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Interferometer control
√ Interferometer control ≈ commissioning.
√ Important for getting the interferometer ready.  
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Interferometer control
√ Interferometer control ≈ commissioning.
√ Important for getting the interferometer ready.  
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Why control?
We often choose nonlinear devices for
high sensitivity (e.g. Interferometer, TES, etc.)

Quantity
you desire to 
measure

Measurable
quantity

Steep = high sensitivity
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The range is on the order of 1 nm for lengths.
whereas seismic noise can be ~ 1000 nm.

Optical
distances [m]

Interferometric 
sensors [V or W or A]

~1 nm

Why control?
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Control is essential
To stay within the sensitive region.

Quantity
you desire to 
measure

Measurable
quantity

Actuation!
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Lock Acquisition
brings the system to the linear range.

But I am NOT going to talk about this today.

Quantity
you desire to 
measure

Measurable
quantity
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Experimental Challenges

⧯ Lock acquisition
⧯ Long run
⧯ Automation
⧯ Alignment control
⧯ Tidal effect
⧯ Thermal lensing
⧯ Opto-mechanical instab.
⧯ etc

⧯ Control noise
⧯ Cross couplings
⧯ Nonlinear noise
⧯ Electronics noise
⧯ Scattering noise
⧯ etc

ROBUSTNESS! LOW-NOISE!

High duty cycle High binary range
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ISC is exciting
Optics
(Lasers, interferometry)

Electronics
(Digital, analog, RF/Audio)

Mechanics
(Suspension, Seismic)

Interferometer
control

ISC is the integration of (almost) 
all the subsystems
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My talk plan
Part 1:

Review of the aLIGO ISC scheme 

Part 2:
Some difficulties / subtleties
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My talk plan
Part 1:

Review of the aLIGO ISC scheme. 

Part 2:
Some difficulties / subtleties 
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the (simplified) interferometer

Power-recycling  
mirror

Signal-
recycling 

mirror

Beam
splitter

High power laser
~125 W (1064nm)

4 km long Fabry-Perot cavity

Output mode
cleaner

Photo
detector

GW signals!

vacuum 
envelopes

close to 1 MW
circulating laser power
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Resonant conditions

GW signals!
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5 degrees of freedom
Reflection port

Pick-off port

Antisymmetric port

= Demodulator for !m1

= Photodetector

= Electro-optic-modulator

Ly

Lx

Laser

Output Mode 
Cleaner

ly

lx

(rp , tp ) l'p

l's

(rs , ts )

(ri , ti ) re

= Demodulator for !m2

!m1 !m2

DARM = (Lx - Ly)/2
CARM = (Lx +Ly)/2
MICH = (lx-ly)/2
PRCL = lp' 
              + (lx+ly)/2
SRCL = ls'
              + (lx+ly)/2
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Pound-Drever-Hall
⧯ Basic for sensing the length degrees of freedom
⧯ A heterodyne scheme
⧯ Phase modulation creates RF sidebands
⧯ RF sidebands behave differently than the carrier light does [1]
⧯ One serves as local oscillator field. 
   the other serves as probe field [2]

carrier
(probe field)RF sidebands

(local oscillator field)

* in the case of single arm
[1] E. Black, Am. J. Phys. 69, 79 (2001)
[2] M. Regehr, Thesis, Caltech (1995) 

EOM

length signal
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Sensing the length
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Sensing the length

phase fronts phase fronts
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Sensing the length

phase fronts phase fronts

It is the phase shift that carries 
the length information
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Sensing the length
Now, phase shift with respect to what?
Here comes RF sidebands.

phase fronts
of RF sidebands

RF sideband(s)

RF sidebands
are not resonant
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It is just a heterodyne
Input field

Reflected field

Obserbed intensity

RF sidebands

RF sidebands
are off resonance

carrier

reflected
carrier

optical phase (length)



We are here

21
5721

Actuators

Electro static
 actuator

Quad suspension Actuator transfer function
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topology
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LSC signals are made of

CARM (REFL9I)

PRCL (POP9I)

DARM (OMC)

SRCL (POP45I)

MICH (POP45Q)

local oscillator
field

probe 
field

carrier

9MHz SB

45MHz SB

Length DOF
(sensor)

[6] R.Abbott, et al., LIGO-T1000298-v2

carrier

carrier

9MHz SBcarrier

carrier

carrier 45MHz SB
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We are here
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Angular control
Has two main purposes.

 1. maintain high cavity power
  => wave front sensors

 2. maintain a pointing
  => DC quadrant photo detectors (QPDs)
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Wave front sensing
⧯ Similarly to LSC, a heterodyne readout is used.
⧯ Shares the same RF sidebands with length sensing
⧯ Senses the wavefront tilt (not translation)
    => Multi-pixel Pound-Drever-Hall technique.
⧯  Careful choice of Gouy phase is a key to sense
    all the degrees of freedom.

EOM

RF quadrant
photodetector

* only one of four 
demodulators is shown
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Wave front sensing
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Wave front sensing

phase advance

phase retardation

RF quadrant
photodetector
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Mathematical treatment

1 2

3 4

Reflected field (over simplified)

Observed intensity

Extraction of wave front tilt

carrier RF sidebands wave front tilt

⧯ Expansion by the Hermite-Gaussian modes 
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WFS location
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topology (ASC)
⧯ ASC signal decomposition is done by linear 
   combination of the WFSs.
⧯ Below is an example from LHO 
   (not up-to-date)
⧯ REFL_A9I + REFL_9BI  => IM4 (input mirror)
⧯ 0.5 REFL_A9I + 0.5 REFL_9BI
    0.8 REFL_A45I + 0.8 REFL_B45I => PR3 (power recycling cavity)
⧯ REFL_A9I + REFL_9BI => common hard (arm cavities)
⧯ AS_A45Q => differential hard (arm cavities)
⧯ AS36_AQ + AS36_BI => SRM (signal recycling cavity)
⧯ AS36_BQ => beam splitter

L.Barsotti, G1500741
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Beam pointing
Beam pointing (or spot positions) is the other 
degrees of freedom that can be controlled.

Different spot positions => different cavity losses
We use DC QPDs and not RF QPDs.

DC QPD

DC QPD
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Pointing control

PRM
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PR2

ITMY

BS
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SR2 
pointing 
control
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Mode matching control
⧯ The second order HOMs = mode mismatch.
⧯ TCS (Thermal compensation system) is used to 
     compensate for the thermal lensing.

⧯ No feedback system is employed as of now.
⧯ LHO is attempting a feedforward control, based on the laser 
   power we send in.

CO2 laser

ring heater
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The talk plan
Part 1:

Review of the aLIGO ISC scheme. 

Part 2:
Some difficulties / subtleties 



37
5737

Dark side of ISC

1. Alignment sensing and control
2. Opto-mechanical instabilities
    * parametric instabilities.
    * angular instabilities.
3. SRC mode hop.

One would think control of LIGO is well 
established. Not really!
There are some subtitles that need 
further investigations 
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Alignment is not easy
⧯ Multiple input and multiple output system.
 * gain hierarchy,
 * cross talks,

⧯ Mechanical responses change as function of the
circulating laser power due to radiation pressure toque.

 => Every time changing the laser power, ASC has to be 
      revised and re-tuned.
⧯ Diagnostic is tedious due to slow bandwidth.
⧯ Power recycling gain changes as a function of
   beam pointing.
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Radiation pressure torque

Diagram: J.A.Sidles and D.Sigg, Phys. Letters A, 354,3,167 (2006)

⧯ Radiation pressure links
  two test masses (mirrors)

⧯ The mechanical response
  gets modified.
  
⧯ This complicates the control
   loop designs.
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Radiation pressure torque
Optical torque

g: g-factor, L: length. 
P:circulating power

Eq. of motion for mirror angle

This causes a normal mode split.
One mode stiffens the mechanical torque 
(HARD), while the other diminishes it (SOFT).

optical torque
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Alignment control
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2W model
2W measurement
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10W measurement
20W model
20W measurement

⧯  One of the HARD modes (Differential HARD) as an example.

2W 10W

20W

open loop transfer function
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Power recycling gain
⧯ Power recycling gain decreases for unknown reason as we increase the 
     laser power (2 -> 50 W). 
⧯  It recovers by changing the beam spot positions. Under investigation.

34

24

42

Time [sec] 3000

increasing power to 40 W re-adjusting
beam spot positions

S.Dwyer, LHO alog 28498
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Opto-Mechanical instabilities



44
5744

Parametric Instabilities
⧯ Mechanical modes of the test masses couple
  to particular spatial mode of the laser field [1]
⧯ Some modes can be unstable (it grows forever)
⧯ LLO first saw an unstable mode at 25 W [2] and then
    LHO as well.

⧯ An active damping 
 is being commissioned.

[1] M.Evans et al.,Phys.Letters A, 374 665 (2010)
[2] M.Evans et al., arXiv:1502.06058 (2015)
[3] J.Miller et al., Phys.Letters A, 375 3 788 (2010)

R.X.Adhikari, Rev Mod Phys 86(1) 121 (2014)
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How many modes to expect?
32 modes in the worst case.
What is the best strategy?

M.Evans et al.,Phys.Letters A, 374 665 (2010)
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Angular instability
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⧯ Hanford has seen an 
  instability driven by
  radiation pressure.

⧯ The instability caused
   lockless many times.

⧯ Being addressed by a 
  new arm power 
  stabilization control.
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Instability in Cartoon

radiation
pressure
force

force
to angle
coupling

angle to
cavity power
coupling

Quad. sus.

quad cartoon by M.Barton
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Possible mitigations

laser power 
control

minimize
this

(local ) oplev
damping



49
5749

Mode hop
https://alog.ligo-wa.caltech.edu/aLOG/uploads/
14508_20141017190858_AS_hopping.avi

ideal mode wrong mode

https://alog.ligo-wa.caltech.edu/aLOG/uploads/14508_20141017190858_AS_hopping.avi
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Simulation 
misalignment 
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Some notes

Addition of an artificial offset to error point.
= > It pushes the operating point further away from 
      the secondary zero crossing.

This has been seen only at LHO.
=> recently LLO started seeing a similar effect.
=> indication of curvature difference?

A mitigation

A long standing mystery

Should we redesign SRC Gouy-phase?
To make the SRCL less sensitive to alignment?
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some comments on LIGO-India ISC
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Some (random) thoughts
⧯ Hardware are identical.
⧯ Simulations, measurement tools 
   (scripts) need some more man power.
⧯ Control scheme/topology is established.
   No need to explore?
⧯ Some instabilities are already known 
   and addressed. 
⧯ But be prepared -- ISC is often an
   iterative process.



54
5754

It is users
⧯ Hardware and software require 
   knowledgeable users.
⧯ It is the users (commissioners) who 
   pushes the commissioning activities and 
   not hardware or software.
⧯ Getting some students/postdocs trained 
   at the LIGO sites is always a good idea.
⧯ Also, a prototype interferometer
   in India may be a good training place,
   if made somewhat similar to LIGO.
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Summary
⧯ Interferometer control is essential to 
   keep the high sensitivity.
⧯ Length and angular control are 
   important for maintaining resonance.
⧯ Opto-mechanical instabilities need some
   attention as we go higher power.
⧯ No show-stopper so far. 
   Some site-specific problems might 
    happen.
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Control topology (common) 
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Control topology (diff.) 
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