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RESEARCH LABORATORY OF ELECTRONICS 

CAMBRIDGE, MASS. 02139 

August 8, 1974 

Proposal to 
National science Foundation 

"Interferometric Broad Band Gravitational Antenna" 

Abstract 

This proposal is for an NSF grant to continue the develop-
ment of a broadband gravitational radiation antenna that uses 
free masses as antenna elements. The masses are the mirror 
mounts of a laser illuminated 11ichelson interferometer which 
is used to measure the gravitationally induced strains in 
space. Although the proposed scheme is in some regards tech-
nically more difficult than bar antennas, it holds the 
promise of extending the search for gravitational radiation to 
a sensitivity such one may expect to detect the radiation 
from various astronomical sources. The first step is a small 
prototype interferometric antenna with 9 meter arms. This 
prototype is at leastlOOO times more sensitive to a large class 
of astronomical sources of gravitational radiation than exist-
ing resonant bar antennas; however, any reasonable estimates 
of the source strengths of known and imagined sources still 
indicate that the prototype antenna will only be able to set 

, HPPQX Limits. on the gruvi tational radiation intensity. It is 
···---- .. be used ·rntericro-

mctr ic antennas with uusclincs of the order of a or 
more, since the sensitivity of this type of antenna increases 
with the square of the baseline. 
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Preliminary work has been going on at M.I.T. for several · 
years with the support of the Joint Services Electronics Program 
and the M.I.T. Sloan Fund. The JSEP has terminated support 

_f_or __ the project--as oLJ-une-.19.'74- as it cann0tjusti-f-y the-
relevance of gravitational research to its own program. The 

·proposal to the NSF is for operations bosts for two years, 
the installation of the antenna at an off campus site and for 
data acquisition equipment. 

Introduction 

It is probably safe to say that gravitational radiation 
has not been detected to date. This is unfortunate, for had the 
Weber experiments 1 ' 21314 been confirmed by othersS,G,?,a, 9 ,lo, 
gravitational wave astronomy would have opened up a new window 
into the universe as well as provided a handle to test relativistic 
theories of gravitation. 

, 

Facing cold realities after the considerable theoretical 
work engendered by the Weber experiments, it now seems that a 
legitimate search for gravitational radiation from astronomical 
sources will require a substantial improvement in detector 
sensitivity, possibly by a factor of 10 4 to 10 6 . A compilation 
of gravitational radiation sources and their hypothesized spectra 
is given in appendix 1. 

At present there appear to be three qpproaches that may 
lead to gravitational wave astronomy with higher sensitivity, 
none of which is without problems. The first is the development 

_ •• •. c.;;;..,;..._ .• •. _________ ,_;;...;:_:;"'_.,._ __ •• - _ •... _ --·-"'- .. _ o ·, ·------

of cooled, high Q bars. The assumption is that since the 
dominant noise in room temperature antennas is thermal noise, 
the overall system noise will scale with temperature. Even if 
this is true, cooled bars,will require significant advances in 
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transducer technology to reach their ultimate potential. The 
second approach, complementary to the others, is to use many 
cross-correlated antennas, a scheme that gains sensitivity with 
the square root of the number of antennas. Thirdly and finally, 

-i-s-to--use .an.-tenna-s empl0y-ing-lar-.9e-.Sase.J.ines-t0.-Gapi-ta-lize .. on ... 
the property that a gravitational wave creates a strain in space 
while the noise, is to first order independent of the baseline. 
For a given displacement noise, the minimum detectable gravita-
tional wave intensity decreases with the square of the antenna 
baseline which is ultimately limited by the condition that the 
dimensions of the antenna must be less than or equal to the 
wavelength of the gravitational wave. 

· The basis of this proposal is the development of a small, 
interferometric antenna with 9 meter arms. Although the antenna 
is 1000 times more sensitive than existing gravitational wave 
detectors, it is viewed as a prototype of a much larger system 
with a baseline of a kilometer or more. The interferometric 
antenna is broad-band and therefore useful in detecting periodic, 
impulsive and broad-band gravitational radiation s_ources. 

Theory of a Gravitational Wave Interacting with Free Masses 

I h . 1918 . . l" . . (ll) h d n is paper on grav1tat1ona waves Einstein s owe 
by a perturbation argument that a weak gravitational plane wave 
has an irreducible metric tensor in an.almost Euclidean space. 
The total metric tensor 

where 

g .. = II .. + h .. 
1) lJ l) 

n .. 
l. .l l 1-1 ° l 

0 -1 
-1 
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is the Minkowski background metric tensor. h .. is the perturba-
i J 

tion metric tensor due to the gravitational wave and it is 

't;ha-t: Cl_l! ___ C::?!llP_ol"l_E?nts this are muc·h 
than 1. If the plane wave propagates along the x 1 direction, 
_it is always possible to find a coordinate system in which h .. 

J. J 
takes the irreducible form 

0 0 
h .. = ( 3) 

l. J I 
0 ,h22 .h23 

ih32 h33 

with h
22 

= - h
33 

and n 23 = h 32 . The tensor components have the usual 

functional dependence f(x1 - ct). 
To gain some insight into the meaning of a plane gravita-

tional wave, assume that the wave is in the single polarization 
state h 23 = h 32 = 0 and furthermore let h 22 = - h 33 = h sin 
(kx1 - wt). The interval between two neighboring events is 
then.given by 

2 i j c 2dt2 -
2 2 

ds = g .. dx dx = [dx1 + (1 + h sin(kx1 - wt))dx2 l.J 
2 

+ (1 - h sin(kx1 - wt)) dx3 J (4) 

The metric relates coordinate distances to proper lengths. In i 
___ p.r.o,pe..r __ __ ,_, ____ 

coordinates are not proper lengths. One can give some reality 
to the coordinates by placing free noninteracting masses at 
various points in space which then label the coordinates. The 

\ 
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A v proper distance between two coordinate points may then be 
defined by the light travel time between the masses. Let 

there be a. at ){2 = '.'"' R./2 and_ a at_ 
x2 = i/2. For light the total interval is always zero so 
that 

ds 2 = O = c 2dt2 - (1 + h sin(kx1 - (5) 

·since h << 1 

cdt = [l + sin(kx1 - wt)]dx2 (6) 

If the light travel time, lit, is much less than the period of 
the wave, the integral for lit becomes simple and one gets 

lit = ( 1 h . - - sin 2 
i wt)-c (7) 

In the absenceof the gravitational wave lit = i /c = t/c, the 
0 

coordinate distance becomes the proper length. The variation 
in lit due to the gravitational wave is given by 

ollt = ch sin tut)! 2 c (8) 

This can be interpreted as though· the gravitational wave 
produces a strain in space inthe x 2 direction of 

h h22 = sin wt = 2 -2- (9) 

There is a comparable strain in the x 3 direction, however inverted 
in phase. 

The intensity of the gravitational wave in terms of the 
plane wave metric tensor is given by Landau and Lifshitz12 as 

= c 3 f<lh2J_l 2 + !_l<lh22 _ <lh33] 
I CJ n-:iiG l z.rr- 4 en:-- J ( 10 ) 

\ 
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For subsequent calculations, it is more useful to relate 

the power spectrum of the gravitationally induced displacement 
to the incident gravitational intensity spectrum. 

2 2 2 xg2-- rwT;; 11---.-<-w-> 
4 3 2 g io < Ag 

c w 
(11) 

where 1
0 

is the separation of the masses. 

The Antenna Design 

The principle idea of the antenna is to measure the geodesic 
deviation of free masses by passing light signals between them. 
The notion is not new; it has appeared as a Gedanken experiment 
in F.A;E. Pirani 1 s 13 studies of the measurable properties of 
the Riemann tensor. However, it became a practical idea only 
with the advent of lasers and the realization that interferometric 
distance measurements could be made to a much higher precision 
than the wavelength of light. The limit is determined by the 
quantum limited shot noise (Poisson noise) arising from the 
granularity of light and the statistics of the detection process. 
It was quickly realized that interferometric gravitational wave 
antennas had several unique properties;.they are broad-band 
detectors, can be extended to the optimal size of the gravitational 
wavelength and are not loaded by the displacement detectors. 

Initial work on such antennas began at M.I.T. in 1970 as 

of an experiment in 1967 that demonstrated shot noise limited 
intcrro9ation of fringes in a laser illuminated Michelson inter-
feromcter14. 

-6-
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For the last two years, the design and construction of the 
prototype antenna has been the Doctor's thesis of·Mr. D. K. 

·-----uwens-aT-rvcT:-'l':---w110-na.s--c0n:rr-i5u£ea- Tcieas-Eo £Iie ____ --
project. 

Work began at Hughes Aircraft under the direction of Dr. 
R. Forward on an interferometric antenna design for use in 
space at the instigation of Dr. Philip Chapman then of N.A.S.A. 
Houston and a frequentvisitor to M.I.T. in early 1970. The 
work at Hughes culminated in a premature publication which 
did not do the idea justice but nevertheless demonstrated again 
that laser interferometers operating at the Poisson limit 
were feasible. 15 

A schematic drawing of the antenna being constructed at 
M.I.T. is shown in figure 1. Three masses are suspended on 
horizontal seismometerrrounts in high vacuum (P < 10- 7 torr). 
The three masses are the mirror mounts of an equal arm Michelson 
interferometer illuminated by a commercial 1 watt Argon ion 
laser. Each interferometer arm is a 9 meter long reentrant 
optical delay line comprised of dielectric coated spherical mirrors 
in a near confocal configuration. The laser beam is split by 
a 50 - 50 beam splitter and enters the delay lines through a 
hole in the spherical mirrors. The beam makes approximately 
300 passes in each cavity before reemerging through the same 
hole by which it entered. The emerging beam passes through 
Pockel's cell phase shifters and is recombined by the beam 

... __ a_water .. co_o_led EI.::i._.Silic.on 
photo diode. 

The interferometer is held on a fixed point of a fringe by 
a servo system using the Pockel's cell phase shifters as control-
lers. The servo errorsignal is derived by modulating the optical 
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phase in oppositely polarized Pockel's cells in the two inter-
ferometer arms by ±rr/4 at a lOMHz rate. The fringe phase 
modulation is synchronously demodulated yielding an error 
signal which is applied to the Pockel's cells to maintain the 

·---· -----f-.r'i-nge--modu-lati-orr·symmetry :--T11e-efrof-sTgnal-Ts-propor-t:Tonai 
to the differential displacement of the end masses and is the 
output of the antenna. With the servo operated in this manner 
as a nulling device the laser amplitude noise at 
other than the modulation frequency is suppressed, provided the 
open loop gain is high enough. 

The dynamic range of the Pockel's cells is limited to phase 
shifts equivalent to a few wavelengths motion of the end masses. 
Two approaches can be taken to increase the dynamic range of the 
interferometer to accomodate long term drifts due to ground 
noise and temperature changes. The first is to employ a slow, 
large dynamic range controller to move the end masses, for 
example an electrostatic force applied to the end masses, 
to hold the interferometer on a single fringe. The second 
approach, which we have adopted for the small antenna, is to let 
the interferometer jump from one fringe to an equivalent point 
on the neighboring fringe when the error signal has reached a 
predetermined value. The fringe jumps are counted in an up-
down counter, converted into analog signals and passed through 
a high pass filter. The low frequency cut off of this filter 
determines the low frequency response of the antenna. The 
output of this filter is added to the continuous fringe output 
signal and recorded as the antenna output. The fringe jumps 
take place in a time .c.onstan.t cOf.the 

.•... .c .. ---·-·····--··- .·--·· • -8 ' 
Pockel's cell which is of the order of 10 seconds, during 
this time the post mixer analog circuitry is reset as well. 
By properly setting the timing and the error signal amplitude 
at which the fringe jump occurs, it is possible to make the 
transients in the antenna output comparable to the Poisson 
noise. 

-8-
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We have measured the amplitude noise of a Spectra Physics 
model 165 Argon Ionlaser at variousfX)wer levels with the laser 
oscillating in both multi and single longitudinal modes. Figure 
2 shows the results of these measurements with the laser oscillat-

___ Ing--rn.--a--sTng le--IongTtucfinaI-mocfe -- A. t: -f req-uen_c_i e 5- be 1 ow - 3-oo_i<_Hz ,-- -
the power spectrum of the amplitude noise is dominated by 
ion acoustic and plasma oscillations as well as spectral peaks 
at multiples of the power line frequency due to inadequate 
filtering in the power supply. At frequencies above·3MHz, 
the amplitude noise closely approaches the Poisson limit even 
at 1/2 watt output. The measurements were limited to a maximum 
of 1/2 watt becauseof the onsetof space charge limited flow 
in the Silicon photodiode at higher power. 

The frequency stability of the laser is not critical 
provided that the difference in optical delay in the two inter-
ferometer arms is less than thereciprocal of the oscillating 
laser line width. Typically, for the Argon laser a delay 
difference of 10-9 seconds (30cm) will contribute a displacement 
noise due to frequency instability that is less than 1/10 
of the Poisson amplitude noise. 

The multipass delay lines that comprise the interferometer 
arms are useful componentsin an interferometric antenna as 
long as the Poisson amplitude noiseoominates the antenna noise 
budget and the' delay line storage times remain less than 1/2 
the period of the gravitational wave. For fixed laser power, 

I 

the multi-pass arms increase the fringe phase sensitivity of 
the interferometer by the number of passes per arm. The number 

__ 
of the mirror surfaces •. 

I(.· 

As long as the Poisson amplituderoise is dominant, the 
optical delay line is equivalent to increasing the length of 
the antenna, however at thosefrequencies where noise sources, 

-9-
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such as thermal and ground noise, that physically move the 
end mass dominate, the only way to increase the signal-
to-noise ratio is to actually increase the baseline. 

Optical delay __ SJ2-he_ri_ca_l_ mirr_or_s_ have--been 
D. K. Owens at M.I.T. has studied and 

.constructed delay lines using spherical mirrors, a brief 
description of his results are given in appendix 2. He has 
discovered severalinteresting and useful properties of these 
delay lines. The most encouraging one is that the delay lines 
are easy to align. If the reentrant condition is satisfied, 
namely that the input and output beams pass through the same 
hole, the'delay linebehaves as though the beam is reflected by 
the back of the front surf ace of the mirror which has the coupling 
hole in it. The position of the output beam is independent 
of the transverse position and angle of the far mirror as long 
as the beam pattern does not spill off of the mirrors. As is 
discussed in appendix 2, (if the reentrant condition is satisfied) 
the time delay of the beam in the cavity is insensitive in first 
order to transverse motions and rotations of the far mirror. 

The mirrors inthepLototype antenna are 4 inches in diameter, 
have a radius of 9 meters, a reflectivity of 99.5% at 5145A 
and 6328A and are good to 1/10 of a wavelength over their 
entire surface. The coupling hole has a diameter of l.Smm. 

The design of thesuspensions for the antenna masses has 
defied a simple, elegant and economical solution. The suspensions 
have to satisfy several conditions. First they must have a high 
Q to reduce the coupling to thermal fluctuations. Second they 

--tflttst provide isoTatToiifrom-ground-,ind-acoustic noise. What makes 
problem difficult is the inevitable collection of normal 

modes of motion of a mechanical system which cross-couple and by 
parametric conversion transfer energy between each other. In 

words, the isolation calculated for a long period suspension 

-10-
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is never realized in practice because the suspension structure 
has its own resonances that couple into the principle mode 

__ _ 'lhis is a problem that has long· been ----- -- ---------- ---------------------- -------------- - -- -- -- --- -- ----- ------------------- -- -11- --- ----- - ---- -- -- --
recognized in the design of seismometers and gravimeters -- • 
A rule of thumb to minimize problems in suspensions is to 
keep them simple and to force the resonances of the structural 
members toward high frequencies. 

A possible answer to the suspension problem is to use a 
diamagnetic superconducting suspension or other field suspension 
such as servoed electrostatic or magnetic supports. We have 
made analyses of such systems and in fact constructed a proto-
type electrostatic suspension. However, for a first attempt 
at testing the design of thcentire antenna, it seems prudent 
to make an imperfect compromise which has the virtue of 
simplicity. 

The masses are lOkg aluminium blocks suspended as pendula by 
4mm diameter fused quartz rodsl meter The fundamental 
period of the suspension is 2 seconds has a Q in excess 
of 10 6 • The Q is determined by the internal losses in the 
quartz but only 5% of the energy of the oscillator is stored 
in the quartz. The remainder is stored in the gravitational 
field of the earth, so that the total Q is higher than the 
internal Q of quartz. 'lhe principle problem associated with this 
suspension is the normal modes of vibration of the quartz rod 
which occur at approximately 250Hz intervals. 

Since the interferometer is insensitive to transverse 
- -------c•<_1notion aric1--rota-t:1on -of---ehe--far-m±rror9-'-;--t:he--±-s0-la-t-ion-pra:'lli_d.e..d ___ L ___ 

,.,, __ ! 

v 

by the suspension is mostcritical for motion along the lengths 
of the interferometer arms. 

l;'or diagnostic purposes as well as to measure the ground 
noise contribution to the antenna output, each of the suspended 
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( \ masses is the inertial member of a horizontal seismometer. 
The motion of the ground relative to the antenna masses is 
measured by using capacitive displacement attached 

a CJ.l_!.l_!Il __ lLQ us i IlCJ_. ___ The __ g round--noi-se--maas-u-rad - -
by the seismometers can be subtracted from the antenna output 
as described in the following scheme. 

The suspension ischaracterizedby the transfer function 

where x (w) is the Fourier componentof the displacement of the m 
suspended mass in inertial space when driven by a ground 
motion xg(w), also referred to inertial space. x (w) is g . 
composed of seismic noise as well as the motion of the earth 
induced by the gravityW:lve. The interferometer measures the 
displacement of the masses:relative to each other. The 
relative motion of the masses, is 

where is the motion due to the gravitational wave 
and the subscripts 1 and 2:refer to the two suspensions involved 
in a single arm of the interferometer. The seismometer 
measures the motion of the earth relative to the position of 
of the suspended mass. At one end of the interferometer arm the 
seismometer output is 

(w) = + (Tl (w) - 1) x __ -
------- -- --- --------------- __ g 

while at the other end it is 
/1x 

t\xH2 (w) =-. 2GW(w) + ('l'2(w) -l)xg2(w) 

'l'he contribution due to the gr<lvi tational wave in terms of the 
measured qu<lntitics is given 

-12:.. 



For T1 and T2 << 1 

The ground noise subtraction scheme looks promising if 
the suspension transfer functions are small, in other words, 
there is already substantial isolation of the ground motion and 
the non-linearities thatrray make the transfer functions amplitude 
dependent are small as well. 

Noise Sources in the Antenna 

The power spectrum of the noise from various sources in 
an antenna of the design shown in Figure 1 is estimated below. 
The power spectra are given in equivalent displacements squared 
per unit frequency interval. 

1) Amplitude Noise in the Laser Output Power 
The ability toneasure the motion of an interferometer 

fringe is limited by the fluctuations in amplitude of the 
photo current. A fundamental limit to the amplitude noise in 
a laser output is the shot noise in the arrival rate of the 
photons, as well as the noise generated in the stochastic process i 
of detection. At best alaser-can-exhibi t "l?o1sson· amplitude ··-·-- ·-··",· 

noise. This limit has been approached in single mode gas lasers 
that arc free of plasma oscillations and in which the gain 
in the amplifying medium at thafrcqucncy of the oscillating 
optical line is saturated. 

-13-



The equivalent spectral noise displacement squared per 
unit frequency interval in an interferometer of the design 
in Figure 1 illuminated by a Poisson noise limited laser and 

x 2 (f) > 
2 Pb2 - (b-1} 

TI £ e 

h is Planck's constant, c the velocity of light, A the wave-
length of the laser light, £ the quantum efficiency of the 
photodetector, P the total laser output power, b the number of 
beams in each interferometer arm, and R the reflectivity of 
the spherical mirrors. The expression has a minimum value 
for 

b = 2/ (1 - R) 
.. 

As an example, for a 1/2 watt laser at 5000 A"0 and a 
mirror reflectivity of 99.5% using a photodetector.with a 50% 
quantum efficiency, the minimum value of the spectral noise 
power is 

2 -32 2 x (f) 2xl0 cm /Hz 

2) Laser Phase or Frequency Instability 
Phase instability of the laser is transformed into displace-

ment noise in an unequal path length interferometer. In an 
ideal laser the phase noise is produced by spontaneous emission 
which adds photons of random phase to the coherent laser radiation . 
rrera: H The-J:ascr phase performs 
the noise-free angle given by = w t. The variance 

2 0 0 
in the phase grows as· (f..<p) = t/s t where s is the number of c 
photons in the laser mode, t the laser cavity storage time c 
and t the observation time. 'l'his phase fluctuation translates 

\ 
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into an oscillating frequency width of the laser given by 

1 0 = 47Tt s ... ···e 

Armstrong (18) has made an analysis of the spectral power 
distribution in the output of a interferometer il-
luminated by a light source in which the phase noise has a 
Gaussian distribution in time. Using his results, the equivalent 
power spectrum of displacement squared per unit frequency in 
the interferometer is given by 

X2(f) = 16 T 

in the case where fT << 1 and 6T << 1. T is the difference 
in light travel time between the two paths in the interferometer. 

The main reason for using a Michelson interferometer in 
the gravity antennais that T can be made small, if necessary 
equal to zero, so that one does not have to make excessive 
demands on the laserfrequencystability. In most lasers 
o is much larger than that due to spontaneous emission, 
especially for large T. However, for small T, 6 does 
approach the theoretical limit. In a typical case o might 

. -9 
be of the order of 10 Hz and T approximately 10 seconds, 
whi.ch gives 

· j) Thermal Noise in the Antenna 
Mechanical thermal noise enters the antenna in two ways. 

First there is a thermal motion of the center of mass of the 
masses on the horizontal suspensions and second there is thermal 
excitation of the internal normal modes of the masses about the 

-15-
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center of the mass. Both types of thermal excitation can be 
handled with the same technique. The thermal noise is modeled 
f2Y_A§§JJfili_ng_that __ the .mechanicai -sys'E-em-i-s-d-r-i-ve-n-by- -a-stochast-i-c 
driving force with a spectral power density given by 

F 2 (f) = 4kTa 2 dynes /Hz 

where k is Boltzmann's constant, T the absolute temperature 
of the damping medium and a the damping coefficient. a can 
be expressed in terms of the Q, the resonant frequency w

0 
of 

the mechanical system and the mass 

The spectral power density of the displacement squared due to 
the stochastic driving force on a harmonic oscillator is 

where 

2 1 x (f) = --
m2w4 

0 

1 

z = w/w 
0 

4kTw m 
0 

Q 

The seismometer suspension should have a resonant frequency 
much smaller than the frequency of the gravitational wave to 
be detected; in this case z >> 1 and Q >> 1, giving i: 

On the other hand, the lowest normal mode frequencies of 
the internal motions of the masses including the mirrors and 
the other suspended opticul components should be higher than 

\ 
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,_ .. 
the gravitational wave frequency. Some care has to be taken 

. to make the entire suspended optical system on each seismometer 
mount as rigid as possible. For the internal motions z << 1 
an_c:l_Q .. >> .1, so that 

x 2 (f) 4kT = -3-
w mQ 

0 

If the internal Q is 10 5 , the mass 10 kg, and the lowest 
frequency resonance in the mass 10 kHz, the thermal noise due 
to internal motions at room temperature for frequencies less 
than 10 kHz is 

The thermal noise due to center of mass motion on the 
suspension for a Q 10 6 and a resonance frequency of 
5 x 10-l Hz becomes 

x 2 (f) 
10-25 2 cm /Hz 

f 4 

for frequencies larger than the resonance frequency of the 
suspension. 

4) Radiation Pressure Noise due to the Laser Light 
Fluctuations in the output power of the laser can drive 

the suspended masses through the radiation pressure of light. 
In principle if the two arms of the interferometer are com-

I and optically I t:he 
interferometer output is insensitive to these fluctuations. 
Since complete is hard to achieve, this noise source 
must still be considered. An interesting point in pondering 

-17-
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this noise is that although one might find a high modulation 
frequency for the servo system where the laser displays Poisson 

·· -· ·nc:>rse; Tt rs-tne-spect.r-aTpower-ae·nsTty-of t.he-fTUcfaiaTronsl.i1 
the laser output at the lower frequency of the gravitational 
wave which excite the antenna. In other words, if this is a 
serious noise source the laser has to have amplitude stability 
over a wide range of frequencies. 

The radiation pressure noise can be treated in the same 
manner as the thermal noise. If the laser does display Poisson 
noise, the spectral power density of a stochastic radiation 
pressure force on one mirror is 

F2 (f) = 4bhP 
rad A.c 

2 dynes /Hz 

b is the number of beams in each interferometer arm 
and P the average total laser power. Using the same sample para-
meters for the suspension as in the calculation of the thermal 
noise, and those for the laser in the discussion of the amplitude 
noise, the ratio 

F2 d ( f) 
ra 5 x 10-9 

F 2 (f) thermal 

5) Seismic Noise 
If the antenna masses were firmly attached to the ground, 

t:l're ·se:n:muc noise, ·and of 
the ground, would be larger than any of the other noise sources 
considered so far. The seismic noise on the earth at frequencies 
I · I I d. db l · . 19,20,21,22 u.g lCr t 1an 5 llz has l.>een stu .Le · y severa investigators 
at various locations both on the surface and at different depths. 
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In areas far from human industrial activtty and traffic, the 
high frequency noise can be characterized by a stationary 
random process. The noise at the surface appears· higher 

-tn-an ae.---uepElrnor--rxm noweve:r-,--an unafiiliiguotfi3--dete-rmlfia- -
tion of whether the high frequency noise is due to Rayleigh 
or body waves has not been carried out. Measurements made 
in a zinc mine at Ogdensburg, New Jersey,< 19 > at a depth of 
about 1/2 km and in Jamestown, California< 22 > yield the smallest 

published values of seismic noise. In the region between 
10 to 100 Hz, the power spectrum is approximated by 

The spectrum has not been measured at frequencies higher 
than 100 Hz; however, it is not expected to decrease more 
slowly with frequency at higher frequencies. 

By mounting the antenna masses on horizontal seismometer 
suspensions, the seismic noise entering the interferometer 
is substantially reduced. The isolation provided by a single 
degree of freedom suspension is given by 

x ( f) m 
x£(f) 

where z = f/f , 
0 

sion. x (f) is m 

2 
= 

and 
the 

(l _ 2 2) + _( 2 /Q) 21 2 + (z3 /Q) 2 

[(l _ z2)2 + (z/Q)2]2 

f is the resonant frequency of the suspen-o 
displacement of an antenna mass at frequency 

frame;· xitf) motic:rrr-=-or-=th-
earth measured in the same reference frame. 

l\t frequencies for which z >> 1, the isolation ratio is 

x (f) m 
xi (f) 

2 [f 
1

4 rf 
1

2 
'v _s: + _s: 

f l f 
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For the sample suspension parameters given previously, 
the estimated seismic noise entering the antenna becomes 

10 < f < 10 kHz 

At frequencies higher than 180 Hz, the seismic noise is 
smaller than the Poisson noise due to the laser amplitude 
fluctuations. If the ground noise subtr?ction scheme described 
earlier can be madeto1NOrk to a precision of 1%, the laser 
noise remains dominant down to 50 Hz. 

6) Thermal Gradient Noise 
'l1hermal gradients in the chamber housing the suspension 

produce differential pressures on the suspended mass through 
the residual gas molecules. Tne largest unbalanced heat 
input into the system occurs at the interferometer mirror 
where after multiple reflections approximately 1/10 of the laser 
power will be absorbed. 

The excess pressure on the mirror surf ace is approximately 

p '\, nkL\T 

where n is the number of gas molecules per 1 cc, k Boltzmann's 
constant and b.T the difference in temperature between the 
mirror surface and the rest of the chamber. The fluctuations 
in L\T can be adequately calculated by solving the one-dimensional 
problem of thermal diffusion from the surface into the body of 
the mirror and the associated antenna mass which are assumed 
to be at a constant temperature. 

' ; ' 

r: 

- ; 

- L 
by incident intensity fluctuations I(f), is given by 

t.lI ( f) 
'l'(f) = 

4EOTJ + (TIC pk )l/2 f 1/ 2 
0 v t 

)C_ i ' 
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The first term in the denominator is the radiation from 

the surface; E is the emissivity, cr the Stefan-Boltzmann 

c911st:ant., anq 'I'0 the The second term is 
due to thermal diffusion from the surface into the interior; 
cv is the specific heat, p the density and kt the thermal 
conductivity of the mirror. 

If the laser exhibits Poisson noise the spectral force 
density on the antenna mass becomes 

he P x- 2 dynes /Hz 

Radiation is neglected as it is much smaller than the thermal 
diffusion. Using the following parameters for glass, cv 

6 0 10 ergs/sec cm K, anaverage laser power of 1/2 watt and a 
-8 1 x 10 mm Hg, the ratio between the thermal gradient 

noise to the thermal noise to the thermal noise forces in the 
sample suspension is 

2 
FT G(f) , 

2 
Fth(f) 

1 10-15 
I 

7) Cosmic Ray Noise 
The principal component of the high energy particle 

background .both below and on the earth's surf ace are muons 

with kinetic energies larger than 0.1 Bev. ( 23 > A muon that 
-

momentum to the mass, resulting in a displacement given by 

Ax = t\E cos 0 
mw

0
c 

AH .is the energy loss of the muon in the antenna mass, 
U the anqle Lctwccn tile displ.:1ccmcnt und the incident muon 
momentum, m the untcnnil muss and w · the suspension resonant ·o 
frequency. 
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The energy loss of muons in matter is almost entirely 
through electromagnetic interactions so that the energy 
loss per column density, k(E), 
energy for relativistic muons. 
while a 10 4 Bev muon loses "' 30 

is virtually constant with 
-1 2 A 10 · Bev muon loses 3 Mev/gm/cm , 

.Mev/gm/cm2 . 
The vertical flux of muons at sea level with an energy 

greater than 10-l Bev is approximately lo- 2 particles/cm2 sec 
steradian. For energies larger than 10 Bev, the intergrated 
flux varies as"' lo- 1;E2 (Bev). 

Since the flux falls off steeply with energy and the 
energy loss is almost independent of energy, the bulk of 
the muon events will impart the same momentum to the suspension. 
Using the following sample suspension parameters, m "' 10 4 

grams, f "' 5 x 10-l Hz, p "' 3 and typical linear dimensions 
0 -1 

10 cm, the average energy loss per becomes 10 Bev. 
At sea level the antenna mass might experience impulsive 
displacements "' lo-18 cm occurring at an average rate of once 
per second. An event dueto the passage of a 10 4 Bev muon 

-17 results in a displacement of 10 cm at a rate of once per 
year. 

Although the shape of the antenna mass can be designed 
to somewhat reduce the effect and frequency of muon inter-
actions, especially by takingadvantage· of the anisotropy of 
the muon flux, the way of reducing the noise is to 
place the antenna masses underground. The pulse rate at 
depths of 20 meters, 200 meters, and 2 km is approximately 
3 10- 2 10- 4 x HU.HUH, __ J_Q H.H p\llses/se_c. 

If the antenna output is measured over times that 
include many muon pulses, as would be the case in a search 
for pulsar radiation, the noise can be treated as a stationary 
distribution. Assuming that the muon events are random and for 
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ease of calculation that therragnitude of the momentum impacts 
is the same for all muons, the spectral power density of 
displacement squaredof the antenna mass is 

for f >> f • 
0 

N is the average number of pulses per second, the 
momentum imparted to the mass per pulse, and m the antenna 
mass. For the sample suspension parameters at sea level 

2 cm /Hz 

8) Gravitational Gradient Noise 
The antenna is sensitive to gravitational field 

gradients -- differential gravitational forces exerted on the 
masses of defining the ends of the interferometer arms. No 
data are available concerning the naturally occurring high 
frequency gravitational gradients on or near the surface 
of the earth. There are two effects which can make gravitational 
gradient noise; first, time dependent density variations in 
both the atmosphereand the ground and second, motions of exist-
ing inhomogeneities in the mass distribution around the antenna. 

An estimate for the two effects can be made with a crude 
model. Assume thatcne of theantenna masses is at the boundary 
of a volume that has a fluctuating density. The amount of mass 
that can partake in a coherent density fluctuation at a frequency 
f and exert a force onthe mass is roughly that included in a 
sphere with a radius equal to half the acoustic wavelength, A, 
in the ground. The fluctuating gravitational force on the mass 
is 

F ( f) g 
m 

2 ''' J ·rr A L\ p ( f) G 
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6 where is the density fluctuation at frequency f and G 

( 

0 

the Newtonian gravitational constant. The density fluctuations 
driven by ground noisein the sphere are 

p(f)=3<p> 
x ( f) 

£ 

where <p> is the average density of the ground and x (f) 
£ 

the ground noise displacement. If f is larger than the 
resonant frequency of thesuspension, the ratio of the suspension, 
the ratio of the displacement squared of the mass to that 
of the ground motion is given by 

x 2 (f) m 
x 2 (f) e 

= 

For the earth, this isolation factor is 

x 2 (f) m 
2 

'X (f) e 

which is much smaller than the isolation factor for the 
attenuation of direct ground motion by the sample suspension. 

A comparable approach can be used in estimating the 
effect of motions of inhomogeneities in the matter distribution 
around the antennailiich arc driven by ground noise. Assuming 
the extreme case of a complete inhomogeneity, for example, 

- - --

an atmosphere ground interface, the mass that partakes in a 
coherent motion x(f) could be rn '\J >. 3<p>. The fluctuating force 
on the nearest antenna becomes 

f' ( f) g 
m 

2 = 31rG<p>x (f) 
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The isolation factor is 

x 2 (f) m 
x2 (f) e 

which is comparable totheisolation factor due to density 
fluctuations. These factors become smaller if the distance 
between the masses is smaller than A. 

9) Electric and Magnetic Field Noise 
Electric fields in dielectric-free conducting vacuum 

chambers are typicallyl0- 3 volts/cm. These fields are due 
to variations in the work function of surfaces and occur 
even when all the surfaces in a system are constructed of the 
same material, since the work function of one crystal face is 
different than that of another. Temporal fluctuations in these 
fields are caused by impurity migrations and variations in 
absorbed gas layers. Little is known about the correlation 
time of these fluctuations except that at room temperature 
it seems to be longer than a few seconds and at cryogenic 
temperatures it is possible to keep the fields constant to bet-
ter than 10-2 volts/cm for several hours. <24 > 

The electric force on a suspended antenna mass is 

where A is the exposed antennu. surface and c · . f luctua.ting 
. nelectric field at the surface. Assuming that the power spectrum 

of the field fluctuations is similar to that of the flicker 
effect in vacuum tubes orthe surface effects in semiconductors, 
which are both due to large scale but slow changes in the 

-25-
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surface properties of materials, the electric force power 
spectrum might be represented by 

.?_<F 2> l/t 
'\J 7T e o 

(l/T
0

)
2 + (27Tf) 2 

T is the correlation time of the fluctuations and <F 2 > is the o e 
average electric force squared. 

If the gravitationalwave frequency is much larger than 
l/T0 and also higher thanthe resonant frequency of the suspen-
sion, the power spectrum of the displacements squared becomes 

x 2 (f) = 
32n 6m2 T f 4 

0 

2 cm /Hz 

Form '\J 10 4 gm, A '\J 10 2 , E '\J l0- 5 stat volts/cm 
and T '\J 1 sec, 

0 

2 cm /Hz 

Although this noiseisa good deal less than that due to 
the Poisson noise of the laser, some care has to be taken to 
electrostatically shield the mirror surfaces, which are 
dielectrics. 

Geomagnetic storms due to ionospheric driven 
by the solar wind and cosmic rays create fluctuating magnetic 
fields at the earth's surface. The smoothed power spectrum 

- oJ- tile=ffia=gnetlc ticfci :fiu-ctuation;-rn 

/ 

-3 at frequencies greater than 10 Hz is approximately 

-26-
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with B
0 

3 x 10-S gauss. <25 ) Large pulses with amplitudes 
5 x l0- 3gauss are observed occasionally; the rise time of 

···-tnese puises Is 0£ t:he ·c;r:a.er of· ffill11.l-te5 :<-26> 
Fluctuating magnetic fields with the antenna 

mass primarily throughe::ldy currents induced in it or, if it is 
constructed of insulating material, in the conducting coating 
around it required to prevent charge buildup. The inter-
action, especially at frequencies, can also take place 
through ferromagnetic impurities in nonmagnetic materials. 
Magnetic field gradients cause center of mass motions of the 
suspended mass. Internal motions are excited by magnetic 
pressures if the skin depth is smaller than the dimensions of 
the antenna mass. 

An extreme model would be to assume that the fluctuating 
magnetic fields are completely excluded by the antenna mass 
and that the field changes over the dimensions of the mass 
are equal to the fields. Thenagnetic forces are 

The power spectrum for center of mass motions, if f >> 
f , becomes 

0 

x 2 (f) = 2 cm /Hz 

-- ... 

of maq1wti.c field fluctuations, 

2 cm /llz 

'1'1.ie displacements due tointernal motions driven by 

magnetic pres'surcs atfrequencie_s smaller than the internai 

\ 
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resonant frequency, f , are given by 
0 int 

2 x--(f) 2 cm-/Hz--

Although the disturbances due to the smoothed power 
spectrum do not appeartroublesome relative to the other noise 
sources, the occasional large magnetic pulses will require 
that both conducting and high µ magnetic shields be placed 

* around the antenna masses. 

* It is not inconceivable that Weber's coincident events may 

-- c_c! -"_Eu._]_s =l_n r1TIS4 i f CJ 
shielding is inadequate. It would require a pulse of 10 
gauss with a rise time .,, 10- 3 seconds to distort his bars by 

1\£/'l •\, lo- 16 . M. Gordon has muasured naturally occurring 
pulses of this length and amplitude as part of senior thesis 
project in physics at M.I.T. 
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The Detection of Gravitational Radiation By a Broad-Band 
Interferometric Antenna 

The fundamental limit for the detection of gravitational 
radiation-by- --an i-n=t-I'aferometric antenna-ts-determined oy-t:he ·· 
Poisson amplitude noise of the laser and photodetection process. 
It appears that this limit can be reached in the prototype 
antenna at frequencies greater than 150 Hz. The minimum 
detectable gravitational radiation spectral intensity is 

I ( f) 
gmin [n;J 

where 

h is Planck's constant 
c velocity of light 
G Newtonian gravitational constant 
A wavelength of the laser 
n quantum efficiency of the photo detector 
P0 output power of the laser 
f frequency of the gravitational wave 
i length of the interferometer arms 
b the number of beams per arm 
R reflectivity of the cavity mirrors 

Af2 watts 
cm2Hz 

The prototype 9 meter antenna has the limit 

(1) 

i 
i 
': 
I{ i 
: I 

I 
- --- -- ---- -- ----- - 2 

watts/cm Hz 

for frequencies less than 200 KHz. The high frequency limit 
is determined by the cavity storage time which is 9 µsec. 
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The length or cavity storage time for the optimum antenna 
satisfies the condition 

-- --

Q.b - = T/2 c 

where T is the period of the gravitational wave. The minimum 
detectable spectral intensity for the optimum antenna is 

For comparison, using the same laser power and photo detection 
efficiency as is the prototype, the minimum detectable spectral 
intensity would be 

watts/cm2Hz 

The detection limits for periodic, broad-band and impulsive 
sources are described separately. 

I. Periodic Sources 
Periodic sources of well known frequency such as pulsars 

and binary systems would be synchronously detected and a narrow 
bandwidth would be achieved by post mixer digital integration. 
The gravitational radiation spectrum intensity from a periodic 

... lci.ne -
Doppler effect from the varying relative motion of the Earth and 
source. This frequency spread can be accomodated by adjusting 
the frequency of the local oscillator. The minimum detectable 
intensity is 

I . = min 

I (f ) 
groin ° 
2tint 
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where tint is the post-mixer integration time. 
As an example, the upper limit of . the 60. 4 Hz gr a vi tat.ional 

radiation from the. Crab Pulsar _NP0532- incident at the Earth - -- ..:.1-3 -- -- -- 2 
is estimated at 10 watts/cm (Appendix 1). Using the 9 
meter prototype antenna, an integration time of 3700 years 
would be necessary to detect this radiation with a signal-to-
noise ratio of 2. A multi-pass interferometric antenna with 
the same parameters as the protytype antenna, but 1 km long 
would require 3.6 months to detect the NP0532 upper limit. 
A space antenna of the optimal length, 2500 km, with single 
pass arms would require 8.5 hours of integration. The search 
for gravitational radiation could be extended to lower frequencies 
to include slower pulsars and binary star systems. 

II. Broad-band sources 
A search for broad-band gravitational radiation from 

discrete astronomical sources is carried out with the inter-
ferometric antenna used as a gravitational radiation radiometer 
and using the Earth's rotation as a modulator. If there is a 
discrete source of broad-band gravitational radiation, the 
detected signal will be a maximum each time one of the inter-
ferometer arms is perpendicular to the line joining the Earth 
and the source. A detection scheme for this process is shown 
in Figure 3. The antenna output is square-law detected and then 
cross-correlated with an oscillator which has a period of 1/4 
of Ci _f>.:i<ie:i::eal.c:lf!.Y .. rad-iat-i'on·- from. =st>ttrc-es- -

- ---- -- - --

lying in any quadrant of the sky, the antenna output is also 
cross-correlated with a 90° phase-shifted output of the oscillator. 

The minimum detectable signal is calculated by using the 
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Gr- effective noise bandwidth of the signal processing given by 

b.f = [b.f ant] l/2 
2t. __ int .... 

where b.f t is the bandwidth of the antenna and post-detection an 
filtering, and t. t is the observing time. The gravitational in 
radiation signal appears as a component with a period of 1/4 
of the sidereal day. 

The minimum detectable signal depends on the nature of 
the source spectrum. If the source has a flat spectrum over 
the bandwidth of the antenna, the minimum detectable spectral 
intensity is 

f f 
I (f) 

gmin 
h 1 1 

=A (xr-- )1/2 (2t. )1/2 
ant . int 

2 watts/cm Hz 

where f 1 and fh are the low and high frequency cut-offs of the 
antenna and A is defined in equation 1 of this section. 

As an example, if one extends a search from 100 Hz to 
1 KHz using the 9 meter prototype antenna, the minimum detect-
able intensity (S/N = 2/1) after 1 month of integration is 
i x 10-S watts/cm2Hz. 

If the source really had a flat spectrum, it would be.best 
to use as low a frequency and as narrow a bandwidth as possible 
within the constraints that the antenna be Poisson noise limited. 

If the source spectrum is a power law such as a thermal 

I ( f) 2 = af , 

the minimum detectable a, which can be related to an antenna 
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brightness temperature., is 

[
!if. l 1/2 

··a· ;· = A- ...... ·· ·=-A 
min !if t . an 

In terms of an antenna brightness temperature 
2 

T = ant . min 

a . c min 
2k 

Using the maximum bandwidth in the present prototype antenna 
design of 200 KHz, and an integration time of 1 month, 

a . rv 3 x lo-12 
min 

2 3 watts/cm Hz 

Although this may appear to be a small number, it cor-
responds to an- appallingly high temperature of T t rv lo 320 k. · an 
A truly thermal process will most likely not be detected with 
this antenna. 

III. Impulsive Sources 
The detection of impulsive events is difficult to analyze 

in detail because the sensitivity of the antenna depends somewhat 
on the shape of the pulse and the signal processing. We consider 
a pulse which lasts for a time t and has a maximum strain 
amplitude li9./L It is assumed that the pulse does not oscillate 

- -

many :rtrema.zrn ctens"Or ... 
mean. Aside from numerical factors of order unity which depend 
on the detailed shape of the pulse, the gravitational radiation 
energy surface density (Joules/cm2 ) that passes through the antenna 
is approximately 
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The criterion for detectability is that pulse induced 
strain in the antenna exceed the noise The· 

· optimal p0st-detection filter has a time constant short enough 
to fully develop the pulse but long enough to integrate the 
Poisson noise. The optimal filter, a matched filter, has a 
time constant approximately equal to the length of the pulse. 
For a matched filter, the minimum detectable strain is given 
by 

hcA. 
2 p b2o 2 - (b-1) (1-R) ir n J\r e · 

0 

1 
t 

and the minimum detectable pulse surface energy density is 
/<:'\Vl ... t., 

'\..' 

18-;.10 
'3b 11 !::: --'f if 'L. t'L. 

1.-<..., 

'L.-

-= R't1o"f ;D->o !._ '\. __., 
· For the prototype antenna this is 

, ·. v 

(E/ A) . 
min = 2 Joules/cm 

antenna with existing acoustically coupled bar 
antennas 

•rhe table below summarizes the pubJ,.ished performance of 
several acoustic bar gravitational antennas. The first column 
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/_ v 
gives the mass of the antenna, the second the length, the third 
the resonant frequency, the fourth is the post-detection 

the fifth gives the mechanical Q of the bar, the 
·- ... .--- ---------- --·· ---- --- --------- ·-·-- -------.--- --·-- --- -- ----------··- --·- .. ----

sixth column gives the pulse detection limits in terms of the 
minimum energy observable relative to thermal noise in the 
bar. These limits are expressed as minimum detectable strain 
amplitudes in the seventh column. The eighth column gives the 
minimum detectable energy surface density which is for pulses 
that last approximately the period of the bar. The last column 
gives the minimum observable spectral intensity if square-law 
dete_cted and integrated for one second. The last two rows 
give two examples using the prototype interferometric antenna. 
The first example shows the estimated performance if the 
antenna has post-detection filtering to match Tyson's antenna. 
The second example is an estimate of the performance of the 
prototype antenna as a broad-band instrument at the lowest 
frequencies where Poisson noise is still expected to dominate. 

The minimum observable spectral intensity of broad-band 
gravitational radiation that can be detected in an acoustically 
coupled detectors has not been discussed in the literature. In 
the calculations used to generate the last column of the table, 
it is assumed that the processing is done as in figure 
3; however, at a modulation rate rate of 1/2 the sidereal period 
and it is also assumed that the dominant noise in the system is 
the thermal noise in the acoustically coupled structure. For 
these conditions, the minimum detectable gravitational spectral 

- vrcinity of-

is given by 
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Table 1 

Experiment 

Weberl,2,3,4 

7 Tyson 

. 5 Levine 
Garwin 

6 Drever 

mass 
:r<:g 

13\00 

36!30 

1r,a 
-

Interferometric 
antenna Ex. 1 30 

Interferometric! 
1 antenna Ex. 2 30 

= {1-iz 
8ilG --

.:; 3 

. -·-·· ·•• ,,c,,,, '•<>'--""C ••. 

I 
'\.. 

-\ .. N.1.. 
length_, 

cm 
Center freq· 1 

kHz 
Q kTlimit . 

z I I I min 

E/A 
Joules/cm2 

I (fo) -
g 2 

watts/cm Hz 
! 
i 

153 I 1.6 I 27.7xlo4 i0 lxlo-16 
I! 

25 .5 ,.. 

357 I 0.71 I 2 

150 I 1.695 I 21 

155 I 1.1 I soo 

900 .71 1000 

900 .2 100 

vq-1/)IA 
J 

.1.a (If) 
;: 2. 

( - -3") :;:& ("'1) = 
-f "Z 

! 
s 11 I -17 Ii l2.2xl0 30 3.SxlO I 1.4 .07 

I 

4 11 I -16 ! 
ll.3xl0 10 3.3x10 I 300 

I 
13 

- I ........ ... ,. t-. 

I 3 11 I -lG 2. 2xl0 50 1. 4x.10 I 

I 

I 

I 
I 

Sxl0-18 1: 
'1 

:1 

35 

.04 

ii 

l. 6xlo-18 11

, 4xlo- 4 
I 

c ,." i 
io-'1. Hz. 

I 

I ,, 

i 
!I 
i1 

)[ 

< 
22 : 

.02 

8.5xl0- 3 

! 

10
$' /i.-'- hfz 
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FIGURES 

Figure 1 

Schematic drawing of the antenna being constructed 
at M.I.T. 

Figure 2. 

Amplitude noise in a Spectra Physics Model 165 Argon Ion 
Laser operating in a single longitudinal mode. 

Figure 3. 

Detection scheme for localized broad-band sources. 
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Appendix I 

Astrophysical Sources of Gravitational Radiation 

The astrophysical sources of gravitational radiation· 
discussed here arecnllisions, pulsars, neutron stars, and 
binary stars. Exotic phenomenasuch as 10 8 Me black holes in 
the Galactic center will not be considered. Collisions between 
collapsed objects, or matterfalling into collapsed objects 
could produce considerable amounts of gravitational 
.however, it appears that direct collision is a rare occurrence. 
Supernovae, and the formation of neutron stars could also be 
strong sources of gravitational radiation but the expected 
mean time between events of 5 to 50 years does not make these 
sources very attractive. Thetwo remaining sources of gravita-
tional radiation, pulsars and binary stars, are believed to be 
continuous emitters and are probably the best candidates 
for future studies of gravitational Both of 
these sources will be difficult to observe. Pulsars emit in 
a favorable frequency range of 1 to 60 Hz but the strain 
induced at the detector is very small. Binary stars produce 
substantial strains at the antenna but at frequencies less 
than 4 x 10- 4 Hz. There are undoubtedly other sources of 
gravitational radiationalnot listed in rrable 2; hOWeVer I it 
is hoped that the sources and formulas listed are representative 
enough to give some idea of the events which could be detected 

·l>y·grnvitati0nal wave antennas to pc.built in the near future. 
To get some idea of the collision rate for collapsed 

' : 
objects, some estimate must be made of the number of these 
objects in the Galaxy. Peebles (1) notes that between ten and 
twenty percent of the mass in the Galaxy resides in stars of 



mass greater than 2 Mr.;.. A 2 M0 exhausts its fuel in about 
2 x 109 years and since the Galaxy is about 1010 years old, 
perhaps ten or twentypercent of the mass of the Galaxy is 
contained in collapsed objects. The mass of the Galaxy is 
abouE 2 :x:·ro11 Mt and if ten percent of this into 
2 M0collapsed objects, then we can estimate that there are 
roughly 10 10 collapsedcbjects in the Galaxy. Ostriker, 
Rees, and Silk (2) note that 10 9 neutron stars moving 
through the interstellar plasma could produce an X-ray 
flux comparable to the X-ray luminosity of the Galaxy. For 
the following, it willbe assumed that ten percent of the 
stars in any region of the Galaxy are collapsed. 

The total collision rate of type 1 objects onto type 2 
objects in a volume V, can be estimated using 

for the rate and 

for the direct collision.cross-section. N1 and N2 are the 
number of type 1 and type 2 objects, V is the volume of the inter-
action region, <v 1 > is the average relative speed at large re 
seperation, R is the radius and M therrass of the objects, and 
G is the gravitationalc;:onstant. Table 1 shows the mean time 
between collisions for variQ_us_qi:)jg_gts . in the gl.o_b\.ll.C!r QJJ1§tex 

.- . .. ---.-·_---- -- ---- .. ---· - ·- -- -

' / 

M92 and in the Galacticcenter. For M92 the central density is 
about 6000 stars pc- 3 , there arc about 10 5 stars and <v 1 > re 
,_. 5 kmscc- 1 . ["or the Galaxy the central density is about 

6 -3 8 10 stars pc , there are about 5 x 10 stars and <v 1 > re 

+"' I 
I 
r 
i 

l 
f 



-1 . 
200 kmsec • For the stars, we assume M = lMe , R = 1R0 

and for the collapsed objects M = l.5M0 and R = lOkm. 

Table 1: Mean time between collisions 

M92 Galactic center 

Stars on stars 3.4 x 10 6y 160y 

Collapsed stars 5.4 x 10 7y 2500y 
on stars 

Collapsed stars on 1. 6 x 1013y 
collapsed stars 

The foregoing analysis only considered collisions between 
free objects; however, it should be pointed out that the collision 
rate could be considerably larger if the collapse of multiple 
star systems is considered. The stars in a binary system 
could evolve to a neutron star and a black hole, for instance, 
and then spiral together. One can speculate that there are 
many old binary systems in the Galaxy consisting of collapsed 
members and that these systems are only now spiralling together 
in considerable numbers. With no evidence to support this 
speculation, we will use the rates presented in Table 1. 

We can make some estimate of the mean time between large 
bursts of gravitational radiation from stellar Th0 

position is to assume that every star of mass 
greater than l.SM0cvolves into a neutron star or a black hole 
and emits a large amount of gravitational radiation in the final 
collapse. The rate at which stars reach the endpoint in their 



evolution is estimated to be about once every five years 
in the Galaxy (3). Pulsars provide a lower limit to the rate 
of gravitational bursts. If neutron stars are formed rapidly 

------ - ----------·- - --- -·-·-·-·- ···-- ---

in a stellar collapse, they will probably emit considerable 
amounts of gravitational radiation. Since pulsars are 
generally agreed to be:rotating neutron stars, we can say that 
the neutron star formation rate is at least as large as the 
pulsar formation rate which is about once every 30 years (4). 
It is clear that some supernovae produce neutron stars, for 
example NP0532; however, some models of supernovae leave 
no star remnants behind. Ifwe assume though, that all 
supernovae produce a burstof gravitational radiation, then 
another limit can be set on therrean time between bursts in 
the Galaxy. Various e:?tima tes of the supernova rate based 
on observations of other galaxies (5) , calculations of stellar 
evolution (6), and radio measurements at lGHz (7) all yield 
a supernova rate of one every 17 to 50 years. An estimate 

/ 

(;:;, ! 

of the mean time between large bursts of gravitational 
radiation in the Galaxy is between 5 and 50 years. 
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eutron Star 

on-radial 
·Ulsations 

·efs. 8 

I 

. -TABLE 2 

.J.. CoMMENTS 

A neutron star could form in a highly 
excited anµ distorted state with the non-
radial modes excited 

The power and the energy stored 
in a mode are proportional 

the-averaged square of the relative 
amplitude of the star's surface. 

H-W refers, to the Harrison-Wheeler 
equation of state 
VY refers 'to the I.evinger-Simmons-Tsuruta-
Cameron equation of state 

• is the damping time for the energy in the 
mode 

AmoVNT 
C1fA\JITf\TIUVAL 
fi A DI f} Tlt>N 
EM\ TTE.D 

1'1E AV 1i l'1) f 
6EThJEEN 
EVENTS 

Perhaps once 
every 5-50 years 
in the Galaxy 

. 
M/M8 f (kHz) T(sec) -6E{ergs) 

H-W .405 .84 6.5 7.8 x 10 48 1.2 x 10 48 

H-W .682 3.2 .1 2.8 x 10 50 2.9 x 10 51 ' 

5.9 .14 3.6 x 10 49 2.6 x 10 51 

8.3 2.6 x 10 48 48 
.65 3. 9 x 10 i 

8.9 x 10 46 45' 
11.1 12 7.0 x 10 ' 

5.7 x 10 50 . 50' 
Vy .677 1. 5 .85 7.0 x 10 • 

6.0 x 10 48 l.lxlo 48
j 4.2 5.5 

v 1.954 2.7 .11 1.7 x 10 52 1.6 x 10 531 
y 

1.5 x 10 52 1.9 x 10 52 ' 6.7 . 8 
10 1.3 5.2 x io 51 4.0 x 10 51 
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eutron Star 

apidly rotating 
n the f orn o:: a 
:aco:Oi elli;isoid 
triaxial ellipsoid) 

efs. 9,lJ,11 

.... 

. 11 

,._ CotnMENTS 

A neutrop star could form in a highly 
rapidly rotating state, pos-

sibly inc the form of a Jacobi 
ellipsoi¢l, Chau and Srulovicz 
conclude: that itis possible for a-
neutron to assume the figure 
of a rotating Jacobi ellipsoid. 

dE _32G ,12 ( 2_ 2) 2. 6 
- d t ; 5 k" a 1 a 2 w 

125c 
a.1 , a 2 , :a3 are thetriaxial radii, 
here rotation is about a 3 axis, 
ala2a3 const. 

1-a /a '\i -T/b 2 1 e 25 (a ) 3 r a) T in units of 18.RS, le 
*-Wm w'Ue-4-r/b b = 16. 0 39 

a =(a a a )1/3 1 2 3 

Rs = 2G.M/c 2 

* ' Wm=• 6117 ( nGP) 1/2 

is the limiting rotation rate for 
the non-radiatingM:=Laurin Ellipsoid 
(a1 =a 2 ) to which the Jacobi ellipsoid 
evolves. 

* note: ru<w , the rotation rate m 
increases.but only by a small amount, 
7% for,,the case considered here. 

Assume a Jacobi ellipsoid 1 

with maximum distortion, 
then 112 w = • 5 3 2 9 ( 7TGP) 
a 2/a1 = .4322 
a 3/a1 = .3451 

assuming a = 20 km, M 

50 then = 9 x 10 ergs 
-dE/dt=4 x 10 51 ergs/ 

sec 
spectrum peaks around 

f ::::: 320 Hz 

T = .23 sec. 

tt\7lE 
f3ETWt:l:N 
EVENTS 

every 5-50 years 
in the Galaxy 

if all the puls-
ars are formed 
as Jacobi 
ellipsoids then 
at least once 
every 30y. 
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Neutron Star 

Pulsar 

refs.12,13,14, 
15 

"° Com MENT) 
Gravitational radiation emitted: 

dE 32 ; 5 , 2 6 2 2 2 -- = L·1 w (a -a ) dt 125; 2 1. 
a 1 , a 2 radii perpendicular to 
rotation rota-
tion a 2-a1=ER 
R = average radius 
_ dE _ 128 G ,6R4 2 dt - 125 ""3 .. ' e; 

c 

spectrum is monochromatic at 

Assuming pulsar looses energy 
only by of electro-
magnetic and gravitational 

radiation and that 
e; const. for recent times 

= -[ [dp)-ld
2

P +1 dP] 
d tGQ .. d T d t 2 P d t 

P is pulsar period, Iis 
moment of inertia 

Iw2 
-2-

DF ClfAVITATIWAL 
£11\tTTEC> 

For NP0532, the Crab pulsar, 
Ostriker and Gunn assume e; 
constant for the entire 
history of the pulsar. e; 
is fixed by requiring that 
the calculated age of the 
pulsar agree with the known 
age. 
For NP0532: 
M = 1. 4 MC:) 
R = 12km 45 2 I = 1.4 xlO gm-cm 
distance = 1700 pc 
P = .033s 

dP/dt = 420 x 10-lS 

2 -25 -1 d P/dt = -100 x 10 sec 

then e; = 3 x 10- 4 

so -dE/dt = 1.5 x 10 38 
ergs/sec 

from the second derivative 
measurement 

(-dE/dt) GQ 

(-dE/dt) total 
= .44 

tl\EAJV fm E 
6eTWGeH 
EVcNrs 

Pulsars formed 
about once every 
30 years. After 
formation and 
'initial damping 
,continuous 
production of 
,gravitational 
radiation for 
• 6 ,about 10 years 

whereas Ostriker and Gunn get 
about 1/4 for this ratio. The 
second derivative of the period 
is rather uncertain. 

------ -
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Neutron Star 

Pulsar starquake 

refs. 16 

CornrYJENTS 
The crus· of a neutron star shifts 
releasin 1 energy which can be · 
radiated away as gravitational 
radiatio . Assume that all of 
the rele sed energy goes into 
one of t' e non-radial oscil-
lation m des of the neutron 
star 

..... -
- _:2J -

( 2 I . 
L.: 

2 ) ...: 

= frequency of the 

.;: in the pulsar 
due to starquake. 

Taking tl ,e v Y model with M/He = 
1. 95 fro , K. Thornes study and 
the lowest mode with a frequency 

ORR] 2 - • 7 x l054 .I - i so 

= 37.6h
2
J :w 

AIYJctJNT ot= &lfAvrrJCIT!c 
t.M IITED 

Assuming a pulsar radius of 
10 km and M = a 
.033s, ow/:.:.= 2.5 x 10 from: 
the Sept. 1969 speedup of NPosj2 

38 -dE/dt = 1.5 x 10 ergs/sec 
37 = 1.6 x 10 ergs 

spectrum peaks around 
5.2 kHz 

T = .11 sec 

The power output is compar-
able to the expected gravita-! 
tional radiation at 60 Hz. 

V'\ 
ME" 

6ETWteN 

to be expected 
every few years 
from the Crab 



y\ 

Particle falling 
radially into a 
Schwarzshild 
black hole 

refs. 17,18,19 

., 

/" 

.,_ Coff\MENTS 

A of mass m falls into 
a non-rotating black hole of mass 
M 

-:E = .0164 d 

S?ectrum peaks at a frequency 

3 - = .32 c /GM 

The event lasts a time 

- ::: 2 x 2n 
w 

ANJVNT Cf ClfAVITATI tJNl\L 
RADIATION Eta{ITTcb 

Assume a .SM8 neutron star falls 
into a 5 M©black hole. A 
istic calculation should take 
into account tidal disruption 
of the neutron star 

51 -6E = 9.4 x 10 ergs 
54 . = 9.4 x 10 ergs/sec 

spectrum peaks around 
2 kHz 

-3 T ::: 10 sec 

0 M&tJ TtW\e 
GETWEcN 
EVENTS 

greater -gnan 
every 10 
years at the 
Galactic 
center 
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Black noles in 
collision 

'.i:'wo jlack noles 
collide and 
coalesce 

refs. 20,21,22 

I\ 
'l 

J. Cot'\'\ me.ITS 
From paper by Gibbons and 
Hawking, expect a pulse of 
radiation which is one or two 
cycles of a sinusoidal wave 
train. From the spectrum of 
a particle falling into a 
black hole, expect the spectrum 
to peak around 

w = c 3/GM 

which is essentially the 
orbital frequency of a photon 
in near the Schwarzshild 
radius of the black hole. Expect 
the event to last a time 

T 2TI 
w 

The total possible energy 
radiated is 29.3% of the rest mass 
for non-rotating black holes 
and 50% of the rest mass for 
extreme Kerr black holes. 

OF 
Mb1AnoN a.11TTeJ) 

Assume two 2 black 
holes 

54 -6E = 2.1 x 10 ergs 
58 -dE/dt = 1.7 x 10 ergs/sec 

spectrum peaks around 
8 kHz 

-4 T = 1.2 x 10 sec 

J11;f) 7l M 5· 

EVENTS 

greater than 
onge every 
10 years, 
assuming 10% 
of the stars 
in the core 
are black 
holes 
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St>U,YC€' 
Particle spiralling 
into a black hole 

refs. 23,24 

,., 

\ _ _, 

J. eom m 
Total energy radiated before the 

falls into the black 
binding energy of 

the last stable orbit. Spectrum 
is essentially monochromatic at 
twice the orbital frequency. 
Elliotical orbits will emit 
at tiple·s of the fundamental 
frequency but will quickly 
become circular. 

oower radiated is -- .. 
32G (mM ) 2 R4w6 

dt sbs lm+M 

and typical time is 

T = -t,.E/ _dE 
dt 

A) Non-rotating black hole of 
mass M, particle of mass m 

-.'...E = .0572;c2 w = (GM/R )1/2 max 3 
R = 6 ( 2 GH/ c 2 ) 

B) Exteme Kerr black hole, 
particle orbiting in the same 
direction as black hole 
rotation 
-0.E = .4226mc 2 

. 2 
R = 2GH/c 

w max 
(GN/R3) 1/2 

C) Extreme Kerr black hole, retro-
grade 

AmbVNT OF b'lfAVfTATltJVA 
eM 1TTGb 

Realistic example difficult to 
calculate since tidal forces 
on the small mass should be 
taken into account. For this 
example assume a 1 M{;) (lOkm 
radius) neutron star spirals 
into a (14.8 km radius) 
black hole 

. . [PBHll/3 Roche Limit = 2.45 pNS x RBH 

= 42 km 

For source at Galactic center 

A) -6E= 1.03 x 
-dE/dt = 2.6 x 10 ergs/sec 
spectrum peaks at 310 Hz; 
T = 2.Ss 

B) 53 -6E = 7.6 x 10 ergs 

l"!E <4.Jt!EAI 

grEater than 
10 years in 
the Galactic 
center 

55 . 
-dE/dt = 3.2 x 10 ergs/sel 
spectrum peaks at 2.3kHz. 

52 -6E = x 10 ergs 
52 

C) 
-dE/dt = 4.3 x 10 ergs/sec 

spectrum peaks at 176 Hz, 
T = 1. 6s 

= .0377mc2 w =l.038(GM/R3)l/2 
max 

2 R = 9 x ( 2 GM/ c ) 
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5otHJC&: 

:·lasses in 
Ke?lerian orbits 

refs. 25,26,27 

"'' 

- i:i 

The maxim$.m power radiated by 
Keplerianlorbits (at closest 
approach) ' 

dE 
-dt 

- 32 G4 ,'.112:.122(M +M) 
12 .::> 5 - x c a:> 

(1 + e) 6 

(l-e2)5 

where a = semimajor axis 
(minimum separation is 
a(l-e), maximum is 
a (l+e)) 
e = eccentricity of orbit 

power averaged over one orbit 
is 

dE 
-dt 

4 2.1 2 ( ' = £_ 1 L' 2 h1+M2) 
5 'cs as(l - e2)7/2 x 

[ 73 2 37 4] 1 + 24 e + 96 e 

for e<.2, the energy is 
radiated mainly at 2w, where 

[ l l/2 
w = 

in terms of the initial 
conditions, the lifetime 

A,y10VNT ClfAvrrATl&N !TL 
A'Tl6N EM lTTE'"l) 

some examples of close binary systems (e= 

star period(days) Ml M2 -dE/dt 

i Boo .268 1.4 .7 3.6x1o 30 
• 29 UV Leo .6 1.4 1.3 7.2xl0 
: 31 V Pup 1.45 16.6 9.8 6.6xl0 

YY Eri .321 1.0 0.6 8.9xlo 29 

SW Lac 1.0 1.2 2.9x10 30 
' 30 WU Ma .33 1.3 .65 l.4xl0 

WZ Sge 81 min .56 .19 l.5x1o 31 

of the system against decay 
by gravitational radiation is 

T = sc5 

256G3 
a4 

MlM2 (Ml +M2) 

--·- ---- -- - - ------

. l\!<J '\ TU'i E , 
. fSE::tW E£N 

EYE:N13: 

istance 

12 
68 
390 
42 
74 
67 
97 
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Appendix 2 Spherical Mirror Delay Lines 

The optical delay line to be discussed consists of two 
concave spherical mirrors having the same radius of curvature(!). 

·One of the mirrors has a ·small hole·±n ·tt ·through which the 
beam enters and exists {Fig. 1). Other possible configurations 
use a small mirror or light pipe to deflect the beam into 
and out of the cavity. Slightly astigmatic mirrors have also 
been used to utilize more of the mirror surf ace and increase 
the total delay{ 2). The purpose of this appendix 
is to present some of the properties of spherical-mirror 
optical delay lines including the stability of the cavity 
and the change in delay time for small rotations and 
translations of one of the mirrors. 

In Fig. 2, two spherical mirrors have been placed in a 
delay line configuration with mirror B slightly rotated. 
There is a unique line called the optical axis of the delay 
line which passes through the mirrors at points labelled 
PA and PB. The optical axis is defined by the condition 
that the line which runs through PA and PB be parallel to the 
mirror normal at PA and PB. The optical properties of the 
·cavity are invariant for rotations about the optical axis. 
In the paraxial ray limit (sin 0 Oi cos 0 1) it is 
possible to derive an expression for the points on the 
mirrors where the beams are reflected. In the coordinate 
system defined by the optical axis 

xn = As in (n<)J+a.} 

where 

tan a = [ l + l 
cos tj> = 1 - L/R 



' . . 

2R 

Lis the cavity length, Ris the radius·of curvature of the 
mirrors, X

0 
is the entry point of the initial ray , and 

is the x-component of the angle that the ray makes 
to the optical axis. A similar expression holds for Yn. 
Even n gives the position on mirror A and odd n gives the 
position on mirror B. If L and R are chosen such that 

2rcp = 2mrr where m is an integer and 

ls m r - 1 and sm/r is not an integer for 1 s r-1, 
then there will be r reflections on each mirror (counting 
the hole as a reflection) and the beam will exit through the 
hole in mirror A as if reflected from the back of that 
mirror. This is called the reentrant condition. 

If mirror B is moved and the cavity length changes, the 
output beam will shift with respect to the hole in mirror 
A. We will assume that the motion of mirror B is small 
enough so that the beam still exits through the hole in 
·mirror A. A rough estimate of the allowed motion of mirror 
B will be made in the next paragraph. Since the number 
of beams in the cavity is assumed constant, the change 
in delay time can be calculated. To a good approximation, 
the total beam length is just the number of beams in the 
cavity times· the distance between points PA and PB in Fig. 2, 
a!'l<:l be calculated in terms of L, R, the. translation 
(X, Y 1 Z), and the rotation (0 ,H) about PB. Denoting the x y 
delay time by t, the number of beams by N and the speed 
of li9ht by c the following formulas result 

N x Jt =-- = c 2R-L' ()y 
Ni__ ;)t=N 
c 2R-L' az c 



at = N ex, __ = R (R-l) e aex c o Y c (-2R-L-) ·· Y 

These formulas are in excellent agreement with computer 
calculations using the geometrical optics approximation to the 
delay line. 

In order to estimate the allowed motion of mirror B we will 
assume that the reentrant condition has been satisfied and 
that the initial ray has been chosen so that there is a circular 
pattern of reflection points on each mirror. In this case 
¢is the angle between consecutive reflections (Fig. 3). The 
configuration is for small motions of mirror B if the 
beam continues to exit through the hole in mirror A and the 
number of reflections remains constant. Using the relation 

. cos ¢'= 1-L/R, the change in ¢per reflection is 

o<f> = oL/(Rsin¢) 

Stability requires that 

where N is the number of beams, a1 is the radius of the pattern 
and d 2 the radius of the hole. Substituting 

d joLI sin 
u 1 N 

l!"or the cavity we plan to use R = 9 OOcm cos 
ct2 = .075cm <l 1 = so 

J.,, 
3 o, ..... 

O, N = 302, 



I o L l < • 0 6 cm 

If this joLj were caused by a translation transverse to the 
optical axis, then the translation would be of the order of 
-1L2cro. For a_ro_tation the ang-le-woul-d-l;:>e-- about -1/2()._ We 
have built and tested a delay line and find that the reentrant 
condition remains satisfied for all movements of mirror B 
which keep the beam within the cavity. The output beam is not 
observed to move. 
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Figures 

Figure 1 

Spherical mirrors in delay line configuration. 

Figure 2 

Spherical mirrors in delay line configuration with mirror 
B slightly rotated. 

Figure 3 

is the angle between consecutive reflections. 
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