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I. TIME DERIVATIVE OF THE NEWTONIAN ANGULAR MOMENTUM

UNIT VECTOR

The evolution equations for precessing spins and orbital angular momentum are obtained

by imposing
˙⃗
L = − ˙⃗

S1 −
˙⃗
S2 , (1)

i.e. imposing total angular momentum conservation and neglecting angular momentum

emission by radiation, which is given by, see e.g. (4.115) of [1]

dL

dt
=

32

5
η
2
Mv

7
=

32

5M
ηv

8
L , (2)

with η ≡ m1m2/M2
the symmetric mass ratio, m1,2 individual binary constituent masses

and M ≡ m1 +m2.

At leading order (∣L) in the PN expansion parameter x (x = v
2
= (Mω)2/3 in LAL codes,
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with ω the orbital phase derivative) one has, see e.g. eqs. (8-10) of [2]:

˙⃗
S1

»»»»»»L =
x
5/2

2M
(3 − 2

m1

M
−
m

2
1

M2
) L̂ × S⃗1 ,

˙̂
L
»»»»»»L =

x
3

2M3
(1 + 3

M
m1

) S⃗1 × L̂ + 1↔ 2

=
x
3
m

2
1

2M3
(1 + 3

M
m1

) χ⃗1 × L̂ + 1↔ 2

=
x
3

2M
(1 + 3

M
m1

) χ⃗1LAL × L̂ + 1↔ 2 ,

(3)

where χ⃗1 ≡ S⃗a/m2
a, and χ⃗aLAL ≡ S⃗a/M2

, for a = 1, 2, to reflect that dimension-less spins in

LAL are obtained by dividing physical ones by the total mass M squared.

At alternate PN orders spin derivatives receive contributions from spin
2

terms (x
n

in the

spin-dot equations) and from L × S terms (x
(2n+1)/2

), with n = 2 for the leading order, and

L precession equation can be inferred from (1).

At leading order (and up to v
2

order included with respect to the leading) we can assume

that Newtonian angular momentum and L⃗ are parallel: L̂N = L̂, however at higher order

the relationship between L⃗ and L⃗N is actually, see eq. (4.7) of [3]

L⃗ = L̂N ∣L⃗(0)
N ∣ (1 + v

2
L1PN + v

4
L2PN + v

6
L3PN)+

ηv
2 {[−1

2
(1 −

M
m1

) S⃗1n − (1 +
M
m1

) S⃗1λ −
5

6
(1 + 3

M
m1

) S⃗1l]

+v
2 [S⃗1n (−

11

8
(1 −

M
m1

) + η

24
(1 − 10

M
m1

)) + S⃗1λ (−
5

2
(1 +

M

5m1
) + η

3
(1 + 4

M
m1

))

+S⃗1l (−
7

8
(5 + 3

M
m1

) + 7
η

72
(1 + 30

M
m1

))]

+v
2 [S⃗1n (−

61

16
(1 −

M
m1

) + η

24
(137

2
− 367

M
m1

) + η
2

48
(1 +

5

48

M
m1

))

+S⃗1λ (−
1

2
(25

2
+
M
m1

) + η

3
(20 −

79

8

M
m1

) − 2

3
η
2M
m1

)

+S⃗1l (−
81

16
(3 +

M
m1

) + 3

4
η (55

4
+ 39

M
m1

) + η
2

16
(1 − 15

M
m1

))]} + 1↔ 2 ,

(4)

where

∣L⃗(0)
N ∣ = m1m2

v ,

L1PN =
3

2
+
η

6
,

L2PN =
27

8
−

19

8
η +

1

24
η
2
,

L3PN =
135

16
+ [−6889

144
+

41

24
π
2] η + 31

24
η
2
+

7

1296
η
3
,

(5)
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and we remind that

L⃗
(0)
N ≡

m1m2

v L̂N ≠
m1m2

ωr L̂N , (6)

and S⃗1n ≡ n̂(n̂ ⋅ S⃗1), S⃗1λ ≡ λ̂(λ̂ ⋅ S⃗1), and S⃗1l ≡ L̂N(L̂N ⋅ S⃗1). Eqs. (4) is based on the

following convention:
˙̂
LN = Ω⃗ × L̂N ,

˙̂e1 = Ω⃗ × ê1 ,

˙̂e2 = Ω⃗ × ê2 ,

(7)

with

Ω⃗ ≡ L̂N ×
˙̂
LN ≃

x
3

2M
(1 + 3

M
m1

) [χ⃗1LAL − (χ⃗1LAL ⋅ L̂N) L̂N] + 1↔ 2 + higher order terms .

(8)

One can rewrite (4) as

L⃗ = LN L̂N + ηv
2 [c1S⃗1 + c1nS⃗1n + c1lS⃗1l + 1↔ 2] + . . . , (9)

with LN ≡ m1m2/v (1 + v2L1PN + v
4
L2PN + v

6
L3PN . . . ) using the identity

δ
ij
= n̂

i
n̂
j
+ λ̂

i
λ̂
j
+ L̂

i
L̂
j
, (10)

i.e. express the projections of S⃗a in terms of S⃗a, S⃗an, and S⃗al (i.e. substitute S⃗aλ in terms

of S⃗a, S⃗an and S⃗al), having defined

c1 ≡ − (1 +
M
m1

) ,

c1n ≡
1

2
(1 + 3

M
m1

) ,

c1l ≡
1

2
(1

3
− 3

M
m1

) .

(11)

The spin corrections to the orbital angular momentum are x
3/2

order with respect to

the leading contribution to L⃗, that is the Newtonian angular momentum. The velocity

symbol v in [4] (denoted below vKidder) differs from the one adopted in LAL (and also in

this document):

vKidder ≡ ωr ≠ vLAL ≡ (Mω)1/3 . (12)

We have thus a simple precession equation for L⃗, but L̂N , which is the unit vector

perpendicular to the instantaneous orbital plane, is needed to construct the waveform.
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We can construct the
˙̂
LN by short-circuiting eq. (1) and eq. (9), to first obtain

L̇N L̂N + LN
˙̂
LN = − ˙⃗

S1 − ηv
2 [c1 ˙⃗

S1 + c1n
˙⃗
S1n + c1l

˙⃗
S1l

+v
2 (d1 ˙⃗

S1 + d1n
˙⃗
S1n + d2l

˙⃗
S1l) + . . .] + 1↔ 2 ,

(13)

where we have defined

d1 ≡ −
1

2
(5 +

M
m1

) + η

3
(1 + 4

M
m1

) ,

d1n ≡
3

8
(3 + 5

M
m1

) − 7η

4
(1

6
+
M
m1

) ,

d1l ≡ −
1

8
(15 + 17

M
m1

) + η

4
(−17

18
+

19

3

M
m1

) .

Few features worth noticing:

� S⃗a × L̂N terms appear at v
2n+1

order in
˙⃗
Sa equations starting from n = 2

� spin
2

terms in
˙⃗
Sa equation appear at v

2n+2
order, starting from n = 2

� terms linear in Sa contaminate L, affect
˙̂
LN equations starting from v

5
order (in the

instantaneous treatment), as

˙⃗
San = [ v

3

M
(λ̂ ⋅ S⃗a) + n̂ ⋅ ˙⃗

Sa] n̂ +
v
3

M
(n̂ ⋅ S⃗a) λ̂ . (14)

Note that Mω = v
3

is an exact equation (it does not have PN correc-

tions). The spin-depedent terms in the orbital angular momentum L⃗ start

at NNNL order. They can be turned on by the LALDict structure via

XLALSimInspiralWaveformParamsInsertLscorr().

� one can decide to use instantaneous values of spin or their orbit-average values, see

subsec. II and summary tab.I.

Since
˙̂
LN ⋅ L̂N = 0, we can split eq.(13) into a part perpendiculat to L̂N and a part along

it. The part parallel to L̂N gives for the spin-induced variation of the modulus of LN :

L̇N = − ˙⃗
S1 ⋅ L̂N − ηv

2 [c1 ˙⃗
S1 ⋅ L̂N + c1l ( ˙̂

LN ⋅ S⃗1 + L̂N ⋅
˙⃗
S1) + . . .] + 1↔ 2 . (15)

Plugging back into eq. (13) one has

LN
˙̂
LN = − [ ˙⃗

S1 − ( ˙⃗
S1 ⋅ L̂N) L̂N]

−ηv
2 {c1 [ ˙⃗

S1 − (Ṡ1 ⋅ L̂N) L̂N] + c1n ˙⃗
S1n + c1l (L̂N ⋅ S⃗1) ˙̂

LN + . . . } + 1↔ 2 .

(16)
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II. ORBITAL AVERAGING AND SPIN CORRECTIONS TO ORBITAL

ANGULAR MOMENTUM

The precession equations at leading order were given in eq. (3). One may want to average

over one orbit to drop terms in n̂, λ̂, and keep only L̂N according to:

⟨ni⟩ = ⟨λi⟩ = 0 = ⟨n̂iλ̂j⟩ ,
⟨n̂in̂j⟩ = ⟨λ̂iλ̂j⟩ = 1

2
(δij − L̂iN L̂

j
N) +O(v3) ,

(17)

where the v
3

error made in averaging over an orbit is due to the precession of the Newtonian

angular momentum. Since
˙̂
LN ∼ v

6/M and T ∼M/v3, one has

∆L̂N = ∫
T

0

˙̂
LNdt ∼

M

v3
v
6

M
⟨S⃗1LAL × L̂⟩ = v3⟨S⃗1LAL × L̂⟩, (18)

hence bringing an error at N
3
L order in the spins and angular momentum. This implies

that if an average is taken, N
3
L spin terms receives un-controlled contributions from the

averaging, so precessing equations in the averaged case can only be extended up

to to NNL order after averaging is first taken, i.e. at NNNL order (included).

To summarize one has at various v order for the instantaneous case (understanding sum-

mation under 1↔ 2):

LN
˙̂
LN ∣v5 = − ˙⃗

S1∣v5 − ηv2c1n [( ˙̂n∣v3 ⋅ S⃗1) n̂ + (n̂ ⋅ S⃗1) ˙̂n∣v3] ,
LN

˙̂
LN ∣v6 = − [ ˙⃗

S1∣v6 − ( ˙⃗
S1∣v6 ⋅ L̂N) L̂N] ,

LN
˙̂
LN ∣v7 = − ˙⃗

S1∣v7 − ηv2 [c1 ˙⃗
S1∣v5 + c1n (n̂ ⋅ ˙⃗

S1∣v5) n̂]
−ηv

4 {d1n [( ˙̂n∣v3 ⋅ S⃗1) n̂ + (n̂ ⋅ S⃗1) ˙̂n∣v3]} ,
LN

˙̂
LN ∣v8 = − [ ˙⃗

S1∣v8 − ( ˙⃗
S1∣v8 ⋅ L̂N) L̂N] − ηv2 {c1 [ ˙⃗

S1∣v6 − ( ˙⃗
S1∣v6 ⋅ L̂N) L̂N]

+c1n [(n̂ ⋅ ˙⃗
S1∣v6) n̂] + c1l [(L̂N ⋅ S⃗1) ˙̂

LN ∣v6]}
LN

˙̂
LN ∣v9 = − ˙⃗

S1∣v9 − ηv2 [c1 ˙⃗
S1∣v7 + c1n (n̂ ⋅ ˙⃗

S1∣v7) n̂ + c1l (L̂N ⋅ S⃗1) ˙̂
LN ∣v7]

−ηv4 [d1 ˙⃗
S1∣v5 + d1n (n̂ ⋅ ˙⃗

S1∣v5) n̂] − ηv6e1n [( ˙̂n∣v3 ⋅ S⃗1) n̂ + (n̂ ⋅ S⃗1) ˙̂n∣v3] ,
(19)

where it has been used that
˙⃗
S1 ⊥ L̂N at v

5
, v

7
, and v

9
order and

e1n ≡ −
3

16
(13 + 23

M
m1

) − η (61

16
+ 12

M
m1

) + η
2

48
(1 + 37

M
m1

) . (20)

For the orbit-averaged case just drop the terms involving ˙̂n
i
n̂
j
, set c1n, d1n, and e1n to 0,

and substitute in (19) c1 → c1+c1n/2 and c1l → c1l−c1n/2, and analogously d1 → d1+d1n/2

and d1l → d1l − d1n/2.
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order L NL N
2
L N

3
L N

4
L

spinO 3 4 5 6 7

v order v
5

v
6

v
7

v
8

v
9

S⃗ × L̂ ✓ ✓ ✓flag−phenom

S⃗
2 ✓avg ✓avg

S⃗
3 ×

JS ✓flagls ✓flagls ×

TABLE I: Summary of spin precession effects implemented in the LALSimInspiralSpinTaylor.c

code in the Ṡ1,2 equations.

III. SPIN EVOLUTION EQUATIONS

The spin evolution equation at NL order involve scalar product with n̂, λ̂, see (A2) of [5]:

˙⃗
S1

»»»»»»NL =
v
6

M
[−S⃗2LAL + 3(n̂ ⋅ S⃗2LAL)n̂ + 3κ1 (

M
m1

− 1) (n̂ ⋅ S⃗1LAL)n̂] × S⃗1 , (21)

which after orbital averaging turns into

⟨ ˙⃗
S1⟩

»»»»»»NL =
v
6

2M
[S⃗2LAL − 3 (L̂N ⋅ S⃗2LAL) L̂N − 3κ1 (

M
m1

− 1) (L̂N ⋅ S⃗1LAL) L̂N] × S⃗1 .

A. NNL order

At NNL order we have linear in spin effects, see (7.8) of [6] and the notebook attached

to this dcc:

Ṡ1∣NNL =
v
7

M
(9

8
−
m1

2M
+

7m
2
1

12M2
−

7m
3
1

6M3
−

m
4
1

24M4
) L̂N × S⃗1 , (22)

and since these terms are linear in the spin, no averaging is necessary.
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B. NNNL order

At N
3
L order one has the 1PN corrections to the spin

2
corrections appearing at NL order

and the instantaneous precessing equation, see (A2) of [5] is

˙⃗
S1

»»»»»»N3L
=

v
8

M
{ [− m

2
1

2M2
− 3

M
m1

+
7

2
+ κ1 (−3

m
2
1

2M2
− 3

m1

M
+ 3

M

2m1
+ 3)] (n̂ ⋅ S⃗1)n̂

+ [−3
M

2m1
− 3

m1

2M
+ 3 + κ1 (3

M
m1

− 3)] (λ̂ ⋅ S⃗1)λ̂+

+ [−m1

M
−

3

2
] S⃗2 + [m

2
1

M2
+ 2

m1

M
+

3

2
] (n̂ ⋅ S⃗2)n̂

+ [m1

M
+

3

2
] (λ̂ ⋅ S⃗2)λ̂} × S⃗1 .

(23)

The orbit averaged version of (23) reads

⟨ ˙⃗
S1⟩

»»»»»»N3L
=

v
8

M
{ [9

4

M
m1

−
13

4
+

3

4

m1

M
+

m
2
1

4M2
+ κ1 (−

9

4

M
m1

+
3

2

m1

M
+

3

4

m
2
1

M2
)] (L̂N ⋅ S⃗1LAL) L̂N

[m1

2M
+

m
2
1

2M2
] S⃗2LAL + [−3

2
−

3

2

m1

M
−

m
2
1

2M2
] (L̂N ⋅ S2LAL) L̂N} × S⃗1 .

(24)

After this order on, one has to remember eq. (18) introduces an error because of the averaging

process, hence only instantaneous contributions will be used.

C. N
4
L order

The instantaneous dynamical equations at N
4
L order can be read from eq. (4.5) of [3]

˙⃗
S1

»»»»»»N4L
=
v
9

M
(27

16
−

51m1

8M
+

181m
2
1

16M2
−

23m
3
1

6M3
−

39m
4
1

16M4
−

3m
5
1

8M5
−

m
6
1

48M6
) L̂N × S⃗1 . (25)

IV. ACCELERATION

Now following [7] we investigate how the precessing terms modify the relationship between

ω and φ̇, where ω is defined by the relationship

a⃗ ⋅ n̂ = −ω
2
r (definition of ω) (26)
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and φ̇ is the time derivative of the orbital phase. Let us consider a triad (ê1, ê2, L̂N) co-

rotating with L̂N (but not with the binaries), that is

˙̂e1 = Ω⃗ × ê1 = (Ω⃗ ⋅ ê2) ê2 × ê1 = −Ωe2L̂N ,

˙̂e2 = Ω⃗ × ê2 = (Ω⃗ ⋅ ê1) ê1 × ê2 = Ωe1L̂N ,
˙̂
LN = Ω⃗ × L̂N = Ωe2 ê2 × L̂N + Ωe1 ê1 × L̂N = Ωe2 ê1 − Ωe1 ê2 ,

(27)

the notation ΩX ≡ Ω⃗ ⋅ X̂ has been adopted. For the binary system we have

r⃗ = rn̂ ≡ r (cosφ ê1 + sinφ ê2) ,
λ̂ ≡ L̂N × n̂ = (− sinφ ê1 + cosφ ê2) .

(28)

Note the useful equalities (φ̇ ≠ ω, as we will show)

e1 = cosφn̂ − sinφλ̂

e2 = sinφn̂ + cosφλ̂
(29)

˙̂n = φ̇λ̂ + [− cosφΩe2 + sinφΩe1] L̂N = φ̇λ̂ − ΩλL̂N ,
˙̂
λ = −φ̇n̂ + [sinφΩe2 + cosφΩe1] L̂N = −φ̇n̂ + ΩnL̂N ,

˙̂
LN = Ωλn̂ − Ωnλ̂ .

(30)

Taking one derivative we get

v⃗ ≡ ˙⃗r = ṙn̂ + rφ̇λ̂ − rΩλL̂N , (31)

taking another derivative

a⃗ ≡ ˙⃗v = r̈n̂ + ṙφ̇λ̂ − ṙΩλL̂N+

(ṙφ̇ + rφ̈)λ̂ − rφ̇2
n̂ + rφ̇ΩnL̂N+

(−ṙΩλ − rΩ̇λ)L̂N − rΩλ(Ωλn̂ − Ωnλ̂)
= (r̈ − rφ̇2 − rΩ2

λ)n̂ + (2ṙφ̇ + rφ̈ + rΩnΩλ) λ̂+
[−2ṙΩλ + 2rφ̇Ωn − r

˙⃗
Ω ⋅ λ̂] L̂N .

(32)

Projecting the acceleration onto n̂ and dividing by −r, we find ω
2

of the harmonic motion,

that is (using n̂ ⋅ L̂N = 0 = n̂ ⋅ λ̂)

−
1
r a⃗ ⋅ n̂ = (φ̇2

− r̈/r + Ω
2
λ) , (33)
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which shows that ω ≠ φ̇ for terms of the order v
4

(because of δr̈/r, see below). Note

at leading order φ̇
2
∼ v

6/M2
, Ω ∼ v

6/M implying that the Ω
2
λ terms represents a 3PN

corrections to the phasing formula, as first pointed out in [7], i.e.

φ̇ ≃ ω −
1

2

Ω
2
λ

ω
orbit average
→ ω −

1

4

Ω
2

ω , (34)

where Ω can be read in eq. (8).

To estimate r̈ let us re-write the equation of motion, neglecting dissipation, as

a⃗ = aN (1 + a1PN + an̂1.5PN + an̂2PN + . . .) n̂
+aN (aλ̂2PN + . . .) λ̂ + aN (aL̂N1.5PN + aL̂N2PN + . . .) L̂N ,

(35)

where aN ≡ −GNm/r3. Then one finds, following App. B of [8], defining

S⃗0 ≡ (1 +
m2

m1
) S⃗1 + (1 +

m1

m2
) S⃗2 , (36)

and using the λ̂ component of eq. (32)

2ṙφ̇ + rφ̈ = −
3GN

Mr4
(n̂ ⋅ S⃗0) (λ̂ ⋅ S⃗0) ,

⟹
d

dt
(r2φ̇) = −

3GN

2Mr3φ̇

d

dt
(n̂ ⋅ S⃗0)

2
,

(37)

which shows that in-plane components of the spin induce deviation from cicular orbits, i.e.

deviations from φ̈ = 0 = ṙ, giving:

2φ̇δr + rδφ̇ = −
3GN

2Mr4φ̇
(n ⋅ S0)2 + C , (38)

where C a (dimensionless) integration constant and r and φ̇ can be considered constant,

resulting that, barring cancellation between 2φ̇δr and rδφ̇,

δφ̇

φ̇
∼
δr
r ∼ v

4
. (39)

Assuming that δφ̇ are fluctuations around mean value of respective quantity which average

to zero over an orbit, one has

2φ̇δr + rδφ̇ =
3GN

4Mr4φ̇
[S⃗2

0 − (L̂N ⋅ S⃗0)
2
− 2 (n̂ ⋅ S0)2] . (40)

To solve for both δr and δφ̇ one needs another equation: one can use the one from a⃗ ⋅ n̂

which gives:

δr̈ − δrφ̇
2
− 2rφ̇δφ̇ = r̄ ¯̇φ

2
−
GNM

r2
(1 −

2δr
r ) [1 + . . . +

3GN

2M2r2
(S⃗2

0 − 3 (n̂ ⋅ S⃗0)
2)] , (41)
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which leads to

δr̈ − 3φ̇
2
δr − 2rφ̇δφ̇ = −

9GN

4Mr4
[S⃗2

0 − (L̂N ⋅ S0)
2
− 2 (n̂ ⋅ S⃗0)

2] . (42)

Now short-circuiting eqs.(40) and (42) one finds

δr̈ + φ̇
2
δr = −

3GN

4Mr4
[S⃗2

0 − (L̂N ⋅ S0)
2
− 2 (n̂ ⋅ S⃗0)

2] . (43)

Find a particular solution of (43) and solving also for δφ̇ one obtains

δr =
GN

4M2r
[(λ̂ ⋅ S⃗0) − (n̂ ⋅ S⃗0)] ,

δφ̇ =
GN φ̇

4M2r2
[(λ̂ ⋅ S⃗0) − (n̂ ⋅ S⃗0)] .

(44)

This shows than in-plane components of the spins induce radial oscillations and modulation

in the orbital frequency, hence circular orbit exist only on average. Solving for the orbital

frequency evolution via the energy-flux balance equation

ω̇ =
dE/dt
dE/dω (45)

is possible only averaging thos radial oscillations, which allows

⟨ω2⟩ = ⟨φ̇2
+ Ω

2
λ −

r̈
r⟩ =

¯̇φ
2
+ Ω

2
λ , (46)

where the Ω
2
λ term is a v

6
correction, and its presence in eq.(33) agrees with [7]. One could

consider instantaneous orbital variables, but one should then solve for the complete set of

equation of motions, with radiation reaction, to find the actual dynamics.

V. SPINTAYLORTX PHASING

The orbital phase differential equation can be PN expandend in different ways, according

to the T1, T4 [9] or T5 [10] version. Here we just recall the basic definitions of the main

orbital phase:

dω

dt
=

dE/dt
dE(ω)/dω =

T1
=

96M
5/3
c ω

11/3

5
( 1 + F1PN + . . .

1 + 2E1PN + . . .
)

T4
=

96M
5/3
c ω

11/3

5
(1 + F1PN − 2E1PN . . .)

T5
=

96M
5/3
c ω

11/3

5
( 1

1 + 2E1PN − F1PN . . .
) ,

(47)
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with the usual identification v ≡ (Mω)1/3, being M the total mass of the binary system

and Mc the chirp mass and we assumed E = −(1/2)ηMx(1 + xE1PN . . .) and dE/dt =
(32/5)η2x5(1 + xF1PN + . . .) and ω̇ =

5

32η
x
11/2 (1 + . . . + x2ω̇2PN + x

3
ω̇3PNSS + . . .). We

report here for reference the the Spin
2

at 2PN order in their averaged

E2PNS2avg =
1

2η
(S⃗1 ⋅ S2 − 3L̂ ⋅ S⃗1L̂ ⋅ S2) + κ1 (−

3

2
(L̂N ⋅ S⃗1)2 +

1

2
S⃗
2
1) + 1↔ 2 ,

F2PNS2avg =
1

96η
(−103S⃗1 ⋅ S⃗2 + 289L̂ ⋅ S⃗1L̂ ⋅ S2)

+
M

2

96m2
1

(7S⃗
2
1 − (L̂ ⋅ S⃗1)2) + κ1 (

M
m1

)
2

(3(L̂ ⋅ S⃗1)2 − S⃗2
1) + 1↔ 2 ,

ω̇2PNS2−T4avg =
1

96η
(−247S⃗1 ⋅ S⃗2 + 721L̂N ⋅ S⃗1L̂N ⋅ S⃗2)

+
M

2

96m2
1

(7S⃗
2
1 − (L̂N ⋅ S1)2) + κ1 (

M
m1

)
2

(−5

2
S⃗
2
1 +

15

2
(L̂N ⋅ S⃗1)2) + 1↔ 2 ,

ω̇2PNS2−T5avg = ω̇2PNS2−T4avg ,

(48)

and instantaneous form

E2PNS2 =
1
η (3n̂ ⋅ S1 n̂ ⋅ S⃗2 − S⃗1 ⋅ S⃗2) + κ1 (

M
m1

)
2

(3(n̂ ⋅ S1)2 − S⃗2
1) + 1↔ 2 ,

F2PNS2 =
1
η (31

16
S⃗1 ⋅ S⃗2 −

15

2
n̂ ⋅ S⃗1n̂ ⋅ S⃗2 +

71

48
v̂ ⋅ S⃗1v̂ ⋅ S⃗2)

+
M

2

16m2
1

(S⃗2
1 +

1

3
(v̂ ⋅ S1)2) + κ1 (

M
m1

)
2

(2S⃗
2
1 −

15

2
(n̂ ⋅ S⃗1)2 +

3

2
(v̂ ⋅ S1)2) 1↔ 2 ,

ω̇2PNS2−T4 =
1
η (79

16
S⃗1 ⋅ S⃗2 −

33

2
n̂ ⋅ S⃗1n̂ ⋅ S⃗2 +

71

48
v̂ ⋅ S⃗1v̂ ⋅ S⃗2)

+
M

2

16m2
1

(S⃗2
1 +

1

3
(v̂ ⋅ S1)2) + κ1 (

M
m1

)
2

(5S⃗
2
1 −

33

2
(n̂ ⋅ S⃗1)2 +

3

2
(v̂ ⋅ S1)2) + 1↔ 2 ,

ω̇2PNS2−T5 = −ω̇2PNS2−T4 .

(49)

Beware, symmetric terms double their value under symmetrization!
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At 3PN order in the spin alinged case one has

E3PNS2−ali = [2 (Mm1
)
2

−
M
m1

− 1 + κ1 (−
5

2
(Mm1

)
2

−
5

2

M
m1

−
5

6
)] S⃗2

1+

[3 (Mm1
)
2

−
2

3

M
m1

−
1

9
] (L̂N ⋅ S⃗1)2+

1

2
[(−7

η −
1

3
) S⃗1 ⋅ S⃗2 + (16

3η
−

2

9
) L̂N ⋅ S1L̂n ⋅ S⃗2] + 1↔ 2 ,

F3PNS2−ali = [−21

8
(Mm1

)
2

+
215

24

M
m1

−
1

24
+ κ1 (−

279

56
(Mm1

)
2

−
45

8

M
m1

+
43

4
)] S⃗2

1

[−1

2
(Mm1

)
2

−
43

6

M
m1

+
22

9
] (L̂N ⋅ S⃗1)2+

+
1

2
[(− 29

168η
−

259

12
) S⃗1 ⋅ S⃗2 + (−49

6η
+

44

9
) L̂N ⋅ S⃗1L̂N ⋅ S⃗2] + 1↔ 2 ,

ω̇3PNS2−T4ali = [−337

32
(Mm1

)
2

+
415

32

M
m1

+
379

96
+ κ1 (

659

112
(Mm1

)
2

−
73

24

M
m1

+
43

2
)] S⃗2

1

[75

4
(Mm1

)
2

+
87

4

M
m1

+
49

6
] (L̂N ⋅ S⃗1)2+

1

2
[(9869

336η
−

1685

48
) S⃗1 ⋅ S⃗2 + (237

4η
+

49

3
) L̂N ⋅ S⃗1L̂N ⋅ S⃗2] + 1↔ 2 ,

ω̇3PNS2−T5ali = [27565

2688
(Mm1

)
2

−
213

16

M
m1

−
173

48
+ κ1 (−

9407

336
(Mm1

)
2

−
587

24

M
m1

+ 6)] S⃗2
1+

(325

16
(Mm1

)
2

+
107

6

M
m1

+
67

36
) (L̂N ⋅ S⃗1)2+

1

2
[(−98173

1344η
−

461

24
) S⃗1 ⋅ S⃗2 + (1403

24η
+

67

18
) L̂N ⋅ S⃗1L̂N ⋅ S⃗2] + 1↔ 2 .

(50)
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