotted against the information from the witness sensor
and the maximal peak was found. Then by using the Gouy phase-shift, the second highest
peak was also found in the region where the output from witness sensor was linear, i.e.
cavity movement was constant, and the direction did not change (Figure 21). This allowed
us to select a single-trip region of interest covering ≈ 180o.

No. αITM_P αITM_Y αETM_P αETM_Y ∆αITM_P ∆αITM_Y ∆αETM_P ∆αETMY

Normalised
true

misalignment
parameter

1 -78.7 1.7 4.8 80.3 0.0 0.0 0.0 0.0 0.000000
2 -76.5 -1.3 6.7 82.5 2.0 -3.0 1.9 2.2 0.687242
3 -74.8 -1.3 8.1 83.6 3.9 -3.0 3.3 3.3 0.903745
4 -74.8 0.0 7.2 81.3 3.9 -1.7 2.4 1.0 0.747380
5 -72.2 -0.3 9.2 81.9 6.5 -2.0 4.4 -8.4 6.405156
6 -70.2 0.4 10.4 81.4 8.5 -1.3 5.6 1.1 1.130984
7 -72.6 3.3 9.5 80.3 6.1 1.6 4.7 0.0 0.945770

Table 1: Green Transmission Measurements.

6.3 Data processing

Rough data collected in the last part of the project had a lot of small spikes and multiple
peaks in close proximity to each other making it di�cult to distinguish the �true� peaks.
Thus, to use the algorithm, a manual selection of the region of interest was required. In
order to avoid that, various techniques were used to process the data so that it could be
used in an automated version of the algorithm.

6.3.1 Anti-spike function

An anti-spike function calculated the prominence of each peak and its true height. If
the peak height was below the selected height (which was 60% from the highest peak
in our case), it was instantly discarded from further considerations. If it was above the
selected height, it was further analysed as a potentially �important� peak. The anti-spike
function was introduced to eliminate little spikes that appeared because the cavity was
shaking when the measurements were being taken, and/or because of the di�erence in the
data taking frequency. Due to some hardware issues, an expected 8 kHz data was actually
2 kHz data and this was also a reason to introduce a down-sampling technique (Section
6.3.2).

6.3.2 Anti-resolution function

An anti-resolution function eliminated multiple �false� peaks, which appeared due to the
shakiness of the cavity, i.e. the function �reduced� the resolution of the power distribution.
The peaks in the region of interest were being scanned from left to right and then from
right to left. While scanning, the function was checking whether a neighbouring peak to
the peak that was being analysed was within a speci�ed distance, which was set to 10% of
the analysed peak height and which could be freely modi�ed according to the smoothness
of the dataset. In case there was a neighbouring peak within such distance, the height
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Figure 21: Region selection using the linearity of the witness sensor.
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of the neighbouring peak and its prominence were compared to the peak that was being
analysed. Then using these two criteria, one of the peaks was remained as a �true� peak
and the other one was discarded as a �false� peak. In case two peaks were �twins�, i.e. if
they had exactly the same parameters, the neighbouring peak was regarded as a �false�
peak. When a left-to-right scan was completed, the process was repeated towards the
other side, i.e. a right-to-left scan was performed considering the remaining peaks only.
On average, depending on the quality of the collected data, this function would eliminate
1 or 2 �false� peaks.

6.3.3 Down-sampling

Due to the hardware issue described previously, the measured dataset had four identical
copies of each datum. Therefore, a down-sampling method was applied - every nth data
point was kept only. In our case, n was 4. To down-sample data, a linear interpolation
method was used,

y − ya
yb − ya

=
x− xa
x− xb

,

y = ya + (yb − ya)
x− xa
xb − xa

.

Knowing the values ya and yb, at points xa and xb respectively, a proportionality relation
was used to estimate the value y of the point located at the position x.

Figure 22: Digital low-pass Butterworth �lter with fC = 400Hz, n = 5.

6.4 Butterworth �lter

A low-pass digital Butterworth �lter was used to reduce a number of spikes in the
collected data samples and to allow a more accurate selection of peaks and their locations.
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The gain, G(ω), of such �lter of an nth-order could be expressed as

G2(ω) = |H(jω)|2 − G2
0

1 +
(
ω
ωc

)2n ,
with H(jω) denoting a transfer function, G0 being a gain at 0 frequency, or DC gain, and
ωc = 2πfc standing for the cuto� frequency. Figure 22 shows the Butterworth �lter which
was applied in our case.

6.5 Results

The algorithm was tested with seven datasets collected at LHO interferometer. The
results are displayed in Table 2. The upper line stands for a theoretically pre-calculated
misalignment, or �true� misalignment, while the lower line shows the misalignment param-
eter returned by the algorithm.

# 1 2 3 4 5 6 7

True 0 0.687242 0.903745 0.747380 6.4055156 1.130984 0.945770
Algorithm 0.4220 0.8158 1.2096 0.6470 2.8131 0.9002 0.9283

Table 2: Evaluation of the algorithm for seven datasets.

Results con�rm that the algorithm extracts the misalignment parameter as expected
in the range between 0.68 and 1.13. The returned misalignment value for the case with
no misalignment, i.e. for the dataset #1, lies within a reasonable level of uncertainty.
However, the algorithm has failed to extract the normalised misalignment parameter for a
dataset #5. There are two possible reasons to explain why this has happened. Firstly, the
�true misalignment� was out of the �good-performance� range (Section 5.4). And secondly,
the validity of the dataset #5 was questionable. An information given from a witness
sensor was used to examine each of the datasets. There were some clues that the data in
the dataset #5 was collected when a cavity was in a non-linear regime, and thus it should
be rejected.

7 Conclusions

The algorithm developed during this project can accurately extract the information
about the normalised misalignment parameter within a range between 0.5 and 2.0. During
the development stage, two new functions for more robuster peak selection were created.
An �anti-resolution� function eliminates peaks that are too close together and an �anti-
spike� function uses prominence to separate real peaks (�true� peaks) from the accidental
spikes in a given dataset (�false� peaks). LHO calibration was found to be o� by ≈ 90o,
therefore, a new method to select a single-trip region was invented. Next steps of this
project could examine the possibilities to extend the range of a good algorithm perfor-
mance, and could investigate the limiting factors to achieve it, whether they come from
the paraxial approximation not being held or maybe due to the computational issues. Also,
an information from the optical-lever sensor could be used to improve the accuracy in the
small-misalignment region.
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A Mode Decomposition Coe�cients

Table 3: Higher-order Hermite-Gaussian mode power coe�cients for m+ n ≤ 10.

|i αα0
+ a

w0
| Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

0 1 0 1.7948e-17 0 3.2212e-34 0 5.7814e-51 0 1.0376e-67 0 1.8623e-84
0.020013 0.9996 0.00040012 8.008e-08 1.0685e-11 1.0692e-15 8.5598e-20 5.7105e-24 3.2654e-28 1.6338e-32 7.2666e-37 2.9087e-41
0.040026 0.9984 0.0015986 1.2797e-06 6.83e-10 2.7339e-13 8.7547e-17 2.3362e-20 5.3436e-24 1.0695e-27 1.9026e-31 3.0463e-35
0.060039 0.9964 0.0035896 6.4657e-06 7.7643e-09 6.9927e-12 5.0383e-15 3.0251e-18 1.5568e-21 7.0107e-25 2.8062e-28 1.011e-31
0.080053 0.99362 0.0063636 2.0378e-05 4.3503e-08 6.9653e-11 8.9218e-14 9.5233e-17 8.7131e-20 6.9753e-23 4.9637e-26 3.179e-29
0.10007 0.99004 0.0099073 4.9571e-05 1.6535e-07 4.1367e-10 8.2792e-13 1.3808e-15 1.974e-18 2.4692e-21 2.7455e-24 2.7474e-27
0.12008 0.98569 0.014204 0.00010234 4.9157e-07 1.7709e-09 5.1038e-12 1.2258e-14 2.5233e-17 4.5451e-20 7.2773e-23 1.0487e-25
0.14009 0.98058 0.019233 0.00018861 1.2331e-06 6.0466e-09 2.3719e-11 7.7536e-14 2.1725e-16 5.3264e-19 1.1608e-21 2.2767e-24
0.16011 0.97471 0.02497 0.00031984 2.7312e-06 1.7492e-08 8.9621e-11 3.8265e-13 1.4004e-15 4.4844e-18 1.2764e-20 3.27e-23
0.18012 0.9681 0.031388 0.00050885 5.4994e-06 4.4576e-08 2.8905e-10 1.562e-12 7.2348e-15 2.9321e-17 1.0563e-19 3.4248e-22
0.20013 0.96076 0.038457 0.00076968 1.027e-05 1.0277e-07 8.2272e-10 5.4886e-12 3.1385e-14 1.5704e-16 6.9843e-19 2.7957e-21
0.22014 0.95272 0.046144 0.0011175 1.8041e-05 2.1845e-07 2.1161e-09 1.7081e-11 1.1819e-13 7.1554e-16 3.8507e-18 1.865e-20
0.24016 0.94399 0.054412 0.0015682 3.013e-05 4.3417e-07 5.0051e-09 4.8083e-11 3.9593e-13 2.8527e-15 1.827e-17 1.0531e-19
0.26017 0.93459 0.063222 0.0021384 4.8219e-05 8.1547e-07 1.1033e-08 1.2439e-10 1.2021e-12 1.0165e-14 7.6403e-17 5.1684e-19
0.28018 0.92454 0.072535 0.0028454 7.4411e-05 1.4595e-06 2.29e-08 2.9944e-10 3.3561e-12 3.2913e-14 2.8691e-16 2.2509e-18
0.3002 0.91387 0.082306 0.0037064 0.00011127 2.5053e-06 4.5127e-08 6.7737e-10 8.7152e-12 9.8114e-14 9.8183e-16 8.8426e-18
0.32021 0.9026 0.092491 0.0047389 0.00016187 4.1467e-06 8.4983e-08 1.4514e-09 2.1247e-11 2.7215e-13 3.0986e-15 3.1752e-17
0.34022 0.89076 0.10304 0.0059601 0.00022982 6.6465e-06 1.5377e-07 2.9648e-09 4.8996e-11 7.0848e-13 9.1064e-15 1.0534e-16
0.36024 0.87837 0.11392 0.0073869 0.00031934 1.0354e-05 2.6856e-07 5.8049e-09 1.0755e-10 1.7435e-12 2.5124e-14 3.2583e-16
0.38025 0.86545 0.12506 0.0090356 0.00043522 1.5722e-05 4.5438e-07 1.0943e-08 2.259e-10 4.0803e-12 6.5511e-14 9.4664e-16
0.40026 0.85205 0.13642 0.010921 0.00058289 2.3332e-05 7.4714e-07 1.9938e-08 4.5603e-10 9.127e-12 1.6237e-13 2.5998e-15
0.42028 0.83818 0.14796 0.013059 0.00076841 3.391e-05 1.1972e-06 3.5222e-08 8.8822e-10 1.9599e-11 3.8441e-13 6.7857e-15
0.44029 0.82388 0.15961 0.015461 0.00099847 4.836e-05 1.8738e-06 6.0504e-08 1.6745e-09 4.0552e-11 8.7292e-13 1.6912e-14
0.4603 0.80917 0.17134 0.01814 0.0012804 6.778e-05 2.8705e-06 1.013e-07 3.0644e-09 8.1109e-11 1.9083e-12 4.0408e-14
0.48032 0.79409 0.18309 0.021106 0.0016221 9.3498e-05 4.3114e-06 1.6567e-07 5.4568e-09 1.5727e-10 4.0288e-12 9.2889e-14
0.50033 0.77866 0.1948 0.024367 0.002032 0.00012709 6.359e-06 2.6514e-07 9.476e-09 2.9633e-10 8.2372e-12 2.0607e-13
0.52034 0.76293 0.20644 0.02793 0.0025192 0.00017042 9.2226e-06 4.1592e-07 1.6078e-08 5.4381e-10 1.635e-11 4.4241e-13
0.54035 0.74692 0.21795 0.0318 0.0030931 0.00022564 1.3169e-05 6.4045e-07 2.6698e-08 9.7382e-10 3.1574e-11 9.2133e-13
0.56037 0.73065 0.22929 0.035978 0.0037635 0.00029527 1.8532e-05 9.6929e-07 4.3455e-08 1.7046e-09 5.9438e-11 1.8653e-12
0.58038 0.71417 0.24041 0.040466 0.0045408 0.00038214 2.5729e-05 1.4435e-06 6.942e-08 2.9212e-09 1.0926e-10 3.6782e-12
0.60039 0.6975 0.25128 0.045261 0.0054351 0.0004895 3.5269e-05 2.1176e-06 1.0898e-07 4.9076e-09 1.9644e-10 7.0768e-12
0.62041 0.68068 0.26183 0.05036 0.0064573 0.00062098 4.7774e-05 3.0629e-06 1.6831e-07 8.0931e-09 3.4591e-10 1.3306e-11
0.64042 0.66373 0.27205 0.055755 0.0076178 0.0007806 6.3992e-05 4.3716e-06 2.5598e-07 1.3115e-08 5.973e-10 2.4483e-11
0.66043 0.64668 0.28189 0.061439 0.0089271 0.00097284 8.4813e-05 6.1617e-06 3.837e-07 2.0907e-08 1.0126e-09 4.4141e-11
0.68045 0.62957 0.29132 0.067399 0.010396 0.0012026 0.00011129 8.5829e-06 5.6736e-07 3.2816e-08 1.6872e-09 7.8071e-11
0.70046 0.61242 0.30029 0.073623 0.012034 0.0014751 0.00014466 1.1823e-05 8.2816e-07 5.076e-08 2.7655e-09 1.3561e-10
0.72047 0.59526 0.3088 0.080096 0.01385 0.0017962 0.00018637 1.6113e-05 1.1941e-06 7.7434e-08 4.4633e-09 2.3154e-10
0.74049 0.57811 0.3168 0.0868 0.015855 0.0021721 0.00023805 2.1741e-05 1.702e-06 1.1658e-07 7.0983e-09 3.8897e-10
0.7605 0.56102 0.32427 0.093715 0.018056 0.0026091 0.00030161 2.9055e-05 2.3992e-06 1.7334e-07 1.1132e-08 6.4345e-10
0.78051 0.54399 0.33119 0.10082 0.020461 0.0031142 0.0003792 3.8478e-05 3.3466e-06 2.5469e-07 1.7229e-08 1.0489e-09
0.80053 0.52706 0.33755 0.10809 0.023076 0.0036947 0.00047325 5.0515e-05 4.6218e-06 3.7e-07 2.633e-08 1.6863e-09
0.82054 0.51024 0.34333 0.11551 0.025907 0.004358 0.00058648 6.577e-05 6.3221e-06 5.3175e-07 3.9755e-08 2.675e-09
0.84055 0.49357 0.34851 0.12304 0.028959 0.0051119 0.0007219 8.4955e-05 8.5694e-06 7.5635e-07 5.9339e-08 4.1899e-09
0.86056 0.47706 0.35308 0.13066 0.032234 0.0059643 0.00088286 0.0001089 1.1514e-05 1.0653e-06 8.7601e-08 6.4835e-09
0.88058 0.46073 0.35704 0.13834 0.035736 0.0069233 0.001073 0.00013859 1.5343e-05 1.4862e-06 1.2797e-07 9.9168e-09
0.90059 0.44461 0.36038 0.14606 0.039463 0.0079968 0.0012964 0.00017514 2.028e-05 2.0548e-06 1.8506e-07 1.5e-08
0.9206 0.4287 0.36311 0.15377 0.043415 0.0091931 0.0015573 0.00021984 2.66e-05 2.8162e-06 2.6504e-07 2.2448e-08
0.94062 0.41304 0.36521 0.16146 0.04759 0.01052 0.0018604 0.00027416 3.4632e-05 3.8277e-06 3.7606e-07 3.3252e-08
0.96063 0.39763 0.36671 0.1691 0.051983 0.011985 0.0022107 0.00033979 4.4768e-05 5.1608e-06 5.2884e-07 4.8772e-08
0.98064 0.38248 0.36759 0.17664 0.056588 0.013596 0.0026134 0.00041861 5.7474e-05 6.9045e-06 7.3731e-07 7.086e-08
1.0007 0.36762 0.36788 0.18407 0.061399 0.01536 0.0030742 0.00051273 7.3298e-05 9.1687e-06 1.0195e-06 1.0202e-07

B Code

Full collection of scripts written in the project can be downloaded from https://github.

com/lsinkunaite/Cavity_Alignment/blob/master/Project.zip.

https://github.com/lsinkunaite/Cavity_Alignment/blob/master/Project.zip
https://github.com/lsinkunaite/Cavity_Alignment/blob/master/Project.zip
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