

Astronomical Catalogs for Locating Gravitational-wave Events

Kunyang Li Roy Williams LIGO SURF 2016

- Galaxy Stellar Mass Estimation
 - Method 1: B Mag (blue light)
 - Method 2: W1-W2 method (MIR)
 - Method 3: Evolutionary Population Synthesis and SED fitting (red light)
 - Comparison between catalogs
- Galaxy Cluster Stellar Mass Estimation
 - Method 1: Using cluster richness (optical)
 - Method 2: Using total luminosity (X-Ray)
 - Method 3: Using Sunyaev–Zel'dovich Effect (G lensing)
- Metallicity Estimation
 - Metallicity from SED fitting
 - Method 1: mass-metallicity relation (MZR)
- Future Work
- Summary

- Skymap Viewer is an interactive, web-based tool to display a sky map along with a host of relevant information for follow-up observers.
- The sky map is shown as a contour plot, each color-coded line enclosing a given percentage of the total probability.

LIGO SURF 2016

FOV=15d

catalogs checked:

- GWGC (OPT)
- 2MASS-GLADE
- WISExSCOS galaxies
- Planck (SZ)
- RASS-SDSS (X-Ray)
- RASS-Abell
- MCXC galaxy clusters

area of each square is prop. to <u>MASS</u> * 3D prob density

double-click in square for pink info and centering

The Observation Targets section uses the 3D estimate Observation Targets 😗 Source is J1523.0+0836 from MCXC RA 230.773 deg Dec 8.602 dea Distance 149 Mpc 2160.0 Terasun Mass [Simbad][NED] GLADE (Galaxy List for the Advanced Detector Era) (Dalya+ 2016) Gravitational Wave Galaxy Catalogue (White+ 2011) MCXC Meta-Catalogue X-ray galaxy Clusters (Piffaretti+, 2011) Planck catalogue of Sunyaev-Zeldovich sources (Planck collab 2015) RASS-SDSS galaxy cluster survey. V. (Popesso+, 2007) WISExSCOS Photometric Redshift Catalogue (Bilicki+, 2016) X-ray emission of RASS Abell clusters (Ledlow+, 2003) · Choose one or more catalogs above · Double-click in any Target square for source information (pink box above) and a centered display for zooming

A 3D skymap at 94 ± 20 Mpc

Authors: Roy Williams, Thomas Boch, and Kunyang Li.

Skymap Viewer coming soon to https://losc.ligo.org/s/skymapViewer/ (R.Williams, T.Boch, K.Li)

keep zooming

here is prime observational target Abell 2063

Skymap Viewer coming soon to https://losc.ligo.org/s/skymapViewer/ (R.Williams, T.Boch, K.Li)

Probability = <u>MASS</u> * 3D prob density (GW signal)

- Number of GCs (Dynamical interaction) ∝ galaxy stellar mass
- DM (Primordial BHs) ∝ galaxy stellar mass

Low Metallicity (only required by massive BBHs)

- Pop III stars
- BBHs in hierarchal three-body system
- Rotational mixing

Galaxy Stellar Mass Estimation

> Method 1: Using B band photometry data to estimate galaxy stellar mass:

Assumption: all stars in galaxies have the same mass-to-light ratio of the Sun *Input: apparent B band magnitude, redshift (z)*

$$M_g \cong L_B * \frac{M_{\odot}}{L_{B\odot}}$$

 $Output: galaxy stellar mass M_g$

Method 2: Using W1-W2 band photometry data:

The W1 band $(3.4 \ \mu m)$ of WISE survey is dominated by the light from old stars and can be used as an effective measure of stellar mass (Jarrett et al. 2013).

Input: W1, W2, redshift

$$\log\left(\frac{M_{stellar}}{L_{W1}}\right) = -1.96(W_1 - W_2) - 0.03$$
Output: adjacy stellar mass M is u

Output: galaxy stellar mass M_{stellar}

- Galaxy Stellar Mass Estimation
- Method 3: Evolutionary Population Synthesis and SED fitting (BayeSED) <u>BayeSED</u> code algorithm flow chart:

BayeSED: A general approach to fitting the SED of galaxies

- Input B JHK photometry data (broad band SEDs), redshift
- Output include galaxy stellar mass, metallicity, etc.

- Stripe 82-Massive Galaxy Catalog (S82-MGC)
 - S82-MGC is a part of the SDSS that was covered many times
 - 2 magnitudes deeper than the SDSS survey
 - Relatively precise stellar mass estimated by Bayesian SED fitting between Y JHK photometry from the UKIDSS Large Area Survey (LAS) and FSPS models (FSPS: Flexible Stellar Population Synthesis Conroy et al. 2010)
 - Covers only a small area: ~250 degree²,
 - Can be used to compare mass estimated by different methods

- Comparison between GLADE (B mag method) and S82-MGC
- Cross-matching GLADE and S82-MGC using best search radius (~0.01 deg)
- Compare stellar mass of the same group of galaxies (14,878) estimated by applying B mag method and SED fitting method to data from two catalog.
- Mass estimation using B mag method is smaller by ~1 mag due to heavy dust attenuation in blue band
 10⁻¹

- Comparison between GLADE-2MASS (SED fitting method) and S82-MGC
- Cross-matching GLADE-2MASS and S82-MGC using best search radius (0.0005 deg)
- Mass estimation is ~ 0.5 mag smaller than expected: lack of photometry data in optical and NIR band (VRIY)

- Comparison between WISExSCOS (W1-W2 method) and S82-MGC
- Cross-matching WISExSCOS and S82-MGC using best search radius (~0.01 deg)
- Compare stellar mass of the same group of galaxies (74,403) estimated by using W1-W2 method and SED fitting method
- Mass estimation agree with expectation

8/12/16

Galaxy Cluster Stellar Mass Estimation

- Method 1: Using galaxy richness of a cluster(Optical)
- Estimate galaxy cluster mass using the stacked <u>velocity dispersion- richness</u> <u>relation</u> derived from MacBCG catalog data (Koester et al. 2007) and Virial theorem

Input: dynamical radius, richness

$$\ln \sigma(N_{200}) = (5.52 \pm 0.04) + (0.31 \pm 0.01) \ln(N_{200})$$
$$M_{200} = \frac{5R_{200} * \sigma(N_{200})^2}{G} \text{ (Virial theorem)}$$

Output: galaxy cluster mass

 Estimate galaxy cluster mass using the <u>central halo mass-richness relation</u> (Sheldon et al. 2007) derived by applying cross-correlation cluster lensing method on SDSS II data

Input: richness

$$M200|20 = (8.8 \pm 0.4 \pm 1.1) \times 10^{13} h^{-1} M_{\odot}$$

$$\alpha = 1.28 \pm 0.04$$

$$M200(N200) = M200|20 * \left(\frac{N200}{20}\right)^{\alpha}$$

Output: galaxy cluster mass

Galaxy Cluster Stellar Mass Estimation

- Method 2: Using total luminosity (X-Ray)
- X-Ray observation: no cluster richness valid
- Mass estimation from L500 (the approximate total luminosity) using the L-M relation given in Arnaud et al. (2010)

Input: total luminosity (L_{500})

$$h(z)^{-7/3} \frac{L_{500}}{10^{44}} \frac{erg}{s} = C \left(\frac{M_{500}}{3 \times 10^{14} M_{\odot}} \right)^{\alpha}$$

$$\log(C) = 0.274$$
$$\alpha = 1.64$$

 $Output: cluster mass (M_{500})$

- Method 3: Using Sunyaev–Zel'dovich Effect (gravitational lensing)
- Planck catalog (439) : cluster mass provided by using gravitational lensing (von der Linden et al. 2014b; Hoekstra et al. 2015)

Mass-distance distribution plot of 5 catalogs in Skymap Viewer

Metallicity Estimation

- For all GLADE-2MASS galaxies, metallicities are estimated together with stellar mass using the BayeSED.
- Metallicities of WISExSCOS galaxies, on the other hand, are derived from stellar mass using the <u>empirical mass-metallicity relation</u>:

Assumption: metallicity of a galaxy is uniform and equals to the mean metallicity of the star forming gas in the galaxy.

Input: galaxy mass (M_{gal}) , redshift (z)

$$\log\left(\frac{Z_{gas}}{Z_{sun}}\right) = 0.35 \left[\log(M_{gal}) - 10\right] + 0.93e^{-0.43z} - 1.05$$

Output: galaxy metallicity (Z_{gas})

The mass-metallicity relation comes from high-resolution cosmological simulation suite FIRE , and it agrees with both gas and stellar metallicity measurements observed at low redshifts for $10^4 < M_{gal} < 10^{11} M_{\odot}$, as well as the data at higher redshifts.

Future Work

- More catalogs (PanSTAR, etc.)
- Improve the accuracy in stellar mass estimation
- Add metallicity and SFR to each galaxy
- Better localization from GW network (HLVIK) will make Skymap Viewer more helpful

- Mass and distance estimations for 7 catalogs
- Observation priority is constructed by stellar mass * skymap
- Testing different stellar mass estimation by crossmatching with S82-MGC (SDSS)

Thank you!

Dr. Roy Williams Dr. George Djorgovski

[2] Harold G. Jr.; Olowin Ronald P. Abell George O.; Cor- win. "A catalog of rich clusters of galaxies". In: Astro- physical Journal 70 (1989), pp. 1–138.

[3] Bundy Kevin et al. "The Stripe 82 Massive Galaxy Project. I. Catalog Construction". In: The Astrophys- ical Journal Supplement Series 221. Issue 1 (2015). doi: 10.1088/0067-0049/221/1/15.
 [4] Bundy Kevin et al. "The UKIRT Infrared Deep Sky Survey (UKIDSS)". In: MNRAS 379. Issue 4 (2007), pp. 1599–1617. doi: 10.1111/j.1365-2966.2007.12040.x.

[5] Maciej Bilicki et al. "TWO MICRON ALL SKY SUR- VEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CEN- SUS OF THE WHOLE SKY". In: The Astrophysical Journal Supplement Series 210.1 (2013).

[6] Planck Collaboration: P.A.R. Ade et al. "Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich clus- ter counts". In: Astronomy Astrophysics szcosmo2014 (2014).

[7] Xiao-Qing Wen et al. "The stellar masses of galaxies from the 3.4 m band of the WISE All-Sky Survey". In: MNRAS (2013). doi: 10.1093/mnras/stt939.

[8] Maciej et al. Bilicki. "WISE SuperCOSMOS Photo- metric Redshift Catalog: 20 Million Galaxies over 3/pi Steradians". In: The Astrophysical Journal Supplement Series 225.1 (2016). doi: 10.3847/0067-0049/225/1/5.

[9] Ilias; Muñ oz Julian B.; Ali-Ha imoud Yacine; Kamionkowski Marc; Kovetz Ely D.; Raccanelli Alvise; Riess Adam G. Bird Simeon; Cholis. "Did LIGO detect dark matter?" In: eprint arXiv 1603.00464 (2016).

[10] Thomas Boch. Aladin Lite. 2014. url: http://aladin.u- strasbg.fr/AladinLite/ (visited on 10/2014).

[11] S. Bruzual G.; Charlot. "Stellar population synthesis at the resolution of 2003". In: MNRAS 344.4 (2003), pp. 1000–1028. doi: 10.1046/j.1365-8711.2003.06897.x.

[12] Daniela et al. Calzetti. "The Dust Content and Opac- ity of Actively Star-forming Galaxies". In: The As- trophysical Journal 533.2 (2000), pp. 682–695. doi: 10.1086/308692.

[13] Gilles Chabrier. "Galactic Stellar and Substellar Initial Mass Function". In: The Publications of the Astronom- ical Society of the Pacific 115.809 (2003), pp. 763–795. doi: 10.1086/376392.

[14] M. E et al. Cluver. "Galaxy and Mass Assembly (GAMA): Mid-infrared Properties and Empirical Rela-tions from WISE". In: The Astrophysical Journal 782.2 (2014). doi: 10.1088/0004-637X/782/2/90.

[15] Ofer Collister Adrian A.; Lahav. "ANNz: Estimat- ing Photometric Redshifts Using Artificial Neural Net- works". In: ().

[16] James E.; White Martin Conroy Charlie; Gunn. "The Propagation of Uncertainties in Stellar Population Syn-thesis Modeling. I. The Relevance of Uncertain Aspects of Stellar Evolution and the Initial Mass Function to the Derived Physical Properties of Galaxies". In: The Astrophysical Journal 699.lssue I (2009), pp. 486–506. doi: 10.1088/0004-637X/699/1/486.

[17] James E.; White Martin Conroy Charlie; Gunn. "The Propagation of Uncertainties in Stellar Population Synthesis Modeling. II. The Challenge of Comparing Galaxy Evolution Models to Observations". In: The As- trophysical Journal 708. Issue I (2010), pp. 58–70. doi: 10.1088/0004-637X/708/1/58.

[18] S. P. et al. Driver. "Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release". In: Monthly Notices of the Royal Astronomical Soci- ety 413.2 (2011), pp. 971–995. doi: 10.1111/j.1365-2966.2010.18188.x.

19] Dawn K. et al. Erb. "H Observations of a Large Sample of Galaxies at z 2: Implications for Star Formation in High-Redshift Galaxies". In: The Astrophysical Journal 647.1 (2006), pp. 128–139. doi: 10.1086/505341.

[20] E.S.Phinney. "The rate of neutron star binary mergers in the universe - Minimal predictions for gravity wave detectors". In: Astrophysical Journal Letters 380.ISSN 0004-637X (1991), pp. 17–21. doi: 10.1086/186163.

[21] G. Galgo czi-P. Raffai R. S. de Souza G. D alya Z. Frei.

[32] Xiangcheng et al. Ma. "The origin and evolution of the galaxy mass-metallicity relation". In: MNRAS 456.2 (2016), pp. 2140–2156. doi: 10.1093/mnras/stv2659.
 [33] F. et al. Mannucci. "LSD: Lyman-break galaxies Stellar populations and Dynamics - I. Mass, metallicity and gas at z 3.1". In: MNRAS 398.4 (2009), pp. 1915–1931. doi: 10.1111/j.1365-2966.2009.15185.x.

[34] Paul; Cantiello Matteo; MacFadyen Andrew I. Perna Rosalba; Duffell. "The Fate of Fallback Matter around Newly Born Compact Objects". In: ApJ 781.2 (2014). doi: 10.1088/0004-637X/781/2/119.

[35] M.; Pratt G. W.; Pointecouteau E.; Melin J.-B. Pif- faretti R.; Arnaud. "The MCXC: a meta-catalogue of x-ray detected clusters of galaxies". In: Astronomy As- trophysics 534.A109 (2011).
 [36] Meagan; Pattabiraman Bharath; Chatterjee Sourav; Haster Carl-Johan; Rasio Frederic A. Rodriguez Carl L; Morscher. "Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO". In: Physi- cal Review Letters 115.5 (2015).

[37] Kunyang Li. Roy Williams Thomas

An Extended List of Galaxies for Gravitational-Wave Searches in the Advanced Detector Era. 2016. url: http://aquarius.elte.hu/glade/GLADE Documentation 1.3.pdf (visited on 01/2016).

[19] Dawn K. et al. Erb. "H Observations of a Large Sample of Galaxies at z 2: Implications for Star Formation in High-Redshift Galaxies". In: The Astrophysical Journal 647.1 (2006), pp. 128–139. doi: 10.1086/505341. [20] E.S.Phinney. "The rate of neutron star binary mergers in the universe - Minimal predictions for gravity wave detectors". In: Astrophysical Journal Letters 380. ISSN 0004-637X (1991), pp. 17–21. doi: 10.1086/186163.

[21] G. Galgo czi-P. Raffai R. S. de Souza G. D alva Z. Frei.

[32] Xiangcheng et al. Ma. "The origin and evolution of the galaxy mass-metallicity relation". In: MNRAS 456.2 (2016), pp. 2140–2156. doi: 10.1093/mnras/stv2659.

[33] F. et al. Mannucci. "LSD: Lyman-break galaxies Stellar populations and Dynamics - I. Mass, metallicity and gas at z 3.1". In: MNRAS 398.4 (2009), pp. 1915–1931. doi: 10.1111/j.1365-2966.2009.15185.x.

[34] Paul; Cantiello Matteo; MacFadyen Andrew I. Perna Rosalba; Duffell. "The Fate of Fallback Matter around Newly Born Compact Objects". In: ApJ 781.2 (2014). doi: 10.1088/0004-637X/781/2/119.

[35] M.; Pratt G. W.; Pointecouteau E.; Melin J.-B. Pif- faretti R.; Arnaud. "The MCXC: a meta-catalogue of x-ray detected clusters of galaxies". In: Astronomy As-trophysics 534 A109 (2011).

[36] Meagan; Pattabiraman Bharath; Chatterjee Sourav; Haster Carl-Johan; Rasio Frederic A. Rodriguez Carl L.; Morscher. "Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO". In: Physi-cal Review Letters 115.5 (2015).

[37] Kunyang Li. Roy Williams Thomas

An Extended List of Galaxies for Gravitational-Wave Searches in the Advanced Detector Era. 2016. url: http://aquarius.elte.hu/glade/GLADE Documentation 1.3.pdf

(visited on 01/2016).

[22] P. A. A.: de Carvalho R. R.: Kohl-Moreira J. L.: Capelato H. V.: Diorgovski S. G. Gal R. R.: Lopes. "The Northern Sky Optical Cluster Survey. III. A Cluster Catalog Covering PI Steradians". In: The Astronom-ical Journal 137.2 (2009), pp. 2981-2999.

[23] A. C.; Irwin M. J.; MacGillivray H. T. Hambly N. C; Davenhall. "The SuperCOSMOS Sky Survey - III. Astrometry". In: Monthly Notices of the Royal As- tronomical Society 326.4 (2001), pp. 1315–1327. doi:10.1111/j.1365-2966.2001.04662.x.

[24] A. M. et al. Hopkins. "Galaxy And Mass Assem- bly (GAMA): spectroscopic analysis". In: Monthly No- tices of the Royal Astronomical Society 430.3 (2013), pp. 2047–2066. doi:10.1093/mnras/stt030.

[25] Philip F. et al. Hopkins. "Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation". In: MNRAS 445.1 (2014), pp. 581–603. doi: 10.1093/mnras/stu1738. [26] Erin S.; Wechsler Risa H.; Rozo Eduardo; Koester- Benjamin P.; Frieman Joshua A.; McKay Timothy A.; Evrard August E.; Becker Matthew R.; Annis James Johnston David E.; Sheldon. "Cross-correlation Weak Lensing of SDSS galaxy Clusters II: Cluster Density Profiles and the Mass-Richness Relation". In: eprint arXiv 0709.1159 (2007).

[27] T. A.; Annis J.; Wechsler R. H.; Evrard-A.; Bleem L.; Becker M.; Johnston D.; Sheldon E.; Nichol R.; Miller C.; Scranton R.; Bahcall N.; Barentine J.; Brewington H.; Brinkmann J.; Harvanek M.; Kleinman S.; Krzesin-ski J.; Long D.; Nitta A.; Schneider D. P.; Sneddin S.; Voges W.; York D. Koester B. P.; McKay. "A MaxBCG Catalog of 13,823 Galaxy Clusters from the Sloan Dig-ital Sky Survey". In: The Astrophysical Journal 660.1 (2007), pp. 239-255.

[28] Peter Meszaros Jan Shoemaker Nicholas Senno Kohta Murase Kazumi Kashiyama. "Ultrafast Outflows from Black Hole Mergers with a Mini-Disk". In: ApJ Letter 822.1 (2016). doi: 10.3847/2041-8205/822/1/L9.

[29] Shea: Clausen Drew: Hopkins Philip Lamberts Astrid: Garrison-Kimmel. "When and where did GW150914 form?" In: eprint arXiv:1605.08783 (2016). doi: 2016arXiv160508783L.

[30] Henry et al. Lee. "On Extending the Mass-Metallicity Relation of Galaxies by 2.5 Decades in Stellar Mass". In: The Astrophysical Journal 647.2 (2006), pp. 970– 983. doi: 10.1086/505573.

[31] J et al. Liske. "Galaxy And Mass Assembly (GAMA): end of survey report and data release 2". In: Monthly Notices of the Royal Astronomical Society, 452.2 (2015), pp. 2087–2126. doi:10.1093/mnras/stv1436. Boch. Skymap Viewer. https://losc.ligo.org/s/skymapViewer 08/2016).

2016. (visited on

[38] Takayuki Seto Naoki; Muto. "Resonant trapping of stars by merging massive black hole binaries". In: MNRAS 451.4 (2011). doi:10.1111/j.1365-2966.2011.18988.x.

[39] M. F et al. Skrutskie. "The Two Micron All Sky Survey (2MASS)". In: The Astronomical Journal 131. Issue 2 (2006), pp. 1163–1183. doi: 10.1086/498708.

[40] Christy A. et al. Tremonti. "The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey". In: The Astrophysical Journal 613.2 (2004), pp. 898–913. doi: 10.1086/423264.

[41] E. J.; Dhillon V. S. White Darren J.; Daw. "A list of galaxies for gravitational wave searches". In: Classical and Quantum Gravity 28.8 (2011). doi: 10.1088/0264-9381/28/8/085016.

[42] Edward L et al. Wright. "The Wide-field Infrared Sur- vey Explorer (WISE): Mission Description and Initial On-orbit Performance". In: The Astronomical Jour- nal 140.6 (2010), pp. 1868–1881. doi: 10.1088/0004-6256/140/6/1868.

[43] Donald G et al. York. "The Sloan Digital Sky Sur- vey: Technical Summary". In: The Astrophysical Jour- nal Supplement Series 120.3 (2000), pp. 1579–1587. doi: 10.1086/301513.

[44] Zhanwen Han Yunkun Han. "BayeSED: A General Ap- proach to Fitting the Spectral Energy Distribution of Galaxies". In: ApJS 215.2 (2014). doi: 10.1088/0067-0049/215/1/2.

[45] Nobubiro: Finoguenov Alexis: Smith Graham P.: Piffaretti-Rocco: Valdamini Riccardo: Babul Arif: Evrard August E.: Mazzotta Pasquale: Sanderson Alas-tair J. R.: Marrone Daniel P. Zhang Yu-Ying: Ok- abe. "LoCuSS: A Comparison of Cluster Mass Measure- ments from XMM-Newton and Subaru—Testing Devi- ation from Hydrostatic Equilibrium and Non-thermal Pressure Support". In: The Astrophysical Journal 711.2 (2010), pp. 1033– 1043.

Extra Slids

simulated HLV skymap from First2Years

contours are deciles of probability

many backgrounds, here shown 2MASS galaxy density*

* density of 2MASS galaxies 85 to 128 Mpc Antolini+Heyl 1602:07710

Skymap Viewer coming soon to https://losc.ligo.org/s/skymapViewer/ (R.Williams, T.Boch, K.Li)

- AladinLite enables drill-down from whole-sky to arc-second resolution, including image surveys from radio to gamma-ray wavelengths.
- Visualize arbitrary astronomical catalogs in terms of observation priority , which combines knowledge from the gravitational wave detection (the sky map), with known astrophysical objects (i.e. galaxies and galaxy clusters).

Fermi (Gama-Ray)

IRAS (IR)

Name	RA	Dec	Dist	Prior	Catalog	
IC4567	234.305	43.298	81.61	1	Gravitat	
UGC09959	234.782	43.865	81.33	0.847	Gravitat	and the second second second
PGC055257	232.545	5.838	93.36	0.7886	Gravitat	
IC4564	234.113	43.519	80.67	0.7725	Gravitat	
IC4566	234.176	43.539	80.1	0.7711 0	Gravitat	
IC4562	233.988	43.493	80.62	0.7225	Gravitat	
IC4565	234.147	43.425	82.22	0.5618	Gravitat	
UGC09905	233.679	8.334	83.36	0.5475	Gravitat	
UGC09812	229.778	9.798	90.87	0.4828	Gravitat	
PGC055781	235.177	43.751	85.51	0.4419	Gravitat	
<u>NGC5926</u>	230.854	12.715	86.74	0.4099	Gravitat	
PGC055363	233.161	10.453	85.28	0.3995	Gravitat	
UGC09794	229.045	10.51	90.72	0.3929	Gravitat	
SDSSJ153232.46	233.135	8.765	93.93	0.3433	Gravitat	
IC1118	231.248	13.445	94.22	0.3301	Gravitat	
PGC055042	231.286	12.883	98.42	0.3243	Gravitat	
PGC1350230	231.456	8.611	85.83	0.3232	Gravitat	
<u>IC4562A</u>	234.012	43.503	81.61	0.323	Gravitat	
PGC1375780	232.146	10.181	93.21	0.3213	Gravitat	
2MASXJ15433659	235.902	43.98	86.19	0.31	Gravitat	
PGC054822	230.403	11.257	90.15	0.2874	Gravitat	
PGC054844	230.486	10.568	90.21	0.2847	Gravitat	
PGC054946	230.842	12.693	91.54	0.2811	Gravitat	
NGC5947	232.652	42.717	84.35	0.2697	Gravitat	
PGC054675	229.778	9.775	90.56	0.2631	Gravitat	
PGC054729	230.072	12.455	93	0.261 Gra	avitat	
PGC2231045	234.843	43.866	81.71	0.2487	Gravitat	
PGC055349	233.077	-2.822	97.86	0.2414	Gravitat	and the state
PGC091459	233.653	43.039	87.28	0.2393	Gravitat	
UGC09890	233.136	41.98	85.56	0.2372	Gravitat	
<u>UGC10070</u>	237.803	47.255	84.86	0.2361	Gravitat	
PGC055051	231.339	13.73	93.37	0.2337	Gravitat	

- Galaxy Stellar Mass Estimation
- Method 1: Using B band photometry data to estimate galaxy stellar mass:

Assumption: all stars in galaxies have the same mass-to-light ratio of the Sun *Input: apparent B band magnitude, redshift (z)*

$$m_B - M_B = 5 \log(d) - 5$$
$$L_B = \frac{L_{B\odot}}{10^{0.4(M_B - M_B\odot)}}$$
$$M_g \cong L_B * \frac{M_{\odot}}{L_{B\odot}}$$

 $M_{B\odot}$ =5.48 mag (absolute magnitude of the Sun in B band) $L_{B\odot}=\frac{3 \times 10^{33} erg}{s}$ (B band luminosity of the Sun) $M_{\odot}=1.989 \times 10^{30} kg$ (mass of the Sun)

 $Output: galaxy stellar mass M_g$

Galaxy Stellar Mass Estimation

Method 3: Using W1-W2 band photometry data

The W1 band $(3.4 \ \mu m)$ of WISE survey is dominated by the light from old stars and can be used as an effective measure of stellar mass (Jarrett et al. 2013).

Input: W1, W2, redshift

$$\log\left(\frac{M_{stellar}}{L_{W1}}\right) = -1.96(W_1 - W_2) - 0.03$$
$$L_{W1}(L_{\odot}) = 10^{-0.4(M - M_{Sun})}$$

 $-M_{Sun} = 3.24$ -M: W_1 band absolute magnitude - $W_1 - W_2$: rest frame color

Output: galaxy stellar mass M_{stellar}

Galaxy Stellar Mass Estimation

- GLADE-2MASS catalog (548,876 galaxys): B, J, H, K band magnitude and redshift
- Evolutionary population synthesis model library: Bruzual Charlot (2003) (BC2003)
- IMF (Initial Mass Function) adopted: Chabrier (2003)
- SFHs (Star Formation History) of galaxies: $SFR \propto e^{t/\tau}$
 - t: the time since the start of star formation
 - τ : the e-folding star formation timescale
- Dust attenuation:
 - A uniform dust screen
 - Dust extinction law adopted: Calzetti et al. (2000)
- BC2003 parameter grid:

$$- \log\left(\frac{\tau}{yr}\right) \in [6.5, 11], step \ size = 0.1 \ yr$$

$$-\log\left(\frac{t}{vr}\right) \in [7.0, 10.1], step \ size = 0.05 \ yr$$

- $Av \in [0, 4], step size = 0.2$
- Metallicity $\in \{0.004, 0.008, 0.02, 0.05\}$
- 243,434 model SEDs in the library, which we used to compare with observed galaxy SEDs in GLADE-2MASS.

- Comparison between GLADE-2MASS (SED fitting method) and S82-MGC
- Cross-matching GLADE-2MASS and S82-MGC using best search radius (0.0005 deg)
- Compare stellar mass of the same group of galaxies both estimated by using SED fitting but using different data from two catalogs.

- Stellar mass comparison between galaxy catalogs
- Comparison between WISExSCOS (W1-W2 method) and S82-MGC
- Cross-matching WISExSCOS and S82-MGC using best search radius (~0.01 deg)
- Compare stellar mass of the same group of galaxies (74,403) estimated by using W1-W2 method and SED fitting method

S82-MGC galaxy stellar mass using SED fitting (1e+14 Msun)

 10^{-1}

Galaxy Cluster Stellar Mass Estimation

- Method 1: Using galaxy richness of a cluster(Optical)
- Estimate galaxy cluster mass using the stacked velocity dispersion- richness relation derived from MacBCG catalog data (Koester et al. 2007)

Input: R_{200} , N_{200}

 $-R_{200}$: the radius inside which the average density is 200 * critical density(z) $-N_{200}$: the number of galaxies enclosed by the R_{200} circle

$$\ln \sigma(N_{200}) = (5.52 \pm 0.04) + (0.31 \pm 0.01) \ln(N_{200})$$
$$M_{200} = \frac{5R_{200} * \sigma(N_{200})^2}{G} \text{ (Virial theorem)}$$

 $-\sigma(N_{200})$: the stacked velocity dispersion at R_{200} (dynamical cluster radius)

Output: galaxy cluster mass

Metallicity Estimation

- For all GLADE-2MASS galaxies, metallicities are estimated together with stellar mass using the BayeSED.
- Metallicities of WISExSCOS galaxies, on the other hand, are derived from stellar mass using the empirical mass-metallicity relation:

Assumption: metallicity of a galaxy is uniform and equals to the mean metallicity of the star forming gas in the galaxy.

Input: galaxy mass (M_{gal}) , redshift (z)

$$\log\left(\frac{Z_{gas}}{Z_{sun}}\right) = 0.35 \left[\log(M_{gal}) - 10\right] + 0.93e^{-0.43z} - 1.05$$

Output: galaxy metallicity (Z_{gas})

The mass-metallicity relation comes from high-resolution cosmological simulation suite FIRE , and it agrees with both gas and stellar metallicity measurements observed at low redshifts for $10^4 < M_{gal} < 10^{11} M_{\odot}$, as well as the data at higher redshifts.

