

Mirror scattering loss analysis by integrating sphere measurement

- Scattering and loss by test mass
 - Discrepancy between the measured arm loss, 50ppm/mirror, and the loss based on optics measurement, 25ppm/mirror
 - Loss by mirror is estimated as
 - Loss by surface figure = 10ppm,
 - Larger angle scattering = 10ppm = 5ppm by micro roughness + 5ppm by point scattering,
 - Misc and uncertainty = sevetal ppm
- Large angle scattering measurement covers down to 1°.
 What if TIS(θ<1°) is comparable to TIS(θ≥1°)
- Integrating sphere measurement with extension to measure TIS in large and small angle (L. Zhang)
 - Preliminary and proof of concept
 - > Small angle ($\theta \le 1^{\circ}$) and large angle ($\theta \ge 1^{\circ}$) scattering
 - Missing energy in the small angle scattering
 - Information defect size/distribution
 - > Micro roughness on coated surface is correlated to uncoated surface

Three scattering sources

aLIGO ETM TIS($\theta \ge 1^{\circ}$) using integrating sphere

IGO Micro roughness : coated ~ polished **Now end of TIS**($\theta \ge 1^\circ$) ~ 3-4 x polished surface

Angular distribution of reflected field depends on the defect size

Far field and small size defects mall defects cannot be characterized by PSD

LIGO-G1600396

Hiro Yamamoto

LVC March 15th, 2016, Pasadena CA

Clustered defects behave like a single defect

Same distribution generated by

Power distribution generated by small defects in a square

Setup for measuring $TIS(\theta \le 1^{\circ})$ and $TIS(\theta \ge 1^{\circ})$

Very preliminary results mirror : initial LIGO ETM04

TIS ($\theta \ge 1^{\circ}$)

TIS(θ≤1°) vs TIS(θ≥1°) very preliminary

Revised setup

Hole in the mirror

Lens moved out of the path to reduce noise Beam diverging toward the second mirror, which induces larger tail noise of the undisturbed beam.

Summary

• Extended Integrating Sphere measurement

- » Preliminary result proof of concept
- » In the small solid angle (10⁻⁴, θ <1°), comparable energy observed as in the large solid angle(θ ≥1°)
- » Improvement of measurement setup and understanding of systematic uncertainties are necessary to quantify the conclusion
- Large angle $(\theta \ge 1^{\circ})$ TIS may underestimate the loss
- Measurement of aLIGO test masses coated by LMA
 - » Necessary to quantify the loss contribution from defects
- Quantitative comparison of larger and small angle TIS may provide further information of defects
 - » Size, clustering, ...

LIGO-G1600396

End of slides

Defect size and total loss assuming defect shape is circle

Defect size vs TIS($\theta \ge 1^\circ$)

Total / TIS($\theta \ge 1^{\circ}$) vs TIS($\theta \ge 1^{\circ}$)

Loss function

