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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
RESEARCH LABORATORY OF ELECTRONICS

CAMBRIDGE, MASS. 02139

v ; August 8, 1974

Proposal to.

‘National Science Foundation ~—

"Interferometric Broad Band Gravitational Antenna"

Abstract

This proposal is for an NSF grant to continue the develop-
ment of a broadband gravitational radiation antenna that uses
free masses as antenna elements. The masses are the mirror
mounts of a laser illuminated llichelson interferometer which
is used to measure the gravitationally induced strains in
space. Although the proposed scheme ié in some regards tech-
nicaliy more difficult than resonant bar antennas, it holds the
promise of extending the search for gravitational radiation to
a sensitivity such that one may expect to detect the radiation
from various astronomical sources. The first step is a small
prototype interferomeﬁric antenna with 9 meter arms. This
prototype is at least 1000 times more sensitive to a large ciass
of astronomical sources of gravitational radiation than exist-
ing resonant bar antennas; however, any reasonable estimates
of the source strengths of known and imagined sources still
indicate that the prototype antenna will only be able to set

_upper limits on the grav1tatlonal radlatlon 1nten51ty It is

metric antennas with basclines of the order of a kilometer or
more, since the sensitivity of this type of antenna increases

with the square of the baselinec.

hoped that the techniques dLVClOpCd can be uscd in interfero-
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Preliminary work has been going on at M.I.T. for several
years with the support of the Joint Services Electronics Program
and the M.I.T. Sloan Fund. The JSEP has terminated support

”wformthe”projectwaswofwauneﬁ1914~aswitmcannetwjustifywthe~wwm

relevance of gravitational research to its own program. The

“proposal to the NSF is for operations costs for two years,

the installation of the antenna at an off campus site and for

data acquisition equipment.

Introduction

It is probably safe to say that gravitational radiation
has not been detected to date. This is unfortunate, for had the
Weber experimentsl’2'3’4 been confirmed by otherss’6’7’8’9’10,
gravitational wave astronomy would have opened up a new window
into the universe as well as provided a handle to test relativistic
theofies of gravitation.

Facing cold realities after the considerable theoretical
work engendered by the Weber experiments, it now seems that a
legitimate search for gravitational radiation from astronomical
sources will require a substantial improvement in detector
sensitivity, possibly by a factor of 104 to 106. A compilation
of gravitational radiation sources and their hypothesized spectra
is given in appendix 1.

At present there appear to be three approaches that may
lead to gravitational wave astronomy with higherAsensitivity,

none of whlch 1s w1Lhout problcms The flrst is the development

" of cooled, high Q bars. The assumption is that since the

dominant noise in room temperature antennas is thermal noise,
the overall system noise will scale with temperature. Even if

this is true, cooled bars:will require significant advances in




transducer technoiogy to reach their ultimate potential. The

second approach, complementafy to the others, is to use many

- cross-correlated antennas, a scheme that gains sensitivity with

the square root of the number of antennas. Thirdly and finally,
—-is to -use-antennas-employing large baselines-to capitalize on ...
_ the property that a gravitational wave creates a strain in space

- while the noise, is to first order independent of the baseline.
For a given displacement nbise, the minimum detectable gravita-
tional wave intensity decreases with the square of the antenna
baseline which is ultimately limited by the condition that the
dimensions of the antenna must be less than or equal to the
wavelength of the gravitational wave.

" The basis of this proposal is the development of a small,
interferometric antenna with 9 meter arms. Although the antenna
is 1000 times more sensitive than existing gravitational wave
detectors, it is viewed as a prototype of a much larger system
with a baseline of a kilometer or more. The interferometric
antenna is broad-band and therefore useful in detecting periodic,

impulsive and broad-band gravitational radiation sources.

Theory of a Gravitational Wave Interacting with Free Masses

(11)

In his 1918 paper on gravitational waves Einstein showed

by a perturbation argument that a weak gravitational plane wave
has an irreducible metric tensor in an almost Euclidean space.

The total metric tensor is

v 945 T iy TRy | (1)
where
1 0
_ -1
nl) - 0 -1 _(2)
-1




is the Minkowski background metric tensor. hij

is the perturba-

tion metric tensor due to the gravitational wave and it is

assumed that all components of this tensor are muqh smaller

than 1.

If'the plane wave propagates along the Xy direction,

it is always possible to find a coordinate system in which'hij

takes the irreducible form

h,.
1]

with h22 = - h33 and n23

functional dependence f(xl

r

0 b0 )
oo T aYT oo (3)
| B
0 iPaa o
thyy Ngy
\ i J
= h32. The tensor components have the usual
- ct).

To gain some insight into the meaning of a plane gravita-

tional wave, assume that the wave is in the single polarization

state h23 = h32 = 0 and furthermore let h22 = - h33 = h sin
(kxl - wt). The interval between two neighboring events is
then given by
2 i, 3 2.2 2 | | 2
ds”™ = gijdx dx’ = c¢"dt™ - [dxl + (l.+ h 31n(kxl - wt))dx2
2
+ (1L - h sin(kxl - wt))dx3] : (4)
The metric relates coordinate distances to proper lengths. In

coordinates are not proper

lengths.

One can give some reality

to the coordinates by placing free noninteracting masses at

various points in space which then label thevcoordinates} The




- proper distance between two coordinate points may then be
defined by the light travel time between the masses. Let
there be a light source at x, = - -%2/2 and a receiver at

5 = 2/2. For light the total interval is always zero so

“that

X

ds? = 0 = c%dt® - (1 + h sin(kx; - wt))dxg (5)

since h << 1

cdt = [1 + 2 sin(kx, - wt) Jdx,, (6)

2 1

If the light travel time, At, is much less than the period of

the wave, the integral for At becomes simple and one gets

_ . _h _. )
At = (l -2-' sin U)t)'c—: (7)

{ In the absenceof the gravitational wave At = zo/c = %/c, the
coordinate distance becomes the proper length. The variation

in At due to the gravitational wave is given by
on . 2 '
SAE = (5 sin mt)g (8)

This can be interpreted as though the gravitational wave

produces a strain in space inthe X direction of

sin wt = _%2 (92)
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There is a comparable strain in the X5 direction, however inverted

in phase.
The intensity of the gravitational wave in terms of the
plane wave metric tensor is given by Landau and Lifshitz12 as
> v
L o3 hy 312 1(dh,, dhyg)2 (10)
g 16wG dt 4 |dt dt '




For subsequent calculations, it is more useful to relate
the power spectrum of the gravitationally induced displacement

to the incident gravitational intensity épectrum;

%2y = hZ(w) 25 — Sﬂcﬁg ) |
: T 32 0 Yo < 2g (11

where lO is the separation of the masses.

The Antenna Design

The principle idea of the antenna is to measure the geodesic
deviation of free masses by passing light signals between them.
The notion is not new; it has appeared as a Gedanken experiment
in F.A.E. Pirani's13 studies of the measurable properties of
the Riemann tensor. However, it‘became a practical idea only
with the advent of lasers and the realization that interferometric
distance measurements could be made to a much higher precision
than the wavelength of light. The limit is determined by the
quantum limited shot noise (Poisson noise) arising from the
granularity of light and the statistics of the detection process.
It was quickly realized that interferometric gravitational wave
antennas had several unique properties; they are broad-band
detectors, can be extended to the optimal size of the gravitational
wavelength and are not loaded by the displacement detectors.

Initial work on such antennas began at M.I.T. in 1970 as

.part.of scveral senior-.thesis projects.-following the development . . .

of an experiment in 1967 that demonstrated shot noise limited
interrogation of fringes in a laser illuminated Michelson inter-

14
ferometer™ .
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Fbr the last two years, the design and construction of the

prototype antenna has been the Doctor's thesis of Mr. D. K.

Oowens at M.I.7T. who has contributed substantive ideas to the
project. | ,

» Work began at Hughes Aircraft under the direction of Dr.
R. Forward on an interferometric antenna design for use in
space at the instigation of Dr. Philip Chapman then of N.A.S.A.
Houston and a frequentvisitor to M.I.T. in early 1970. The
work at Hughes culminated in a premature publication which
did not do the idea justice but nevertheless demonstrated again
that laser interferometers operating at the Poisson limit
were feasible.lS

A schematic drawing of the antenna being constructed at
M.I.T. is shown in figure 1. Three masses are suspended oOn
horizontal seismometermountsin high vacuum (P < 10—7 torr).

The three masses are the mirror mounts of an equal arm Michelson
interferometer illuminated by a commercial 1 watt Argon ion

laser. Each interferometer arm is a 9 meter long reentrant
optical delay line comprised of dielectric coated spherical mirrors
in a near confocal configuration. The laser beam is split by

a 50 - 50 beam splitter and enters the delay lines through a

hole in the spherical mirrors. The beam makes approximately

300 passes in each cavity before reemerging through the same

hole by which it entered. The emefging beam passes through
Pockel's cell phase shifters and is recombined by the beam

splitter after which itis detected by a water cooled PIx Silicon. ... .

photo diode.
The interferometer is held on a fixed point of a fringe by
a servo system using the Pockel's cell phase shifters as control-

- lers., The servo errorsignal is derived by modulating the optical




¢

phase in oppositely‘polarized Pockel's cells in the two inter-
ferometer arms by #7/4 at a 10MHz rate. The fringe phase
modulation is synchronously demodulated yielding an error
signal which is applied to the Pockel's cells to maintain the

. —fringe-modulation symmetry. Thé error signal is proportional

to the differential displacement of the end masses and is the

- output of the antenna. With the servo operated in this manner

as a nulling device the laser amplitude noise at frequencies
other than the modulation frequency is suppressed, provided the
open loop gain is high enough.

The dynamic range of the Pockel's cells is limited to phase
shifts equivalent to a few wavelengths motion of the end masses.
Two approaches can be taken to increase the dynamic range of the
interferometer to accomodate long term drifts due to ground
noise and temperature changes. The first is to employ a slow,
largé dynamic range controller to move the end masses, for
example an electrostatic force applied to the end masses,
to hold the interferometer on a single fringe. The second
approach, which we have adopted for the small antenna, is to let
the interferometer jump from one fringe to an equivalent point
on the neighboring fringe when the error signal has reached a
predetermined value. The fringe jumps are counted in an up-
down counter, converted into analog signals and passed through
a high pass filter. The low frequency cut off of this filter
determines the low frequency response of the antenna. The
output of this filter is added to the continuousifringe output

signal and recorded as the antenna output. The fringe jumps

take place in a time determined by the time constant of the ... . cosemm

Pockel's cell which is of the order of 10“8 seconds, during

this time the post mixer analog circuitry is reset as well.

By properly setting the timing and the error signal amplitude

at which the fringe jump occurs, it is possible to make the
transients in the antenna output comparable to the Poisson
noisc.

£ g R R T S



We have measured the amplitude noise of a Spectra-Physics
model 165 Argon Ionlaser at variouspower levels with the laser
oscillating in both multi and single longitudinal modes. Figure

2 shows the results of these measurements with the laser oscillat-

ing in a single longitudinal mode. At frequencies below 300KHz,
the power spectrum of the amplitude noise is dominated by

ion acoustic and plasma oscillations as well as spectral peaks
at multiples of the power line frequency due to inadequate
filtering in the power supply. At frequencies above 3MHz,

the amplitude noise closely approaches the Poisson 1limit even
at 1/2 watt output. The measurcménts were limited to a maximum
of 1/2 watt becauseof the onsetof space charge limited flow
in the Silicon photodiode at higher power.

The frequency stability of the laser is not critical
provided that the difference in optical delay in the two inter-
ferometer arms is less than thereciprocal of the oscillating
laser line width. Typically, for the Argon laser a delay
difference of 10"9 seconds (30cm) will contribute a displacement
noise due to frequency instability that is less than 1/10
of the Poisson amplitude noise.

The multipass delay lines that caomprise the interferometer
arms are useful componentsin an interferometric antenna as
long as the Poisson amplitude noisedominates the antenna noise
budget and the'delay line storage times remain less than 1/2
the period of the gravitqtional wave. For fixed laser power,
the multi-pass arms increase the fringe phase sensitivity of

the interferometer by the number of passes per arm. The number

of.passes.is.-limited -by the reflectivity and-optical-quality. -

of the mirror surfaces.
As long as the Poisson amplitudemise is dominant, the
optical delay line is equivalent to increasing the length of-

the antenna, however at thosefrequencies where noise sources,




such as thermal and ground noise, that physically move the
end mass dominate, the only way to increase the signal-

to-noise ratio is to actually increase the antenna baseline.

 Optical delay linesusing spherical mirrors have been ot

described by Herriotth. D. K. Owens at M.I.T. has studied and

.cdnstructed delay lines using spherical mirrors, a brief
description of his results are given in appendix 2. He has
discovered severalinteresting-and useful properties of these
delay lines. The most encouraging one is that the delay lines
are easy to align. Ifthe reentrant condition is satisfied,
namely that the input and output beams pass through the same
hole, the 'delay linebehaves as though the beam is reflected by
the back of the front surface of the mirror which has the coupling
hole in it. The position of the output beam is independent
of the transverse position and angle of the far mirror as long
as the beam pattern does not spill off of the mirrors. As is
discussed in appendix 2, (if the reentrant condition is satisfied)
the time delay of the beam in the cavity is insensitive in first
order to transverse motions and rotations of the far mirror.

The mirrors intheprototype antenna are 4 inches in diameter,
have a radius of 9 meters, a reflectivity of 99.5% at 5145A
and 6328A and are good to 1/10 of a wavelength over their ‘
entire surface. The coupling hole has a diameter of 1.5mm.

The design of thesuspensions for the antenna masses has
defied a simple, elegant and economical solution. The suspensions
have to satisfy several conditions. First they must have a high

Q to reduce the coupling to thermal fluctuations. Second they

“TUst provide isolation from ground and acoustic noise. What makes
the problem difficult is the incvitable collection. of normal
modes of motion of a mechanical system which cross-couple andvby
parametric conversion transfer cnergy between cach other. 1In

other words, the isolation calculated for a long period suspension

-10-




is never realized in practice because the suspension structure

has its own resonances that couple into the principle mode

A rule of thumb to minimize problems in suspensions is to
keep them simple and to force the resonances of the structural
members toward high frequencies.

- A possible answer to £he suspension problem is to use a
diamagnetic superconducting suspénsion or other field suspension
such as servoed electrostatic or magnetic supports. We have
made analyses of such systems and in fact constructed a proto-
type electrostatic suspension. However, for a first attempt
at testing the design of theentire antenna, it seems prudent
to make an imperfect compromise which has the virtue of
simplicity.

The masses are 10kg aluminium blocks suspended as pendula by
4mm diameter fused quartz rodsl meter long. The fundamental
period of the suspension is 2 seconds and has a Q in excess
of 106. The Q is determined by the internal losses in the
" quartz but only 5% of the energy of the oscillator is stored
in the quartz. The remainder is stored in the gravitational
field of the earth, so that the total Q>is higher than the
internal Q of quartz. The principle préblem associated with this
suspension is the normal modes of vibrétion of the quartz rod
which occur at approximately 250Hz intervals.

Since the interferometer is insensitive to transverse

by the suspension is mostcritical for motion along the lengths

of thc interfcerometer arms.
For diagnostic purposes as well as to measure the ground

noise contribution to the antenna output, each of the suspended

-1]1-

D RISV P ST s |




€I“i masses is the inertial member of a horizontal seismometer.
‘F The motion of the ground relative to the antenna masses is
measured by using capacitive displacement transducers attached
?9vflang§§_iEdEBQEXQQBEE;DQQ§ngAM”Ihemgroundmnoisewmeasu;edwﬂMW;WWﬂMWW”w

by the seismometers can be subtracted from the antenna output
~as described in the following scheme. »

. The suspension ischaracterizedby the transfer function
T(w) = xm(w)/xg(w)

where xm(w) is the Fourier componentof the displacement of the
suspended mass in inertial space when driven by a ground
motion xg(w), also referred to inertial space. xg(w) is
composed of seismic noise as well as the motion of the earth»
induced by the gravitywave. The interferometer measures the
displacement of the massesrelative to each other. The
relative motion of the masses, Axm(w) is

Axm (w) = AxGW(w)b+ T (m)xgl (w) = Tz(w)xg2(w)

where AxGw(w) is the motion due to the gravitational wave

and the subscripts 1 and 2refer to the two suspensions involved
in a single arm of the interferometer. The seismometer
measures the motion of the earth relative to the position of

of the suspended mass. At one end of the interferometer arm the
Seismometer output is

Ax
= GW (w) _
bagy (@) = —gEEh 4 (r) ) - L) xgy )
while at the other endit 1is
_ ’AXCW(w)
AxRZ (w) =- B R + (T2 (w) "'l)xgz (w)

The contribution due to the gravitational wave in terms of the

measured quantities is given by
A

~12~

A ——




- - + T - - Ax_ T.(T,-1)
Ax ~ Axm(Tl 1) (T2 1) AXR2 Z(Tl 1) R]_ ) |
: GW - .
[ 1 1/2('1‘l + T2)]
For Tl and T2 << 1
AXGW = Axm + AleTl - AXR2T2

The ground noise subtraction scheme looks promising if

the suspension transfer functions are small,

in other woxrds,

there is already substantial isolation of the ground motion and

the non-linearities thatnay make the transfer functions amplitude

dependent are small as well.

Noise Sources in the Antenna

The power spectrum of the
an antenna of the design shown
The power spectra are given in
per unit frequency interval.

1) Amplitude Noise in the

The ability tomeasure the

noise from various sources in
in Figure 1 is estimated below.

equivalent displacements squared

Laser Output Power

motion of an interferometer

fringe is limited by the fluctuations in amplitude of the

photo current.

A fundamental limit to the amplitude noise in

a laser output is the shot noise in the arrival rate of the

photons, as well as the noise generated in the stochastic process

'mof detectlon.

noise.

At bestalaser can exhibit Poisson amplitude

This limit has becn approached in single mode gas lasers

that are frec of plasma oscillations and in which the gain

in the amplifying medium at the frequency of the oscillating

optical line is saturatcd.

-13-




The equivalent spectral noise displacement squared per

unit frequency interval in an interferometer of the design

'inzFigure 1 illuminated by a Poisson noise limited laser and

using optimal signal processing is given by

2 “hcx
x2(£) > N
ﬂzesz e {(b-1) (1-1)

~h is Planck's constant, c the velocity of light, A the wave-

length of the laser light, € the quantum efficiency of the
photodetector, P the total laser output power, b the number of
beams in each interferometer arm, and R the reflectivity of
the spherical mirrors. The expression has a minimum value

for

b 2/(1 - R)

i

As an example, for a 1/2 watt laser at 5000 A° and a
mirror reflectivity of 99.5% using a photodetector. with a 50%
quantum efficiency, the minimum value of the spectral noise

power is

32

X2 (£) > 2x10° em? /Hz

2) Laser Phase Noise or Frequency Instability

Phase instability of the laser is.transformed into displace-
ment noise in an unequal path length interferometer. 1In an
ideal laser the phase noise is producéd by spontaneous emission

which adds photons of random phase to the coherent laser radiation

nnnnnn s

"field. The laser phase performs a random walk—in—anglre—around

the noise-free phasc angle given by ¢, = w,t. The variance
in the phasc grows aS‘(K$)2 = t/stC where s is the number of
photons in the lascr mode, tc the laser cavity storage time

and t the observation time. This phase fluctuation translates

-14-




into an oscillating frequency width of the laser given by

1

8. = 47t_s

Armstrong (18) has made an énalysis of the spectral power
distribution in the output of a two-begam interferometer il-
luminated by a light source in which the phase noise has a
Gaussian distribution in time. Using his results, the equivalent
power spectrum of displacement squared per unit frequency in

the interferometer is given by

<) = =8

in the case where f1 << 1 and 81 << 1. 1 is the difference

in light travel time between the two paths in the interferometer.
The main reason for using a Michelson interferometer in

the gravity antennais that 1 can be made small, if necessary

equal to zero, so that one does not have tQ'make excessive

demands on the laser frequency stability. In most lasers

§ is much larger than that due to spontaneous emission,

especially for large Tt. However,.for small 1, § does

approach the thebretical limit. 1In a typical case § might

be of the order of 10 Hz and T approxiﬁately lO_9 seconds,

which gives

38

xz(f) < 2 x 10 cmz/Hz

~3) Mechanical Thermal Noise in the Antenna
Mechanical thermal noise cnters the antenna in two ways.
First there is a thermal motion of the center of mass of the
masses on thc horizontal suspensions and second there is thermal

~excitation of the internal normal modes of the masses about the

_ls_




. center of the mass. Both types of thermal excitation can be

. handled with the same technique. The thermal noise is modeled

driving force with a spectral power density given by

F2(£f) = 4kTo dynes?/Hz

where k is Boltzmann's constant, T the absolute temperature
of the damping medium and a the damping coefficient. o can
be expressed in terms of the Q, the resonant frequency w_ of

o
the mechanical system and the mass

a = mwo/Q

The spectral power density of the displacement squared due to

the stochastic driving force on a harmonic oscillator is

xz(f) ! 1 4kTwom
mzwi (1 - 22)2 + 22/Q2 Q
where
z = w/wo

The seismometer suspension should have a resonant frequency
much smaller than the frequency of the'gravitational wave to

be detected; in this case z >> 1 and Q >> 1, giving

T2, - 4 Dok
/ w

On the other hand, the lowest normal mode frequencies of
the internal motions of the masses including the mirrors and

the other suspended optical components should be higher than

le-

by assuming that the mechanical system—is driven—by a stochastic

R e e e e o e s ]




the gravitational wave frequency. Some care has to be taken

. to make the entire suspended optical system on each seismometer

mount as rigid as possible. For the internal motions z << 1

Cand Q >> 1, S0 thAt e

4xT
wng

x2(f) =

A If the internal Q is 105, the mass 10 kg, and the lowest
frequency resonance in the mass 10 kHz, the thermal noise due
to internal motions at room temperature for frequencies less
than 10 kHz is |

35

x2(f) v o100 cmz/Hz

The thermal noise due to center of mass motion on the
suspension for a Q lO6 and a resonance frequency of

5 x lO'-l Hz becomes

-25
4

10
f

x2 (£) ~

cm” /Hz

for frequencies larger than the resonance frequency of the
suspension. : : : ‘
4) Radiation Pressure Noise due to the Laser Light
Fluctuations in the output power of the laser can drive

the suspended massces through the radiation pressure of light.

In principle if the two arms of the interferometer are com-

1y and optically, the

interferomcter output is insensitive to these fluctuations.

Since complete symmetry is hard to achieve, this noise source

must still be considered. An interesting point in pondering

-17-




this noise is that although one might find a high modulation
frequency for the servo system where the laser displays Poisson

noise, it is the‘spectral power density of the fluctuations in
the laser output at the lower frequency of the gravitational
'wave which excite the antenna. In other words, if this is a
serious noise source the laser has to have amplitude staonility
over a wide range of frequencies.

'~ The radiation pressure noise can be treated in the same
manner as the thermal noise. If the laser does display Poisson
noise, the spectral power density of a stochastic radiation
pressure force on one mirror is

2 _ 4bhP

2
Fo oatf) = —o— dynes”/Hz

b is the number of beams in each interferometer arm
and P the average total laser power. Using the same sample para-
meters for the suspension as in the calculation of the thermal

noise, and those for the laser in the discussion of the amplitude

noise, the ratio

2
F rad(f)

2
Fthermal(f)

no5 x 1072

5) Seismic Noise

If the antenna masses werce firmly attached to the ground,
, both through horizontal an otions ¢
the ground, would be larger than any of the other noise sources

considered so far. The scismic noisc on the carth at frequencies
19,20,21,22

higher than 5 liz has been studied by several investigators

at various locations both on the surface and at different depths.

-18- . ' 1Y




In areas far from human industrial activity and traffic, the
high frequency noise can be characterized by a stationary

random process. The noise at the surface appears higher

than at depths of 1 km or more; however, an unambiguous deétermina-
tion of whether the high frequency noise is due to Rayleigh

| or body waves has not been carried out. Measurements made

(19) at a depth of

(22) yield the smallest

in a zinc mine at Ogdensburg, New Jersey,
about 1/2 km and in Jamestown, California
A published values of seismic noise. In the region between

10 to 100 Hz, the power spectrum is approximated by

-14
xz(f) n §~§Z£g——~ cm2/Hz ;
f

The spectrum has not been measured at frequencies higher
than 100 Hz; however, it is not expected to decrease more

slowly with frequency at higher frequencies.

By mounting the antenna masses on horizontal seismometer
suspensions, the seismic noise entering the interferometer
is substantially reduced. Theisolation provided by a single

degree of freedom suspension is given by

2

* VT - 2 v 270082 5 (23/0)2
*p (F) (- 252 + (z/0) %)
where z = f/fo, and fo is the resonant frequency of the suspen-

sion. xm(f) is the displacement of an antenna mass at fregquency

frelativeto—an incrtidl'ffémﬁ;'iu(L) Tgthemotionofthe s

carth measured in the same reference frame. v
At frequencies for which z >> 1, the isolation ratio is

~19-




For the sample suspension parameters given previously,

the estimated seismic noise entering the antenna becomes

2 x 10”14

B

L

2

x2(£) > cm/Hz 10 < £ < 10 kHz

At frequencies higher than 180 Hz, the seismic noise is

smaller than the Poisson noise due to the laser amplitude

fluctuations. If the ground noise subtraction scheme described
earlier can be madetowork to a precision of 1%, the laser
noise remains dominant down to 50 Hz,

6) Thermal Gradient Noise

Thermal gradients in the chamber housing the suspension
produce differential pressures on the suspended mass: through
the residual gas molecules. Tne largest unbalanced heat
input into the system occurs at the interferometer mirror
where after multiple reflections approximately 1/10 of the laser
power will be absorbed.

The excess pressure on the mirror surface is approximately

p " nkAT

where n is the number of gas molecules ﬁer\cc, k Boltzmann's
constant and AT the difference in temperature between the

mirror surface and the rest of the chamber. The fluctuations

in AT can be adequately calculated by solving the one-dimensional
problem of thermal diffusion from the surface into the body of
the mirror and the associated antenna mass which are assumed

to be at a constant temperaturec.

The-mirror-surface-temperature-fluctuations—1(f£),

by incident intensity fluctuations I(f), is given by

AI(f)

111(f) -
4€OT3 + (nc, pk )l/‘?fl/2
o vt
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The first term inthe denominator is the radiation from
f_the'surface; € is the emissivity, ¢ the Stefan—Boltzmann
_constant, and T_ the ambient temperature. The second term is

due to thermal diffusion from the surface into the interior;

-y is the specific heat, p the density and kt the thermal

conductivity of the mirror.
. If the laser exhibits Poisson noise the spectral force

density on the antenna mass becomes

_ 2(nk)? he

2
Fo£) = f(rc, pk,) X

P dynesz/Hz

Radiation is neglected as itbis much smaller than the thermal
diffusion. Using the following parameters for glass, c, ™

106 ergs/sec cm °k, anaverage laser power of 1/2 watt and a
~vacuum of 1 3"10—8 mm Hg, the ratio between the thermal gradient

noise to the thermal noise to the thermal noise forces in the

sample suspension is

2
T,G(

3
Fip (£

- F f)

1. -15 | | | |

7) Cosmic Ray Noise
The principal component of the high energy particle
background both belowand on the earth's surface are muons

with kinetic energies larger than 0.1 Bev.(23) A muon that

ses—througiror—stops—in-one—of-the—antenna masses imparts — — ... .

momentum to the mass, resulting in a displacement given by

AE cos O

mw_c¢C
(o}

Ax =

Al is the encrgy loss of the muon in the antenna mass,
a 0 the angle between the displacement and the incident muon
C:? momentum, m the antenna mass and_wd the suspension resonant

frequency. o )
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while a 104~Bev muon loses Vv 30 Mev/gm/cm”.

3 x10°%, 107°, 107

The energy loss of muons in matter is almost entirely

- through electromagnetic interactions so that the energy

loss per column density, k(E), is virtually constant with
1

'energy'for“reiativistiC'muons;“A"IO*'”Bev muon“loseS”3*Mev/gm/cm2,"

2

The vertical flux of muons at sea level with an energy
greater than 10—l Bev is approximately 10”2 particles/cm2 sec
steradian. For energies larger than 10 Bev, the intergrated
flux varies as " lO_l/Ez(Bev). |

Since the flux falls off steeply with energy and the
energy loss is almost independent of energy, the bulk of
the muon events will impart the same momentum to the suspension.
Using the following sample suSpeﬁsion parameters, m lO4
grams, fo v 5 x 10—l Hz, p v 3 and typical linear dimensions
Vv 10 cm, the average energy loss per muon becomes v lOﬂlBev.
At sea level the antenna mass might experience impulsive

18

displacements v 10~ cm occurring at an average rate of once
4

per second. An event dueto the passage of a 10  Bev muon
results in a displacement of lO—17 cm at a rate of once per
year.

Although the shape of the antenna mass can be designed -
to somewhat reduce the effect and frequency of muon inter-
actions, especially by takingadvantage of the anisotropy of
the muon flux, the best way of reducing the noise is to
place the antenna masses underground. The pulse rate at
depths of 20 meters, 200 meters, and 2 km is approximately

2 -4 9 Lulses/sec. e

If the antenna output is mcasured over times that
include many muon pulses, as would be the casc in a search

for pulsar radiation, the noisc can be treated as a stationary

distribution. Assuming that the muon events are random and for
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ease of calculation that themagnitude of the momentum impacts

is the same for all muons, the spectral power density of

; displacement squaredof the antenna mass is

_ 4N(AE/c)?
(2m) “m?g?

xz(f) sz/Hz

for £ >> £ .
o)

N is the average number of pulses per second, AE/c the
momentum imparted to the mass per pulse, and m the antenna

mass. For the sample suspension parameters at sea level

40/f4 cmz/Hz

x%(£) ~ 10°
8) Gravitational Gradient Noise
The antenna is sensitive to gravitational field
gradients -- differential gravitational forces exerted on the
masses of defining the ends of the interferometer arms. No
data are available concerning the naturally occurring high
frequency gravitational gradients on or near the surface
of the earth. There are two effects which can make gravitational
gradient noise; first, time dependent density variations in
both the atmosphereand the ground and second, motions of exist-
ing inhomogeneities in the mass distribution around the antenna.
An estimate for the two effects can be made with a crude
model. Assume thatoe of theantenna masses is at the boundary

of a volume that has a fluctuating density. The amount of mass

that can partake in a coherent density fludtuafibhwé%méwfrequéﬁéyﬁﬂﬂﬂW””'

f and exert a force onthe mass is roughly that included in a
sphere with a radius equal to half the acoustic wavelength, ),
in the ground. The fluctuating gravitational force on the mass
is

F_(f)
L E %— MTAAp (E)G

m
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where Ap(f) is the density fluctuation at frequency f and G

the Newtonian gravitational constant. The density fluctuations

driven by ground noisein the sphere are

Cx_(f)
p(£) = 3<p> —

where <p> is'the.average density of the ground and Xe(f)
the ground noise displacement. If f is larger than the
resonant frequency of thesuspension, the ratio of the suspension,
the ratio of the displacement squared of the mass to that

of the ground motion is given by

2
xm(f) _ <p>G 2
x2 (f) 2mE2

e

For the earth, this isolation factor is

x_(£) 10—14

v
(£) f4

o g N

~3¢

which is much smaller than the isolation factor for the
attenuation of direct gfound motion by the sample suspension.

A comparable approach can be used in estimating the
effect of motions of inhomogeneities in the matter distribution
around the antennawhich are driven by ground noise. Assuming

- the extreme case of a complete inhomogeneity, for example,

an atﬁééphcrc ground'intorface, the mass that partakes in a
coherent motion x(f) could be m ~ A3<p>. The fluctuating force

on the ncarest antenna becomes

F_(f)
B ='EHG<p>x(f)

m 3
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The isolation factoris

which is comparable totheisolation factor due to density
fluctuations. These factors become smaller if the distance
between the masses is smaller than A.

9) Electric and Magnetic Field Noise

Electric fields in dielectric-free conducting vacuum
chambers are typically10~3 volts/cm. These fields are due
to variations in the work function of surfaces and occur
even when all the surfacés in a system are constructed of the
same material, since the work function of one crystal face is
different than that ofanother. Temporal fluctuations in these
fields are caused by impurity migrations and variations in
absorbed gas layers. Little is known about the correlation
time of these fluctuations except that at room temperature
it seems to be longer than a few seconds and at cryogenic
temperatures it is possible to keep the fields constant to bet-
ter than 107 ° volts/cm for several hours. (24

The electric force on a suspended antenna mass is

1 2

F o~ e “A

e 4Am

“electric field at the surface. igsuming that the power spectrum

of the field fluctuations is similar to that of the flicker
effect in vacuum tubes orthe surface effects in semiconductors,

which are both due to large scale but slow changes in the

-25-
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surface properties of materials, the electric force power
spectrum might be represented by

22 g

F2(6) v 7 0e Vo
(1/t )% + (21£)2

T is the correlation time of the fluctuations and <F2> is the
average electric force squared.

If the gravitationalwave frequency is much larger than
l/To and also higher thanthe resonant frequency of the suspen-
sion, the power spectrum of the displacements squared becomes

<€4>A2

Xz(f) = 5 7 cmz/Hz
327 m Tof

For m ~ 10% gm, A~ 102, ¢ ~ 107° stat volts/cm

and TO v 1 sec,

38 ,.4

Xz(f) no10T TC/f cmz/Hz

Although this noiseisa good deal less than that due to
the Poisson noise of the laser, some care has to be taken to
electrostatically shield the mirror surfaces, which are

dielectrics.
Geomagnetic storms due to ionospheric currents driven
by the solar wind and cosmic rays create fluctuating magnetic

fields at the earth's surface. The smoothed power spectrum

of the magnetic fieldfluctuations in mid-latitude regions

- at frequencies grecater than 10”3 Hz is approximately

Bz(f) v Bg/f2 gaussz/Hz

"26" . N




8 (25)

"_'with Bo v 3 x 107 ° gauss. !  Large pulses with amplitudes

N5 x lO—Bgauss are observed occasionally, the rise tlme of

(26)- =

“these pulses is of the order of minutes.

Fluctuating magnetic fields interact with the antenna
mass primarily througheddy currents induced in it or, if it is

constructed of insulating material, in the conducting coating

‘around it required to prevent charge buildup. The inter-

action, especially at low frequencies, can also take place
through ferromagnetic impurities in nonmagnetic materials.

Magnetic field gradients cause center of mass motions of the

suspended mass. Internal motions are excited by magnetic

pressures if the skin depth is smaller than the dimensions of
the antenna mass. _

An extreme model would be to assume that the fluctuating
magnetic fields are completely excluded by the antenna mass
and that the field changes over the dimensions of the mass

are equal to the fields. Themagnetic forces are

Fm = In B™A

The power spectrum for center of mass motions, if £ >>
fo' becomes
2 A2B
x (f) =

WO ™

57 cmz/Hz
le6n " m“f K

~“TTor thc samplc suspension using the smoothed power “spectrum

of maqnuLlc ficld fluctuations,

x2(F) ~ 10730/t cm?/uz

The dlsplacements due tointernal motions driver by

magnetlc pressurcsatfrequen01es smaller than the internal
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657' resonant frequency, fo , are given by
: int

Although the disturbances due to the smoothed power
spectrum do not appear troublesome relative to the other noise
sources, the occasional large magnetic pulses will require
that both'conducting and high U magnetic shields be placed

around the antenna masses.

* It is not inconceivable that Weber's coincident events may

- be caused by pulscs ingcomagnetic storms, if his conducting

shielding is inadequate. It would require a pulse of lO_'2

gauss with a risc time '~ 10—3 scconds to distort his bars by
AR/L 10~16. M. Gordon has mcasured naturally occurring
pulses of this length and amplitude as part of senior thesis

project in physics at M.I.T.
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The Detection of Gravitational Radiation By a Broad-Band
Interferometric Antenna

The fundamental limit for the detection of gravitational

~radiation by -an-intraferometric-antenna is determined by the
Poisson amplitude noise of the laser and photodetection process.
It appears that this limit can be reached in the prototype | %
antenna at frequencies greatér than 150 Hz. The minimum |

detectable gravitational radiation spectral intensity is

4 2 ’ |

hc A f 2 watts
I (£f) = [ H } = Af _ (L) |
Imin TG nPQ 02,2 (b 1) (1-R) cm’Hz _ 1
|
|

where

h is Planck's constant

c velocity of 1light

G Newtonian gravitational constant

A .wavelength of the laser

n quantum efficiency of the photo detector |

Po output power of the laser |

£ frequency of the gravitational wave :

2 length of the interferometer arms ﬁ

b -the number of beams per arm i

R reflectivity of the cavity mirrors .
!

The prototype 9 meter antenna has the limit

I”-erfi';ié 2 X 10 -6 f watts/cm2 Hz

for frequencies less than 200 KHz. The high frequency limit

is determined by the cavity storage time which is 9 usec.

ey e e
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The length or cavity storage time for the optimum antenna

satisfies the condition

s = 1/2
where 1 is the period of the gravitational wave. The minimum

detectable spectral intensity for the optimum antenna is

2
4hc A 4 4
I f =[————}[——] f° = Bf
. gmin( ) G nPO X
For comparison, using the same laser power and photo detection
efficiency as is the prototype, the minimum detectable spectral

intensity would be

-16 .4 2

I (£) = 2.3 x 10 £ watts/cm
Imin '

Hz

The detection limits for periodic, broad-band and impulsive

sources are described separately.

I. Periodic Sources

Periodic sources of well known frequency‘such as pulsars
and binary systems would be synchronously detected and a narrow
bandwidth would be achieved by post mixer digital integration.

The gravitational radiation spectrum intensity from a periodic

- PR Iy i .

oo SOUECE.iS-a-narrow-line which-wanders-in- frequency-due—to-the
- Doppler effect from the varying relative motion of the Earth and
source. This frequency spread can be accomodated by adjusting
the frequency of the local oscillator. The minimum detectable
intensity is

I (f )
Imin ©
s min 2t.

o™ int

-30-



~where t,
v i

nt is the post-mixer integration time.

As an example, the upper limit of the 60.4 Hz gravitational

radiation from the Crab Pulsar NP0532 incident at the Earth —

“13 Latts/cm? (Appendix 1). Using the 9

is estimated at 10
meter prototype antenna, an integration time of 3700 years

would be necessary to detect this radiation with a signal-to-
noise ratio of 2. A multi~pass interferometric antenna with

the same parameters as the protytype antenna, but 1 km long

would require 3.6 months to detect the NP0532 upper limit.

A space antenna of the optimal length, 2500 km, with single

pass arms would require 8.5 hours of integration. The search

for gravitational radiation could be extended to lower fregquencies

to include slower pulsars and binary star systems.

II. Broad-band sources
A search for broad-band gravitational radiation from

discrete astronomical sources is carried out with the inter-
ferometric antenna used as a gravitational radiation radiometer
and using the Earth's rotation as a modulator. If there is a
discrete source of broad-band gravitational radiation, the
detected signal will be a maximum each time one of the inter-

ferometer arms is perpendicular to the line joining the Earth

-and the source. A detection scheme for this process is shown

in Figure 3. The antenna output is square-law detected and then
cross-correlated with an oscillator which has a period of 1/4
of a sidereal day. In order to-detect radiation—=from sources

lying in any quadrant of the sky, the antenna output is also
cross—correlated with a 90° phase-shifted output of the oscillator.
The minimum detectable signal is calculated by using the

-31-~
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‘where Af
a

effective noise bandwidth of the signal processiﬁg given Sy

Af = [Afant}l/2
' 2t
int

is the bandwidth of the antenna and post-detection
is the observing time. The gravitational

) nt
filtering, and tint
radiation signal appears as a component with a period of 1/4
of the sidereal day. |

The minimum detectable signal depends on the nature of

‘the source spectrum. If the source has a flat spectrum over

the bandwidth of the antenna, the minimum detectable spectral

intensity is

£ £

I (£) = & (Klfl—i 1172 -(-2-%———) 1/2 watts/cm?Hz
gmin ant - int '

where fl'and fh are the low and high frequency cut-offs of the
antenna and A is defined in equation 1 of this section.

As an example, if one extends a search from 100 Hz to
1 KHz using the 9 meter prototype antenna, the minimum detect-
able intensity (S/N = 2/1) after 1 month of integration is
1 x 107° watts/cmlz.

If the source really had a flat spectrum, it would be.best
to use as low a frequency and as narrow a bandwidth as possible
within the constraints that the antenna be Poisson noise limited.

If the source spectrum is a power law such as a thermal

spectrum
I(f) = af?,

the minimum defectable o, which can be related to an antenna
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‘brightness temperature, is

af. 1172 |
' Eant (2t, [ Af ) : '
int Tant i

In terms of an antenna brightness temperature
2
7 - %min€
ant_. 2k
min

Using the maximum bandwidth in the present prototype antenna

design of 200 XHz, and an integration time of 1 month,

-12 2.3
®in Y 3 x 10 watts/cm " Hz

Although this may appear to be a small number, it cor-
responds to an appallingly high temperature of Tant ~ 1032°k. "

A truly thermal process will most likely not be detected with

this antenna.

III. Impulsive Sources
The detection of impulsive events is difficult to analyze

in detail because the sensitivity of the antenna depends somewhat

on the shape of the pulse and the signal processing. We consider

a pulse which lasts for a time t and has a maximum strain

-amplitude A%/2. It is assumed that the pulse does not oscillate | J
" “many times and that the time dependent Riemann tensor has—zero -
mean. Aside from numerical factors of order unity which depend |
on the detailed shape of the pulse, the gravitational radiation !

energy surface density (Joules/cmz) that passes through the antenna

is approximately
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_ straln in the antenna exceed the noise induced strain. The =~~~ -
'optlmal post~detection filter has a time constant short enough

- For the prototype antenna this is

' 2
3 AR
E/ n c__ /R’)
A 811G t

The crlterlon for detectablllty is that pulse 1nduced

to fully develop the pulse but long enough to integrate the
Poisspn noise. The optimal filter, a matched filter, has a
time constant approximately equal to the length of the pulse.
For a matched filter, the minimum detectable strain is given

by

'[A_JL (t))2 hc i | |
2 ﬂznp 522~ B-IT(I-R) % : o

[

and the minimum detectable pulse surféce energy density is

[ ulwﬁq
-3 2 e = RS '
E/ = & A% (t) 1 - 2x uaé, AeN Ll - ,&?,Lam e VANS
[ A] min 811G [ 2 ) t . g x (fe )‘l’ it e | /A.-, !
3 W 1w

"
g xoo 'aﬂa /:m\ - & 2% Lo

-8 ) JH 5
(E/A) o= 4 x10 Joules/cmz‘ ~ﬁ§? i
min t2 + |

=== (Comparison of ‘the prototype—interferometric - - oo

antenna with existing acoustically coupled bar
antennas

The table below summarizes the published performance of

several acoustic bar gravitational antennas. The first column \
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~gives the mass of the antenna, the second the length, the third
the resonant frequency, the fourth is the post-detection
,'bandw1dth the flfth ‘gives the mechanlcal Q of the bar, the

sixth coliumn gives the pulse detection limits in terms of the
minimum energy observable relative to the thermal noise in the

bar. These limits are expressed as minimum detectable strain |
amplitudes in the seventh colﬁmn. The eighth column gives the j
minimum detectable energy surface density which is for pulses '
that last approximately the period of the bar. The last column
gives the minimum observable spectral intensity if square-law
detected and integrated for one second. The last two rows !
give two examples using the prototype interferometric antenna. '
The first example shows the estimated performance if the
antenna has post-detection filtering to match Tyson's antenna.
The second example is an estimate of the performance of the
prototype antenna as a broad-band instrument at the lowest

frequencies where Poisson noise is still expected to dominate.
The minimum observable spectral intensity of broad-band

- gravitational radiation that can be detected in an acoustically
coupled detectors has not been discussed in the literature. In
the calculations used to generate the last column of the table,
it is assumed that the sighal processing is done as in figure

3; however, at a modulation rate rate of 1/2 the sidereal period

and it is also assumed that the dominant noise in the system is
For

the thermal noise in the acoustically coupled structure.
these conditions, the minimum detectable gravitational spectral

1ntéﬁsitymin*tne;vicinity%ofathe:stpuctures;resonanggmixgqg§991m,:},u“w, »
is given by :
3
I((u)> c KT
(o} 3/2l MO

172 172
int
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Table 1 )
Al
| G0,
mass length| Center freq.| Bandwidth Q lelmit [%&) E/A > I (fo) 5!
" Experiment K9 cm kHz Hz min Joules/cm watts/cm Hz
i i
weberls2+3:4 11300 | 153 1.6 2 7.7x10% |35 | 1x10710 25 5
~Tyson’ 3630 | 357 0.71 2 2.2x10° |- [3.5x107%7 1.4 07 2P
Levined |
evine : _ 4 |1 -16 |
Garwin llﬁ 150 1.695 21 1.3x10 15 3.3x10 % 300 13
P § e | V o
Drever 300 155 1.1 800 2.2x103 %5 1.4x10 16 i 35 22 F3vp13 T
Interferometric ‘ ? i
a t . : L . - |
ntenna Ex. 1 39 900 .71 1000 - - 5x10 18 o4 02 :
J 7
Interferometric| | : } ;
antenna Ex, ‘ - -
%2 |30 | 900 .2 100 - - |1.6x107%8 | 4x1074 8.5x1073 |
' [
1l =
* -l | i
J/‘J/M«“"“'n Grv 10 9»&4 la = J0 /
! et =199 oy,
9;76 L0 - |
)/ ‘““%‘z, = (Tt e ¢ |
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FIGURES

Figure'l
Schematic drawing of the antenna being constructed
at MQI.TQ l :

Figure 2.

. Amplitude noise in a Spectra Physics Model 165 Argon Ion
o Laser operating in a single longitudinal mode.

Figure 3.

Detection scheme for localized broad-band sources.
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Appendix I

Astrophysical Sources of Gravitational Radiation

The astrdphysical sources of gravitational radiation:
discussed here arewllisions, pulsars, neutron stars, and
binary stars. Exotic phenomenasuch as 108 Me black holes in
the Galactic center will not be considered. Collisions between
collapsed objects, or matterfalling into collépsed objects
could produce considerable amounts of gravitational”radiqtion;
however, it appears that direct collision is a rare occurrence.
Supernovae, and the formation of neutron stars could also be
strong sources of gravitational radiation but the expected
mean time between events of 5 to 50 years does not make these
sources very attractive.. Thetwo remaining sources of gravita-
tional radiation, pulsars and binary stars, are believed to be
continuous emitters and are probably the best candidates
for future studies of gravitational radiation. Both of
these sources will be difficult to observe. Pulsars emit in
~a favorable frequency range of 1 to 60 Hz but the strain
induced at the detector is very small. Binary stars produce
substantial strains at the antenna but at freguencies less
than 4 x 10"4 Hz. There are undoubtedly other sources of
gravitational radiationalnot listed in Table 2; however, it
is hoped that the sources and formulas listed are representative
enough to givc some idea of the events which could be detected
“by-gravitational wave antennas to be built in the near future.

To get some ideca of the collision ratg for collapsed h .
objects, somec estimate must be madeof tﬁe ﬁumber of these
objects in thec Galaxy. Peeblqs (1) notes that between ten and

twenty percent of the mass in the Galaxy resides in stars of



mass greater than 2 Mi.. A 2 Mo exhausts its fuel in about
2 x lO9 years and since the Galaxy is about lOlo years old,

- perhaps ten or twentypercent of the mass of the Galaxy is

contained in collapsed objects. The mass of the Galaxy is

Tabout 2 x lO'L'L M¢. and if ten percent of this mass goes "into

2 M@ collapsed objects, then we can estimate that there are
roughly lOlO collapsedddbjects in the Galaxy. Ostriker,
Rees, and Silk (2) note that 109 neutron stars moving
through the interstellar plasma could produce an X-ray
£lux comparable to the X~ray luminosity of the Galaxy: For
the following, it willbe assumed that ten percent of the
stars in any region of the Galaxy are collapsed. _

The total collision rate of type 1 objects onto type 2

objects in a volume V, can be estimated using

NNy

\Y <vrel>012

for the rate and

2G (M. +M.,))
1o = N(R1+R2)2 1+ 1 2 ,
_ (Ry+R)) <V, .01

Q
!

for the direct collision cross-section. Ny and N, are the
number of type 1 andtype 2 objects, V is the volume of the inter-
action region, <Vrel> is the average relative speed at large
seperation, R isthe radius and M themass of the objects, and

G is the gravitationalconstant. Table 1 shows the mean time

between colllslons for various objects_ in the globular cluster ..

M92 and in the Galactlccenter For M92 the central density is
about 6000 stars pc 3, there are about lO5 stars and <Vrel>
= 5 kmscc—l. For the Galaxy the central density is about

10® stars pc-3, there areabout 5 x 10° stars and Vo1’




= 200 kmsec 1. For the stars, we assumc M = 1M& , R = 1R@
-and for the collapsed objects M = 1.5M& and R = 10km.

Table 1: Mean time between collisions

M92 . ' Galactic center
. Stars on stars 3.4 x 106y ' 160y
Collapsed stars 5.4 x 107y 2500y
on stars , '
. 13 8
Collapsed stars on 1.6 x 1077y 7.4 x 107y

collapsed stars

e

The foregoing analyéis only considered collisions between
free objects; however, it should be pointed out that the collision
rate could be considerably larger if the collapse of multiple
star systems is considered. The stars in a binary system
could evolve to a neutron star and a black hole, for instance,
and then spiral together. One can speculate that there are
‘many old binary systems in the Galaxy consisting of collapsed
members and that these systems are only now spiralling together
in considerable numbers. With no evidence to support this
speculation, we will use the rates presented in Table 1.

We can make somc estimate of the mean time between large

_ bursts of grévitational radiation from stellar collanse. The
e mostroptimistic position is toassume that every star-of mazs

greater than 1l.5M@cevolves into a neutron star or a black hole

and emits a large amount of gravitational radiation in the final
collapse. The rate at which stars reach the endpoint in their

>




evolution is estimated to be about once every five years
in the Galaxy (3). Pulsars prdvide a lower limit to the rate
of gravitational bursts. If neutron stars are formed rapidly

miﬁmawstellar COllapse, tﬁey Qiiiwaobably emiiwconéiaé}éﬁiéw

amounts of gravitational radiation. Since pulsars are.
generally agreed to berotating neutron stars, we can say that

- the neutron star formation rate is at least as large as the

~ pulsar formation rate which is about once every 30 years (4).

It is clear that some supernovae produce neutron stars, for
example NP0532; however, some models of supernovae leave

no star remnants behind. Ifwe assume though, that all
supernovae produce a burstof gravitational radiation, then
another limit can be set on themean time between bursts in

the Galaxy. Variousestimates of the supernova rate based

on observations of other galaxies (5), calculations of stellar
evolution (6), and radio measurements at 1GHz (7) all yield

a supernova rate of one every 17 to 50 years. An estimate

of the mean time between large bursts of gravitational

radiation in the Galaxy is between 5 and 50 years.
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| " TABLE 2

+ CommEeNTS

AMoUNT O6F

GCRAVITATIONAL

RADIATION
EM\TTED

V}Eé@"’r‘m&"
BETWEEN -
EVENTS

eutron Star
‘on-radial

ulsations

efs. 8

A neutron étar could form in a highly
excited and distorted state with the non-
radial modes excited

The power iadiated and the energy stored

in a mode are proportional to 5
' | S8R
(|
the -averaged square of the relative
amplitude of the star's surface.

H-W refers to the Harrison-Wheeler
equation of state

VY refers to thelevinger-Simmons-Tsuruta-
Cameron equation of state

T is the damping time for the energy in the

mode f
M/ME £ (kHz) T (sec)
H-w .405 .84 6.5
H-Ww  .682 3.2 .1
5.9 .14
8.3 .65
o 11.1 12
v, .677 1.5 .85
4.2 5.5
v, 1.954 2.7 .11
6.7 .8
10 1.3

~-AE (ergs) -dE/dt (exrg

L 1048 Ll.2 x 1048

x 1050 2.9 x 10°%
.6 x 10%° x 10°%1
.6 x 1048 9 x 1048§
9 x 10% 7.0 x 10%°

x 10°° 7.0 x 10°°
0 x 10%% 1.1 x 10%8
.7 x 10°2 1.6 x 10”3
.5 x 10°2 x 10
2 x 10°F 4.0 x 10°%

52 -

Perhaps once
every 5-50 years
in the Galaxy

%/sec)
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e%mfoﬁvs ¢ ComMENTS

- AMoUNT OF
TOMAL
AT A7 ENITTED

eutron Star

apidly rotating
n the form of a
acopi ellivsoid
triaxial ellr“SOLd)

efs. 9,10,11

A neutron star could form in a highly
deformed rapidlyrotating state, pos-
sibly in the form of a Jacobi
elllpSOld, Chau and Srulovicz
conclude that itis possible for a-
neutron star toassume the figure

of a rotating Jacobi ellipsoid.

_%%=§2g5 12 (a a)z 6
125¢
al, a,, a are thetriaxial radii,
~ here rotation isabout a, axis,
ala2a3 ﬁ‘const.
— 3
_ _-1/b . . 25 2_) (A
1 a2/alye. T 1n'un1ts of TE[RS, tc]
* - -
o wte 2t/b =16.039
- 1/3
a —(ala2a3)
Rs =2GM/C

w=.6117 (nGo) /2

is theflimiting rotation rate for
the non-radiatingMcLaurin Ellipsoid
(a =3 ) to which theJacobi ellipsoid
evolves.

note:

w<wm, the rotation rate

increases but only by a small amcunt,
7% for the case considered here.

then ~-AE =

Assume a Jacobi elllp301d
with maximum distortion,
then 1/2

w = ,5329(7GP)

_2/a = .4322

a3/al = ,3451

assuming a = 20 km, M =1M&

9 x,lO50
~dE/dt=4 x 10°%

ergs
ergs/.

sec
spectrum peaks around

£

114

320 Hz

.23 sec.

<

every 5-30 years
in the Galaxy

if all the puls-
ars are formed
as Jacopi
ellipsoids then
at least once
every 30vy.
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HOWT oF cmwmnwm_

RadbiAaTioN EMITTED

ﬁ\Q?%U
BETWEBN
| EVEN TS

Neutron Star

Pulsar

‘refs.12,13, la,
la :

Grav1tatlonal radiation emitted:

_dE _ 2
= e W (ay?-a, %)
ayr a, ra§11 perpendicular to

rotation axis,uw=pulsar rota-

tion rate; assuming a,-a;=eR

R = average radius

dE _ 128 G_ ;2 6.4 2
aE T Ios 3R

spectrum 1s monocnromatlc at
2w

Assuming pulsar looses energy
only by emission of electro-
magnetic and gravitational
quadrupole radiation and that -
€ = const: for recent times

B _ _ [92} ap,1 ap| In®
dtGQ dt at 2 P t 2

P is pulsar period, Iis

moment of:inertia

For NP0532, the Crab pulsar,
Ostriker and Gunn assume ¢ ‘
constant for the entire
history of the pulsar. ¢

is fixed by requiring that
the calculated age of the
pulsar agree with the known
age.

For NP0532:

M 1.4 ME®

R 12km 45

I 1.4 x10 " “gm-cm
distance = 1700 pc
P = .033s

2

dp/dt = 420 x 10”13

-25 -1
sec

a%p/at = =100 x 10

-4

then ¢ 3 x 10

so ~-dE/dt = 1.5 x 10°°

ergs/sec
from the second derlvatlve
measurement

(—dE/dt)GQ

= .44

(-dE/At)  yra1

whereas Ostriker and Gunn get
about 1/4 for this ratio. The

Pulsars formed
about once every
30 years. After
formation and
initial damping
continuous
production of
gravitational .
radiation for

hbout 106 years

second derivative of the period

~1s rather uncertain.
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SOURCE

EGUATIONS + CommenTS

AMoUNT OF GA’AWWT/M
RADIATION EMITTED

' Meﬁaf T M
BE TWEE N

EVENTS

Neutron Star

Pulsar starquake

refs., 16

The crust of a neutron star shifts

releasing energy which can be -
radiated|away as gravitational
radiation. Assume that all of
the released energy goes into
one of the non-radial oscil-
lation modes of the neutron
star

1.2
)

N
~

£

‘. l

Ay

-~ = rotation frequency of the

.pulsar

. = change in the pulsar

freguency due to starquake.
Taking tae Vv, model with M/ME =
1.95 from K. Thornes study and
the lowest mode with a frequency
of 2.6 kHz -

—5—2 = 1.7 x 10°%  so
SR\
R |
4 ,
-dE Iw Sw
aE - 3”[7} e

Assuming a pulsar radius of
10 km and M = 1.4Mp a pgriod of

.033s, dw/w = 2.5 x 10 from
the Sept. 1969 speedup of NP0532L
-dE/dt = 1.5 x 1038ergs/sec

-AE = 1.6 X 1037 ergs

spectrum peaks around

5.2 kHz

T = .11 sec

The power output is compar-
able to the expected gravita-'
tional radiation at 60 Hz.

to be expected
every few years

from the Crab
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EQUATIONS + CommenTS

ARQUNT  oF mavrmﬂ oA/:%L.
RADIATION EMITTED

ME;{A 4 Time

RBETWEEN
EVENTS

Particle falling
radially into a
Schwarzshild
black hole

refs. 17,18,19

& oaruldie of mass m falls into
a non-rotating black hole of mass
M (m<<i). .

o \
-E = .0104 mcz{%J

Spectrum peaks at a frequency

- = .32 c3/GM

The event lasts a time

Assume a .5M® neutron star falls
into a 5 M@ black hole. A real-
istic calculation should take .
into account tidal disruption

of the neutron star

~AE = 9.4 x lO51 ergs

~dE/dt = 5.4 x 10°%

spectrum peaks around
2 kHz

T =~ 10 ° sec

ergs/sec

greater Enan ‘
every 10

" years at the

Galactic
center
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EguaTioNs + Com MENTS

RADIATION EWVITTED

AMUNT OF CRWITATIONAL

ME 1 TIME
BETWEEN .
EVENTS

Black noles in
collision

. Two slack noles
collide and
coalesce

refs. 20,21,22

From the paper by Gibbons and
Hawking, expect a pulse of
radiation which is one or two
cycles of a sinusoidal wave
train. From the spectrum of

- a particle falling into a
black hole, expect the spectrum
to peak around

W = 93/GM

which is essentially the

orbital frequency of a photon

in orbit near the Schwarzshild
radius of the black hole. Expect
the event to last a time

The total possible energy
radiated is 29.3% of the rest mass
for non-rotating black holes

and 50% of the rest mass for
extreme Kerr black holes.

Assume two 2 M@ non-rotating blaék
holes ' ‘ '

-AE = 2.1 x 1054 ergs

58

-dE/dt = 1.7 x 10~ "ergs/sec

spectrum peaks around
8 kHz

T=1.2 x 10°¢ sec

greater than
onge every
10" years,
assuming 10%
of the stars
in the core
are black
holes
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SeURCE

Tive .

Particle spiralling
into a black hole

refs. 23,24

| | AMJUNT OF GRAVAATION W TiMe
ESUATIONS + CommENTS | RapiATIN EMITTED | gvenrs
Total energy radiated before the |Realistic example difficult to  |greater than
oarulcle falls into the black calculate since tidal forces 10~ years in
nole is! the binding energy of on the small mass should be the Galactic
the last stable orbit. Spectrum taken into account. For this center
is essentially monochromatic at example assume a 1 M{F (10km
twice the orbital freguency. radius) neutron star spirals
Elliptical orbits will emit into a 5M{E (14.8 km radius) -
at multiples of the fundamental black hole
freguency but will gquickly
become circular. o oBH /3
TY?lcalipower radiated 1is . Roche Limit = 2.45 NS X RBH_
Gz | 326 (mm }? 46 = 42 km
gt = 7.5 |(mM
ac
and typical time is
: For source at Galactic center
-AE
T = / —== :
A) Non-rotating black hole of A) ~-AE= 1.03 x lO eggs
mass M, particle of mass m -dE/dt = 2.6 x 10 ergs/sec
‘ oy 1/2 spectrum peaks at 310 Hz,
-.E = .0572mcC wmgx(GM/R3) T = 2.5s8
R =6 (ZGM/CZ) ' B) -AE = 7.6 X 1053 ergs
5 ;
B) Exteme Kerr black hole, -de/dt = 3.2 x 10 5 ergs(sec
particle orbiting in the same k £ 2.3kHz
direction as black hole spectrum pea Ssg
rotation . C) -AE = 6.8 x 10 ergs
52 :
-iE = .4226mc? w__  =Z(GM/R 3y1/2 -aE/at = 4.3 x 10°% ergs/sec
R = ZGM/c2 spectrum peaks at 176 Hz,
: T = 1.68
C) Extreme Kerr black hole, retro-
grade
“E = .0377mc? w__ =1.038(cM/R%) /2
: 2
R =9 x (26M/c™)




A-0UNT oF GRAVITATION AL

Vk( \‘11vne=z

| . | 3eTWEEN
SeLRCE Eﬁamms + CommENTS RADIATISN EMITTED EVENTS |
Masses in The max1mum power radiated by some examples of close binary systeﬁs'(e=C)
Keplerian orbits Keplerlan oroits (at closest :
a oach . f .
pproach) star period(days) Ml M2 -dE/dt distance
4 M 2.4 2(M +M.,) in M@® ergs/sec
refs. 25,26,27 _dE _ 32 6% "1 2 W) e 2 R AN, 25 9---2-_-1-29---_
a3t T 5 3 5 X : 30 |
c a i Boo .268 1.4 .7 3.6xLO 12
(1 +e)° UV Leo .6 1.4 1.3 7.2x10%° | es
(1-e%)? V Pup 1.45 16.6 9.8 6.6x10°% | 390
where a = semimajor axis YY Eri .321 1.0 0.6 8.9x102° 42
(minimum separation 1s SW Lac .321 1.0 1.2 2.9x103°% | 74
a(l-e), maximum is 30
a(l+e)) WU Ma .33 1.3 .65 1.4x10 67"
e = eccentricity of orbit WZ Sge 81 min .56 .19 1.5x10°% 97

power averaged over one orbit
is ‘

; | 2
__d__E_ _ 2‘ _G_f_ '.\Il 1.‘12 (hl'l'Mz) «
N o2, 772
73 2, 37 4
[l + -2-—4- e + gg e ]

for e<.2) the energy is
radiated mainly at 2w, where

; 1/2
_ G(M1+M2)]

3
a

in terms of the initial
conditions, the lifetime
of the system against decay

by gravitational radiation is

5 4
T = 5¢c a
- 256?G3 ;*111\'12 (Ml+M2)
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APPENDIX 2




Appendix 2 Spherical Mirror Delay Lines

The optical delay line to be discussed consists of two

(1)

concave spherical mirrors having the same radius of curvature

~~One of the mirrors has a small hole in it thr ouyg h~which the -

beam enters and exists (Fig. 1). Other possible configurations
use a small mirror or light pipe to deflect the beam into

and out of the cavity. Slightly astigmatic mirrors have also
been used to utilize more of the mirror surface and increase
the total delay(z). The purpose of this appendix

is to present some of the properties of spherical-mirror
optical delay lines including the stability of the cavity

and the change in delay time for small rotations and
translations of one of the mirrors. .

In Fig. 2, two spherical mirrors have been placed in a
delay line configuratibn with mirror B slightly rotated.
There is a unique line called the optical axis of the delay
line which passes through the mirrors at'pdints labelled
P, and P,. The optical axis is defined by the condition

A B

that the line which runs through ?A and PB be parallel to the

mirror normal at Py and PB. The optical properties of the

‘cavity are invariant for rotations about the optical axis.
In the paraxial ray limit (sin 0 = QO,cos © = 1) it is
possible to derive an expression for the points on the
mirrors where the beams are reflected. In the coordinate

/

system defined by the optical axis

Xn = Asin (n¢+ao)
where !
tan o = 2R 1 1+ RX

L
X
o
cos ¢ = 1 - L/R




mirror A. A rough estimate of the allowed motion of mirror

2 _ 2R 2 ’ 2
AT = SR [Xo +LX X, * %E'xo }

'»~Lwis~thewcavitywlength,'RWiS“the"radiuS'Gf“curvatufe'Of thé”‘”

mirrors,vxO is the entry point of the initial ray , and
X; is the x-component of the angle that the ray makes

to the optical axis. A similar expression holds for Yn'
Even n gives the position on mirror A and odd n gives the

position on mirror B. If L and R are chosen such that'

2r¢ = 2mm where m is an integer and

l<m < r - 1 and sm/r is not an integer for 1 < s s_r-l,
then there will be r reflections on each mirror (counting
the hole as a reflection) and the beam will exit through the
hole in mirror A as if’reflected from the back of that
mirror. This is called the reentrant condition.

If mirror B is moved and the cavity length changes, the
output beam will shift with respect to the hole in mirror
A. We will assume that the motion of mirror B is small

enough so that the beam still exits through the hole in

B will be made in the next paragraph. Since the number
of beams in the cavity is assumed constant, the change
in delay time can be calculated. To a good approximation, |
the total beam length is just the number of beams in the

cavity times the distance between points PA and PB in Fig. 2,
agdrcanrbc,calculated,in terms of L, R, the translation. ST — e

(X,Y,Z)"and the rotation (OX,%R about PB' Denoting the
delay time by t, the number of beams by N and the speed
of light by ¢ the following formulas result

Jt N x 9t N y 9t _ N
C

9% c 2R-L' 3y c 2R-L’' dz




3t _ N R(R-L) 6_ 3t _ N R(R-L) 6

t - —
.,§§2.T,c“7§§;ET Xr §§§7MC,7§§:EY_WY".W"W SR

These formulas are in excellent agreement with computer
calculations using the geometrical optics approximation to the
delay line. o

In order to estimate the allowed motion of mirror B we will
assume that the reentrant condition has been satisfied and
that the initial ray has been chosen so that there is a circular
pattern of reflection points on each mirror. In this case |
¢ is the angle between consecutive reflections (Fig. 3). The
configuration is stable for small motions of mirror B 1f the
beam continues to exit through the hole in mirror A and the

number of reflections remains constant. Using the relation

cos ¢ = 1-L/R, the change in ¢ per reflection is

§¢ = SL/(Rsing)

Stability requires that

N[§pld; < 4,

where N is the number of beams, dl is the radius of the pattern

and d., the radius of the hole. Substituting

2
2 Risin ¢
lsul < g7 =% :
For the cavity we plan to use R = 900cm cos ¢ = 0, N = 302,
d, = .075cm d, = 38lcm so '

2 1

¢

»
3 Ogwm




qx , |éL] < .06cm

If this |SL| were caused by a translation transverse to the
~ optical axis, then the translation would be of the order of

1/2cm.  For a._rotation the angle would-be about 1/2°%, —We- -

have built and tested a delay line and find that thé reentrant
condition remains satisfied for all movements of mirror B

which keep the beam within the cavity. The output beam is not
observed to move. ’
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Figures '

Figure 1

Spherical mirrors in delay line configuration.

Figure 2

Spherical mirrors in delay line configuration with mirror
B slightly rotated.

Figure 3

¢ is the angle between consecutive reflections.
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