

Gravitational Waves from the First Observing Run of the advanced LIGO

Hyung Mok Lee Seoul National University

on behalf LIGO-Virgo Collaboration

Contents

- The Observing Runs of the advanced LIGO
- Two GW events and one candidate
 - GW 150914/GW151226
 - LVT151012
- Implications
 - Background Gravitational Waves
 - Binary Black Holes
- Prospects

💽 한국 중력파 연구 협력단

The 1st Observing Run

- September 12, 2015 January 19, 2016
- Total coincidence analysis time: 51.5 days
- Total coincidence analysis time after removing noisy data: 48.6 days (~38%)
- Two analysis pipelines: PyCBC and GstLAL
 - PyCBC analysis: 46.1 days
 - GstLAL analysis: 48.3 days

GW Events from O1 (arXiv1606.0485)

- GW150914 (>5.3σ)
- LVT151012
 (Candidate, 1.7σ)
- GW151226 (>5.3σ)

LIGO-G16

Significance of the events

((O))VIRGD

Derived parameters of the events

Event	GW150914	GW151226	LVT151012
Signal-to-noise ratio ρ	23.7	13.0	9.7
False alarm rate FAR/yr ⁻¹	$< 6.0 imes 10^{-7}$	$< 6.0 imes 10^{-7}$	0.37
p-value	$7.5 imes10^{-8}$	$7.5 imes 10^{-8}$	0.045
Significance	$> 5.3 \sigma$	$> 5.3 \sigma$	1.7σ
Primary mass $m_1^{\text{source}}/M_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
Secondary mass $m_2^{\text{source}}/M_{\odot}$	$29.1^{+3.7}_{-4.4}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}
Chirp mass $\mathcal{M}^{\text{source}}/M_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$
Total mass $M^{\text{source}}/M_{\odot}$	$65.3^{+4.1}_{-3.4}$	$21.8^{+5.9}_{-1.7}$	37^{+13}_{-4}

Event	GW150914	GW151226	LVT151012
Effective inspiral spin Xeff	$-0.06\substack{+0.14\\-0.14}$	$0.21\substack{+0.20 \\ -0.10}$	$0.0^{+0.3}_{-0.2}$
Final mass $M_{\rm f}^{\rm source}/{\rm M}_{\odot}$	$62.3^{+3.7}_{-3.1}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}
Final spin <i>a</i> f	$0.68\substack{+0.05\\-0.06}$	$0.74\substack{+0.06\\-0.06}$	$0.66\substack{+0.09\\-0.10}$
Radiated energy $E_{rad}/(M_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0\substack{+0.1 \\ -0.2}$	$1.5^{+0.3}_{-0.4}$
Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} imes 10^{56}$	$3.1^{+0.8}_{-1.8} imes 10^{56}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	420^{+150}_{-180}	440^{+180}_{-190}	$1000\substack{+500\\-500}$
Source redshift z	$0.09\substack{+0.03\\-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20\substack{+0.09\\-0.09}$
Sky localization $\Delta\Omega/deg^2$	230	850	1600

LSC

LIGO Scientific Collaboration

Posterior probability densities

Abbott et al., arXiv:1606.04856v1

une 24-25, 2016

What O1 results tell us? (Abbott et al., 2016, ApJL, 828, L22; Abbott et al., arXiv:1606.04856v1)

- Existence of stellar mass black holes in binaries
- Individual masses in wide range (7-35 Msun)
- How often BH merger takes place?
 - 9-240 yr⁻¹ Gpc⁻¹

GW background

• Incoherent superposition of merging BH could generate stochastic GW background

$$\Omega_{GW}(f) \equiv \frac{f}{\rho_c} \frac{d\rho_{GW}}{df}$$

- Consider a BBH of class k with parameters θ_k merge at a rate $R_m(z; \theta_k)$ per unit comoving volume, then Ω_{GW} can be obtained by $\Omega_{GW}(f) \equiv \frac{f}{\rho_c H_0} \int_0^\infty dz \frac{R_m(z, \theta_k) \frac{dE_{GW}}{df_s}(f_s, \theta_k)}{(1+z)E(\Omega_M, \Omega_A, z)}$
- $E(\Omega_M, \Omega_\Lambda, z)$ captures the dependence of comoving volume on *z*.
- Fiducial model based on GW150914: mass, rates, spin, etc. and

$$R = 16 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$$

- Expected sensitivity of LIGO and Virgo detectors to the fiducial model based on GW150914 mass
 - 33% coincidence for O1 and 50% for all other runs
- The estimation of Ω_{GW} does not change significantly with GW151226.

LIGO-G1601362

Low-frequency detector and GW150914

Summary

- GW150914:
 - First Unambiguous detection of stellar mass black holes and a BH binary
 - Accurate measurement of black hole masses (within $\sim 10\%$)
 - Higher mass of stellar mass BH than previously thought: low metallicity environment?
- GW151226:
 - Lower masses than GW150914, similar to the X-ray binary BH mass
 - Lower mass progenitor or high metallicity environment?
- Origin
 - Isolated or dynamical?

Prospects

- O2 (from September 2016)
 ~ 6 months
- O3: 2017, ~9 Months
- More detections will follow in the upcoming runs
- Accumulation of BBH events will enable us to constrain formation models

