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Advanced LIGO Noise Budget
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A Simple Model of Coating Noise

) Brownian Noise :-
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) Scales with temperature.

1 Isn’t a fundamental limiting noise.

) Cryogenically cooling test masses is very difficult : No convection, minimal conduction.




Using Silicon instead of Fused Silica

) Fused silica has bad loss angle at low temperatures. 1o
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silicon (crystalline Si)

[ Silicon has low loss angle. But has large thermo-elasticity at e Lo e e 0)
room temperature. Can be overcome using cryogenics. | ~
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. Coefficient of thermal expansion has two zero crossings.

10* '\_‘Tv m“:‘ ':‘“ _"’“:::
J Absorption is too high at 1064nm (Nd:YAG lasers). ?( R
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) 1550nm is used due to wide availability.
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Rundown of Experiment

1 Test cavities are short. Beam is narrow. Enhances the effect of coating noise and conversion
from length to frequency fluctuations.

) Coating noise is random. Differential frequency fluctuation measurement gives a direct

measure.
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Modifications to Experiment
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Laser bandwidth issue : new current drivers and feedback controllers.
Second generation test cavities planned to be only several cm short.
Have large free spectral ranges in the GHz range.

Differential measurement difficult : resonant frequencies may be too far apart.

Solution : Addition of an external reference system. Also used for testing new current drivers.




Goals of SURF Project

1 Assemble and characterize the reference system.

) Provide ~500 pW of stabilized laser output to the cryo-bench via an optical fiber.

Modify Setup !




Gaussian Beams

] Electric Field :-
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) Two Parameters : Beam Waist and location of Beam Waist.

E amplitude of intensity [W/m ]
electric field [V/m

position x




Optical Cavities

1 Length and end test masses determine parameters of supported beam. " §HH”””HH”HHHHE
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) They are mode selective.

Ry= A= L2

Concentric Cavity =

. Cavity Visibility : Fraction of total light transmitted which is in 00 mode. ? (G )))));
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Reference Cavity

- Length=20.3cm

1 Mirror 1 = Plane Mirror
1 Mirror 2 = Concave Mirror (ROC =50 cm)
) Supported Mode :-

Beam Waist = 348.2 um

Located at the surface of the plane mirror.




Laser Mode Characterization
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Resulting beam: w0 = 347.778 um, 0 = 2.85 m




Pound — Drever — Hall

J Sidebands are added to laser using EOM (Elector-Optic Carrer
Demodulator).
. . . Lower Upper
) The error signal is fed back to the laser current drives as sideband cdepand
modulation after proper signal conditioning.
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Optical Setu




Cavity Transfer Function

) Cavity Pole = 52 kHz
Cavity Transfer Function
. Finesse = 5000 | |
- Visibility = 98.57%

Gain (dB)

Frequency (Hz)




Loop Gain

) -3dB point = 157 kHz

Closed Loop Tansfer Function of Open Loop Gain
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Fiber Coupling Efficiency

) Solid State Fiber Coupled Lasers.

) Final light must be coupled into a fiber and transferred to the cryo
bench.

1 Output Intensity = 1.8 mW

Light intensity exiting fiber

J  Coupling efficiency = ~ 26%

Light intensity entering fibre




Summary & Outlook

Characterised Laser and Cavity.

Obtained required resonant mode.

Placed cavity in position and optimized beam for maximum transmission.
Set up feedback loop and obtained a stable lock.

Placed Vacuum Tank and made final adjustments to feedback settings.

Characterised loop and coupled light into fibre.

U O 0D 000D DO

Next Step :-
J  Pump vacuum tank.

) Determine noise floor.
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