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J. Mizuno’s Ph.D. Thesis:   

[Sensitivity Gain] * [Bandwidth]  

is preserved.

Braginsky, Khalili, Gorodetsky & Thorne: Energetic Quantum Limit (arXiv:gr-qc/9907057)
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For laser interferometer gravitational-wave antennas this is equivalent to
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where L is the length of the arms of the antenna,

xsignal(t) =
Lh(t)

2
(5)

is the effective change of L caused by a gravitational wave, h(t) is the variation of
the wave’s metric, and BE(t, t′) is the correlation function of the optical energy in the
antenna, or the correlation function of the difference of energies in the two arms of the
antenna if two-arm-topology is used.

The origin of the limitation (2) is the Heisenberg uncertainty relation. To detect a
small displacement of the mirrors, it is necessary to apply to them a sufficiently strong
random kick. The only source of this kick is the uncertainty of the optical energy in
the antenna or of the difference of energies in the two arms.

We shall limit ourselves here to the stationary regime, for which the quantum state
of the electromagnetic field in the interferometer does not depend explicitly on time.
In this case formula (4) can be rewritten in spectral form as
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where Xsignal(ω) is the Fourier transform of xsignal(t), and SE(ω) is the spectral density
of the fluctuations of the optical energy. It is important to note here that formula (4)
is the ultimate limit on the sensitivity for any measurement technique, and formula (6)
describes the ultimate sensitivity for all stationary procedures.

II COMPARISON WITH THE SQL

In all estimates below we will use the value of the Standard Quantum Limit (SQL)
as a convenient measure of sensitivity. The SQL, as it was defined more than thirty
years ago [4], is the sensitivity of an ordinary position meter, i.e. a position meter which
does not use any non-stationary or correlation methods to increase the sensitivity. The
forms of the SQL as usually given in the literature, are not convenient since they are
based on some assumed shape of the force’s time dependence (most commonly a single-
cycle sinusoid or a long, monochromatic wave train). Here we prefer a more general
form of the SQL expressed in terms of the spectral density S(ω) for the net noise of
a measurement device. This (double-sided) spectral density is defined in such a way
that for optimal signal processing the signal to noise ratio is equal to
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In the case of an ordinary position meter the spectral density of the net noise is equal
to
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S E (3): energy fluctuations inside cavity



Connection to the Quantum Cramer-Rao Bound 3

• See Rana’s talk for more details.
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X is an unbiased estimator
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L is like interaction 
Hamiltonian!

Basically the same as Energetic Quantum Limit!

Tsang, Caves and Wiseman, PRL 2011

The QCRB requires high amplitude fluctuations 

Does not require low phase fluctuations 
[reaching it requires no optical losses]



Increasing the Cramer-Rao Bound (I) 4

• By injection of squeezed vacuum 
• Need to squeeze the signal quadrature, anti-squeeze the amplitude quadrature

• By internal squeezing, Mikhail Korobko’s talk.

squeezing phase 
quadrature

squeezer

squeezing phase 
quadrature

squeezer



Increasing the Cramer-Rao Bound (II) 5

• Phase Insensitive Amplification

24 A more systematic approach toward further sensitivity improvements

anomalous 
dispersion

propagation delay 
through vacuum

Fig. 3.1 White-light cavity

arm length to have a large displacement signal. However, a long arm gives rise to a
delay, which ultimately limits the number of round trips the light can take before GW
signal stops to cumulate — there is a trade o↵ between peak sensitivity and band-
width. Ultimately, the arm length still wins, but that is why SNR only cumulates like
L, instead of L2.

White-light cavities are cavities that have high finesse but also high bandwidth,
thanks to the magic of negative-dispersion devices. They were proposed within the
gravitational-wave community in the past (Wicht, Danzmann, Fleischhauer, Scully,
Müller and Rinkle↵, 1997), with the most recent proposals by Shahriar et al. (Zhou,
Zhou and Shahriar, 2014). These devices provide a frequency dependent phase shift of
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As we have such a device, the round trip phase of a signal with sideband frequency ⌦
will be given by
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If we manage to have
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then the resonant bandwidth of the cavity will be dramatically enhanced with the
same input mirror reflectivity. This will have to violate the Mizuno theorem — at
least the non-squeezed version.

3.2.1 Are they too good to be true?

In fact, if we have a device that has d�/d! = �L/c and does not have damping of the
signal amplitude, it necessarily have the consequence that, a Gaussian wave packet
must come out before it comes in — because, as we might recall, d�/d! is also the
group delay (Wise, Quetschke, Deshpande, Mueller, Reitze, Tanner, Whiting, Chen,
Tünnermann, Kley et al., 2005). This is quite interesting!

Classically, for a band-limited signal, it is possible for the peak to come out before
it comes in. As we are given the beginning of the signal, we can analyze it, and deduce
its further shape, and produce the peak at the output port before the peak even comes
in. Nevertheless, for a quantum wave packet, we cannot have the same packet come
out before it comes in, because we cannot clone a quantum state. This means, what
ever negative-dispersion medium we build, if it does provide an output that comes out
before the input, it must be highly damped. If we need it not to be damped, we can
amplify it, but with additional noise.

• Possible if the filter is unstable [Ma, Miao, Zhao & Chen]. 
• Entire system can be stabilized.

white light cavity 
Wicht et al., S. Wise et al., 

Zhou, Shahriar et al.

signal amplified normal squeezed
phase noise anti-squeezed squeezed squeezed

amplitude noise anti-squeezed anti-squeezed anti-squeezed



Increasing the Cramer-Rao Bound (III)
• Can optical spring (ponderomotive squeezing) be used to increase the Cramer-Rao 

bound?   

• Is the CR bound reachable?

6

Rana and Haixing’s talk.



An interesting way to think about the QCRB
• Detector’s emissivity of gravitational waves, when it is driven by vacuum fluctuations. 

[Proposed by Yuri Levin, discussed further by Smith-Lefebvre and Miao]. 
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Conceptual Problem 
is EM field radiating or test mass radiating? 

related problem 
does signal come from the motion of mirrors or 

phase shift of light?

losses!!



Detector as Emitter
Using q-CRB, we can show that the best GW detector is also the 
best GW emitter when driven by quantum fluctuations (no 
classical drive)

Idea: higher SNR bound is achieved by increasing power 
fluctuations, which corresponds to higher probabilities of graviton 
emission
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TT Gauge
Coordinates of particles moving along geodesics are constant in 
time, even when GW passes!
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Hamiltonian in TT Gauge
Ĥ = Ĥcav + ĤGW + ĤintHamiltonian:

Direct coupling of strain 
to cavity amplitude!

Derivable from action principle 
applying TT gauge  constraints
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Probability of graviton emission
Calculate probability for the transition

|0iGW ⌦ |0iEM | iGW ⌦ |fiEM
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Summary
• The quantum Cramer Rao bound is the fundamental limit to 

parameter estimation using a quantum probe (or using a 
quantum system to measure a classical signal) 

• Increasing the bound on SNR to a particular waveform h means 
increasing power fluctuations inside the cavity 

• Increasing SNR (or power fluctuations) also means we will 
increase GW radiation into the waveform h 

• This also means maximizing SNR for LIGO will also maximize 
GW radiation due to quantum fluctuations - possibly a 
fundamental source of quantum decoherence due to 
Heisenberg uncertainty! Best candidate for detecting such a 
decoherence?
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Quantum Cramer Rao Bound
Fundamental limit derived from linear measurement theory

Idea: how distinguishable is the quantum state of a probe before 
and after detection of classical signal?
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