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1 Perturbation Theory

We have a 1-parameter family of geometries, described by

— (0) dgab )‘72 d2-gab 3
)\2
= 90" + M) + iy + O (1.2)

(0)

For our purposes at the moment, g, 0
Schwarzschild or Kerr), and hg)) = %

is the background Ricci-flat spacetime (corresponding to

is the first order metric perturbation.

2 Connection on a Background

We have the difference of connections, where V((l)‘) is compatible with the metric gbco‘):
(VY = V)b = Ch o (2.1)
(VY = VO, = ~Ceyon (2.2)

where Cf, is a function of .
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Therefore, from 0 = Vg ", we have two identities:

P A 0 (A 0
ab = 59 d(/\) (va(o)gdb( ) Vb( )gad( : Vd( )gab( )> (2.3)
1 1
C - 59 ( ) (8"‘gdb(>\) + 8l’-gctd(>\) - 6Cl-gtiLl)(>\)) B 5g6d(0) (aagdb(()) + ab-gacl([)) - adgab(0)> (24)
For notational convenience let @a = Va(o) and V, = Va()‘). The Riemann curvature tensor is
R wq = [V, Viwe (2.5)
= V wac — (a > b) (2.6)
a(Vpwe) — aWe) wad (a <> D) (2.7)
=V, (wac — Cbcwd) — Cac(wad — Cpwe) — (a <> b) (2.8)
= VoV — VaCihwi — Ol awa=CloVpwq + CLChywoe — (a ¢ b) (2.9)
=V, @ ywe — ViaCifwa + Cfu Chigwe (2.10)
_ (Rdabc( ) VGl + Cj[aog]e> wa (2.11)
— | Ry’ = Rop0) = ViaCile + CaCile (2.12)
3 Linearized Einstein Operator (possibly Lichnerowicz)
Let V, = Va(o) and gy = gabo‘) unless otherwise specified.
1 - - -
= 50" (Vagdb + VoGad — Vdgab) (3.1)
c, =0 (3.2)
— ¢, = O()\) (3.3)
o )\ 40 (mhdb + Vohyy — @dhab) + O (3.4)
We have
Rabcd = Rabc 0) — v[accﬁ + O(/\Q) (35)
— R, =R, — v[ac] + O(\?) (3.6)
=R, -2 L7\g#e© (VaVaheo + VaVehg = VaVehg, — (a ¢ d)) + O(?) (3.7)
1 - - - - -
= R," = 5\ ([va, V9 hee + VaVeh = VoV chge = VaVohy, + vdvdhac) +0(\)  (38)
1 - - - .
Rye = Ry = 5\ (vavch — VNV ahgye + vdvdhac) + OO (3.9)

where we have V, and hgp raised and lowered (and traced) by the background metric QCd(o)'
Furthermore, we have

R=g"R,, (3.10)
= (g°® _ \pe)R,,©) — 2)\ g0 (VaVeh = VoV (b, + VaVhy, ) + 003 (3.11)
= RO — \peeR, O — §>\ (VaVoh = 259 e + VaV?h) + O(X2) (3.12)
R= RO =X (1R, 0 + VyVIh = VVhg) + O(?) (3.13)




Therefore the linearized Einstein tensor is

Gay =Rap — %R.gab (3.14)
=R, - %A (@ﬁbh A ?Ndha,,) (3.15)

- %(gab“” + Migp) [Rw) .\ (thRcd(O) + VaVih — @C@dhcd)] + 0O\ (3.16)
-G, - %AthR@) + %)\gab(o)thRcd(O) - %)\ (VaVih = VoV by, + VaVhy) (3.17)

+ %)\gab(o) (thRcd(O) + VaVoh — @C@dhcd) + 0O\ (3.18)

If we have a Ricci-flat background, R, d(o) =0

1 /. . . o o .
Gap = =37 (VaVoh = V¥l + VaVhap = 9, O VaVh + 9, OV he, ) + 003 | (3.19)

which agrees with the Fierz-Pauli equation for massless spin-2 bosons in a Minkowski background.
We can also note that AV, = AV, + O()\?), so

1
Gap = =5 (vavbh — VV(ahpye + VaVhay — 9, VaVih + gabvcvdhcd) +0O(\) (3.20)

4 Gauge conditions

4.1 Covariant Derivative Commutator derivation

Given that Wa, @b]wc = —Rdcab(o)wd, we have
[Va, Vo] (heav?) = b(O)(hedUd) (4.1)
Vo Viheav® + W + heaVa Vv — (a ¢ b) = =R, O (hegv?) (4.2)
[V, Volheav® + hee[Va, VoJo® = =R, (heqv?) (4.3)
Vo, Volheav® + hee R 5, Ov? = —R cab(o)hedvd (4.4)
Va, Vilhea = =R, 0, Ohea — R, O hee | (4.5)




4.2 Lorenz Gauge of the Trace-reverse of Metric Perturbation

In Lorenz gauge, 0 = @“ﬁab = @ahab — % gab@‘lh in 3 + 1 dimensions with a Ricci-flat background

Can = A (Va¥sh = V¥ by, + VaFhy, — 0, Va4 gaﬁcﬁdhcd) +0(\) (4.6)
%A <€ Vih = VoV ol + VaVahy, — 9 VaVoh + g W VE(geaV h)> +0(\?) (4.7)
%/\ (@N h = VYV oy + VaVihy, 2gab€ﬁdh> +0(\?) (4.8)
%/\ (aFoh =TT by, — b+ TaVhs) + O(N) (4.9)
%)\ (@ Vyh — V¢V (hbe + ; gbeh> — VY, <h + ;gaeh> + @dﬁdﬁab> + 0O\ (4.10)
-5 (@ﬁ VT — 290 TV, — 2T+ @d@dhab) Lo0y @)
%/\ (~9°F e + Ta¥hs) + ON) (4.12)
%/\ (- ( Ve, Falle + (@ 5)) + Thyy) +O(2) (4.13)
%/\( g (— By e = Reea Ol + (@ 3 1)) + Ohgy ) + O(N2) (4.14)
%)\(4‘( Rte Of 4 pic _bd+(a<—>b) )+O (02) (4.15)

Gap = %)\ (28,7, Ohea + Ol ) + ON2) (4.16)

Note that for WLP gauge that we choose later, h = 0, 50 hap = hap.

4.3 Infinitesimal Gauge Transformation

We see that infinitesimal diffeomorphism z% 2/ = 27 + /f“l, is equivalent to an infinitesimal gauge
transformation of the metric at linear order:

o) 9" () (.17)
ra’ x/b'

- %9;8(% g% () (4.18)

= (69 4 0,67 (87 + Opr" ) g™ () (4.19)

= (02f + 6% 00" + 0”8} + O(12)) 4(x) (4.20)

= g% (2) + 8V kY + 0¥ KY + O(K?) (4.21)

Therefore for first order perturbations, h, hab—i-V((zo)f@b—i-Vl()O)ﬁa is a gauge transformation for arbitrary
infinitesimal covector field k.

We see that for the 10 components of hyp, we have 4 gauge degrees of freedom. The remaining 6 are
2 propagating degrees of freedom and 4 static components.



5 Decoupling Limit of Scalar field

The action for an interacting scalar field (e.g. dynamical Chern-Simons) is

/ d*z/—g pR — fa 00°0 + €Ling (5.1)

Imposing the principle of stationary action,
0=01 (5.2)
= / {5F n;pR — 78 00"0 + €Lint | + /—9g0 ]%R — 78 000 + €Lint }d4a: (5.3)
/ d*z/—g {—;gabégab pR — %a 00°0 + €Ling | + ”;’%53 +6 [—;aceaca + eﬁint] } (5.4)

2

/ d*z/—g {—1gab(59ab pR— fa 000 + eLing | + 2 Ropbg™ — 5(606609) +5[e£im]} (5.5)

2 2
2
= /d%c«/—gdgab {sz <Rab — ;gabR) — %gab [—;3695’09 + 6£int:| (5.6)
1 0 . 0 4 506(0:00°0) O Lint
T 954 (g°“0.0040) + 6gab(€£1nt>} /d x/— { 50 06 + ¢ 50 56 (5.7)
2
= /d4x\/—gdgab %Gab — 1gab —1809800 + eLing | — 1(52(5 00040 + € OLint (5.8)
2 2 2 2 5gb
/ d*z/—g < — 060790 5 1 (OLint 5 (5.9)
o0 00
4 ab ), 2 1 0 Lint
= 5 d*z/—g6g™ ¢ myGap — 8 00,0 — gaba ok 0 + €LintGap + 2€ 5g (5.10)
+/d4m59{+60(\/—gv09) +ev/— Mmt} (5.11)
1 4 ab 2 5£1nt
0= 3 d*x\/—gdg® { myGap — 8 00,60 — gaba 00° 9 + €LintGab + 2€ 5g% (5.12)
4 c 6£1nt
+ [ d*x\/—gd0 ¢ +VV 0 + € 50 (5.13)
Therefore our equations of motion are:
1m 1
2 2Glap + €Lintgap + 26‘;2 b = 9,00,0 — 59ab0c00°0 (5.14)
6C’ab Tab(e)
6£int
00 = —¢ 50 (5.15)
S




We have the perturbative expansion from a Ricci-flat, scalarless background:

0 =0+ + %89@ +0(%)

1 .
Gab = gab(o) + ehab(l) + 562hab(2) + O(e%)

Rabea = O(1)
Lint = O(¢)
S = 0O(e)
eCop = O(?)

So in the decoupling limit of € — 0,

5.1 Zeroth Order

Just the Kerr solution with no scalar.

5.2 First Order

and

)
) (0) (0) 0Lins \" _
miGL) + L9l + 2¢ <5gab> =0

1
mz%Gf;b) =0
(287,50 + 000 1, =0

where a solution is Ecd(l) =0.

5.3 Second Order

Now at O(€?) order, assuming Bcd(l) =0,

1
242 _p(1) (0) 6L\ . N1
mpGab + 6£intgab + 2e ( 5g“b ) - aa (69( )> Bb (60( )> — §gab

Be (ee<1>) o (ee<1>)

(5.16)

5.18
5.19
5.20
5.21
0.22

o e N e N o
— O~ N~ — Y Y ~—

(5.24)

(5.25)

(5.29)



which reduces to

G =my? | —eLi)gl) — 2 <f5§2}f>(1) + 20,600,001 — %Jgi‘;)aca“)ace(n (5.30)
—ecy) 7.7
s&)
= —2(12!) (2Rcadb(0) + (52(555(0)) Ecd(z) = Sﬁ) (5.31)

5.4 Third Order

We need to find 0 to second order in e:

1 8 Lin \ @
) [ Z¢29@2 ) — _ nt
O <2e 0 ) e( 50 ) (5.32)
2 (6Lins\ ¥
00 — =2 nt )
0 ~ (= (5.33)

Then we have to O(e3) order, assuming Bcd(l) =0,

\@
GW = | —e£l)g") — 2 (Mlm> + %8 (aae)@)abe(?) + 9,089,601 — g<?)ace<1>ace<2>) (5.34)

intJab 5gab a
@ T
S
1 . _
= —5a) (2r°,% 0 + 000 1, = 55 (5.35)

5.5 Observation

We see as expected, the part of each order of G acting on the solely the highest derivative of the metric
is always an operator of the form 2R* adb(o) + (52(5;)1D(0). This comes from the product of the perturbation
expansion always has the same form for tems that have a single combinatorial contribution.

[consider expanding]

6 Inner Product Space of Perturbations

A natural first attempt at an inner product of pup, ¢.q in the space of first order stationary, axisymmmetric
perturbations of a background metric ga?)) is

(p,q) = /pabqab\/g(o)dzlw (6.1)
(p,q) = / dt d¢ / Pab 95 9(0) Ged/9(0) 4 (6.2)

where raising and lowering is done by the background metric. Note that in equation (6.2]) is only true for
stationary, axisymmetric, metrics. The ¢ and ¢ integrals are always the same for all p,, and g.q, so we
can factor it out of all inner products.



6.1 Trace-reverse and the Inner Product

: = 0 0
As a reminder, p,, = pap, because (pab — % ggb)p) — % 91(11)) (p v g((zb) g&%p) = pgp and that

2 2
PGy = (Pab - dQ?S)P) (CIab — dgz(z(l]z)q> (6.3)

2 2 49

ab (0)Zab

_ a4 2 4
P = 2pa = P+ %pq (6.4)
= b (6.5)
= (p.¢) = (D,q) (6.6)

6.2 Self-Adjointness of the Linearized Einstein Operator
Reading off the form of the linearized Einstein operator G!) in Lorenz gauge from eq. ((5.28),

(p, GV[q)) =/d4w¢g(7)p“bG(l)[q]ab (6.7)
- / d'e oo ™ (28,50 + 65500 g (6.8)

/ d'z/30) (23 2O pa + pCdD(O)ch) (6.9)

/ d'z\/50) (23“ * Opapa + pO >ch) (6.10)
/d%\ﬁ <2R d ) papg” + p0© )ch) (6.11)

b (0) ( ) =0=R" bd(o) fg) And in

general, we see that the trace-reverse operator commutes with G(1), i.e. for all ¢, GO[g = GW]q].
Examining the second term of the integral, we integrate by parts twice and make use of the use the

where the last step is because we have a Ricci-flat background, so R

identity ,

[ o /5w 59T = [ o i Valo T ) ~ [ e/ Tt (6.12)
= / d*a 0y STV  Gea) — / 'z, /9(0) VaP* Ve (6.13)
- / d'z/90) V*(Vah*4ed) + / d*z/90) V*VaP“gea (6.14)
—/ d*z 0 VP qed) + /d%%@“@aﬁ:dch (6.15)

Therefore, we have
0. GVla) = [ atoae (20,0 + 52840 g™ (6.16)
= / d*z /9(0) GV )" gea (6.17)
= (GV[p],q) (6.18)

The operator G is self-adjoint with respect to this inner product.



7 Birkhoff’s Theorem

Here is a nice (full) proof of Birkhoff’s theorem. The main idea comes from Eric Poisson.[I]

7.1 Spherical Symmetry

Assuming a spherically symmetric 3 + 1 dimensional spacetime, we can choose coordinates so that the
metric has the general form:

ds® = A(t,r)dt* + B(t,r)dt dr + C(t,r)dr* + D(t,r)dQ? (7.1)

We can transform our coordinates (t,7) so that 7 becomes v/D. We choose the positive root because we
want the angular coordinates to have positive Lorentzian signature (If we choose the negative convention
our final metric change to reflect the convention change). Therefore we can always rewrite our spherically
symmetric metric as

ds®> = A(t,r)dt? + B(t,r)dt dr + C(t,r)dr® + r?dQ? (7.2)

2 areal dependence in

where we have chosen the coordinate r specifically to give the spatial 2-sphere an r
the 4-fold.

Given any A(t,r), B(t,r),C(t,r), we can transform the ¢ coordinates so that our new coordinates,
t'(t,r) and r, gives

ot ot \?
2 _ [ ¥ el
dt'” = <8t dt + 5 dr) (7.3)
o'\ 2 ot o' o'\ 2
2 _ [ YY 2 i - 2
dt'” = <8t> dt +26t 6rdtdr+ <8r> dr (7.4)
, ot
ot ot’
o'\ 2
E{',r)— D, r) (81") =C(t,r) (7.7)

Since we have three equations for three variables t'(t,r), D (t'(t,r),r),E (t'(t,r),r), the equations are
always soluble up given initial conditions. The choice of initial conditions is part of the gauge choice of
our coordinate system. Then the line element is

ds®> = D(t,r)dt? + E(t,r)dr* + r2dQ? (7.8)

We see that we have two functional degrees of freedom assuming spherical symmetry. Once the vacuum
FEinstein Field Equations are imposed, we will see that only a real valued parameter will remain as a
degree of freedom.

7.2 Vacuum Einstein Field Equations

In regions where D and E do not blow up or go to 0, we can renaming our metric degrees of freedom, in
two steps:

1
d82 e _621/1(7577")]&‘ t’ r dt2 + dT2 + ,r2dQQ 79
() ft,r) (7.9)
2 2p(t,r) 2m(t,r) 2 2m(t,r) - 2 2 7002
ds* = -V 1 — ———= | dt*+ (1 — ———= dr® + r2dS§2 (7.10)
r T

10



In complete vacuum 7%, = 0, we have that for the Einstein tensor G*,, with the help of Mathematica,

_ —20,m(t,r)

0=G" = — 5 (7.11)
r 28tm(ta T)

0=c, == (7.12)

0=G", -G = % <1 — W) opb(t, ) (7.13)

By equation (7.11)), m(t,r) = m(t) and by equation (7.12), m(t,r) = m(r). Therefore m(t,r) is a real

constant.

Now by equation , we have ¢(t,r) = ().

We can then rescale ¢ — e ¥(®¢, so that gy = — ( — 27m) and all other metric components stay the same.
Therefore the unique spherically symmetric solution to the vacuum Einstein Field equations with

A =0 is the Schwarzschild solution:

2 om\
ds? — — <1 _ m) a4 (1 _ m) dr? + r2d92 (7.14)
T T

for some coordinates with the — + ++ Lorentzian signature.

Notice we see that any spherically symmetric solution must be asymptotically flat (as r — oo) and
static (with respect to the time-like vector %); we did not impose these conditions.

Therefore, there is no gravitational monopole radiation.

7.3 Komar Mass

It turns out the Komar mass integral of the Schwarzschild solution is m, so m really does correspond to
a physical mass of the metric.

11



8 Weyl-Lewis-Papapetrou

In order to prove this we need a little machinery called Frobenius’ Theorem.

8.1 Frobenius’ Theorem

There are a few equivalent statements of Frobenius’ Theorem; while the differential form version is nice,
we use the vector field form for our current purposes. Frobenius’ Theorem is useful not only for the
proof of uniqueness of the WLP metric, but also will be used to show the integrability conditions for the
solution to the Einstein Field Equations under a WLP metric.

Without introducing to many definitions, the theorem is roughly

Theorem 8.1 In order to have a smooth sub-manifold of M that has tangent spaces coinciding with a
tangent sub-bundle W C E over M, it is necessary and sufficient for W to be involute, i.e. VX% Y* €
WX, Y]*eW.

Therefore we have the following corollary:
Corollary 8.1.1 If vector fields X® and Y® commute, with either vanishing at a point, and
X°Rrlxeyd =0 =YvY°R,Pyexd, (8.1)
then the 2-fold orthogonal to X and Y* are integrable.

The proofs are outlined in Wald[2], and may be reproduced here at a later time.

8.2 Proof of WLP

a
Given a time-like (%)a and an “azimuthal” space-like (8%) Killing vector fields for stationary axisym-

metric 1 + 3 dimensional spacetimes. Assuming these satisfy corollary the span of the other vector
fields generated by the other two coordinates (x2 and x3) are orthogonal to 9; and 93. (The first condition
of corollary is trivial, but for the second there is a possible argument based on ¢- and ¢-reversal
symmetry, but further investigation is needed.)

ds?® =V (x9, x3)dt* + 2W (29, v3)dtde + X (v2,23)d¢* + gij(w2, x3)dx'da? (8.2)

for 4,5 € {2,3}. In block matrix form, the metric is

-V W 0 0

W X 0 0
= 8.3
Jab 0 0 go2 go3 (83)

0 0 g23 gs3

Note that there are six distinct functions of x5 and x3.
We choose 29 = p = VX + W2, which is the negative of determinant of the upper 2 x 2 block. And
choose x3 = z be such that V,pV%z = 0. Redefining variables, we must have

ds? = —V(dt — wdg)? + V' p2d¢? + Q2 (dp? + Adz) (8-4)

where w = W/V, Q2 = gao, and A = g33/02.

The four functional degrees of freedom are V (p, z), w(p, z), Q(p, 2), A(p, 2).

We have made a gauge transformation to the unique Weyl-Lewis-Papapetrou coordinates for any
stationary, axisymmetric spacetime, up to univariate scaling of z.

12



9 Schwarzschild in Weyl-Lewis-Papapetrou

9.1 Schwarzschild Background

We want to describe spacetimes in with a Schwarzschild background. Therefore we expect there to exist
V=W+d§V,w=wy+ ow,Q = Qy+ 62, A = Ay + 0A, where the variables with the naught-subscripts
describe Schwarzschild background metric, and the § variables are perturbations that keep the metric
stationary and axisymmetric. Let’s solve for the Schwarzschild solution only in terms of the background
first, with no perturbations; we need to get the metric into the form:

ds? = —Vo(dt — wodg)* + Vy 1 p?de* + Q3 (dp?® + Aod2?) (9.1)

Note that at the end of our calculation, we expect to choose coordinates so that Ag = 1 because
Schwarzschild is Ricci-flat.

9.2 Motivation of WLP Coordinates

By Birkhoff’s Theorem, the Schwarzschild metric (7.14]) is axisymmetric and stationary (in fact it is
static):

2 2m\ !
ds? = — (1 - m> 2 + <1 - m) dr? + r2(d6? + sin® 0d¢?) (9.2)
r r
Therefore we should be able to write the metric in Weyl-Lewis-Papapetrou form.
We keep the time and azimuthal directions the same, as it is natural to pick % and % as our Killing
vector fields. Therefore were are transforming the spatial coordinates r and 6 only, from those that are
spherically symmetric to those cylindrically symmetric.

We identify that V=1 — 277” and wg = 0, so our metric is in the form:

ds® = —Vo(dt — wod)? + Vg~ dr® + r*(d6? + sin” §dg”) (9:3)

We see that the standard spherical to cylindrical (rsin6 — p, rcosf — z) will not suffice because the
only d¢? term in the line element will be 72 sin? 8d¢? — p?d$?, and in the WLP form, we need VO_1 prdo?.

Thus, we make our transformation Vol/ rsing p, so that r2sin® d¢? — V{l prdd?.
Our transformation is so far defined by

p= V01/2r sinf = \/r2 — 2mrsin 0 (9.4)

— dp= % sin Odr + V/*r cos 0 do (9.5)
Vo' r —_——
p

/2

We see that p = V01/27“ cos @ is the trigonometric conjugate of p = VO1 rsinf (ie. p? + p? = Vor?).

And with a clever definition of z, we have

z = (r—m)cosf (9.6)
= dz = cosfdr — (r —m)siné df
—_———

z
where Z = (r —m)sin 6 is the trignometric conjugate of z = (r —m) cos 6.

We see a good sign that vl% appears in (9.5)) and Vl% appears in (9.7)).
o T o T

13



So with this transformation:

t=t

p= Vol/Qrsinﬁ =12 —2mrsiné

z = (r—m)cosf

p=2¢

we have

dt = dt
dp = %_1/2T_12d7“ + pdz
dz = Vy PV adr — zd0
d¢ = d¢

1/2

Therefore, we have in terms of the auxiliary variables p =V},

= Zdp+pdz =V, 1/2 rN(Z2 + pH)dr

V01/2T

i dT:22+ﬁ2

(Zdp + pdz)

— pdp — 2dz = (32 + p°)db

I .
= |df = s (pdp — zdz)

Substituting into the metric,

2 pdp — 2dz)?
ds? = —Vo(dt — wod)? + Vg L p2de? +/0/r V ) 5 (Zdp + pdz)* + W
ds? = —Vo(dt — wode)? + Vg p2de® + B (Mdp + (Z2+77)d=?)
z
2
ds? = ~Vi(dt — wodd)® + Vg p?dd + + > (dpz +dz’)
We see that we’ve chosen z correctly so that Ag = 1 and
) 2 r2
07 2102 (2= 2mr 4+ m2)sin?0 + (2 — 2mr) cos? 6
2
r

(r2 — 2mr) 4+ m2sin? 0
Therefore we have for the Schwarzschild background
ds® = —Vo(dt — wodg)® + Vi ' p*de® + QF (dp® + Aod2?)

So our Weyl-Lewis-Papapetrou functional degrees of freedom are, as functions (7, 6),

V= (1—2>+5V
T

w =0+ 0w
2
0 = - 507
(r2 — 2mr) + m2sin? ¢ *
A=1+6A

14

rcosf and Z = (r —m)siné,

(9.18)

(9.19)

(9.20)

(9.21)

(9.22)

(9.23)

(9.24)

(9.25)

(9.26)
(9.27)
(9.28)

(9.29)



9.3 Coordinate Singularities of Background Schwarzschild

Despite the curvature singularity at r = 0, we have coordinate singularities when Q% — 00, i.e.

0 =72 —2mr +m?sin®0 (9.30)

0=(r—m)?—m?cos?0 (9.31)

0= (r—m+mecos@)(r —m —mcos@) (9.32)
Ry R_

With the auxiliary variables R+, we rewrite our WLP functions with the substitution r = %(RJ,— +R_+2m):

R+ +R_—2m
= 1% 9.33
R+ + R_+2m + ( )
w =0+ dw (9.34)

Ry + R_ +2m)?
QQ — ( + Q2 .

R +6 (9.35)
A=1+06A (9.36)
p? 4+ 22 = (r? — 2mr)sin® 6 + (r — m)? cos® 6 (9.37)
= (r —m)? +m?cos® 0 — m* (9.38)
= (r—m+mcosh)? —m?F 2(r — m)mcosf (9.39)
= RY —m? F2mz (9.40)
— p*+ (z£m)* = R2 (9.41)
— | Ry = \/p? + (2 £ m)? (9.42)

and thus our WLP functions are now functions of (p, z).
The coordinate singularities corresponding to R+ = 0 are now at (p, z) = (0, £m) for all ¢ and ¢.
We also have a coordinate singularity when p — 0, so all the coordinate singularities are at the line
p = 0 in the spacetime, which includes the (p, z) = (0, £m) singularity as well.

10 Mathematica for perturbations of Kerr and Schwarzschild

I was able to calculate the Einstein operator in WLP coordinates for both a Kerr and Schwarzschild
backgrounds. The Kerr solution in WLP form I used are from Jones and Wang[3]. The solutions with
the explicit coordinates are too long to reproduce here in the progress report, but the abberviated ones
are below.

10.1 Schwarzschild Background
10.2 Kerr Background

11 Bianchi Identity

11.1 General Connections

Baez and Muniain[4] outline an elegant proof of the Bianchi identity, reproduced here in detail. We will
use the the Bianchi identity to show the geometric origin of the divergencelessness of the Einstein tensor
and all possible source terms.
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Given a fiber bundle 7 : E — M and a connection D on M, for any E-valued form n = s; ® w! on

M, in local coordinates,
dhn = dp (Dys; @ dz” A da')
= D, D,s; @ da* A dx” Ada!

1
=5 [D,,, D] sy @ dat A dz” A da’

1
= §FWSI ® dzt A dz¥ A dat

=FAn

Note that the exterior covariant derivative doesn’t form a de Rham cohomology where d? = 0 because
the covariant derivative is not commutative, unlike the partial derivative. The failure to commute is the

geometric curvature.
Therefore,

dhn = dp(dhn)
=dp(F An)
:dDF/\n-i-F/\dD??

dhn = dp(dpn)
= F Adpn

— [dpF =0

In local coordinates,

1

0=dpFAn=dp <2FW ® da* A dx”) A (51 ® dl‘l)
= ~(D\Fw) ® dz* Ada# Ada” A (s; @ Ada!)
= —(DyF)sr @ dz? A dat Ada? A da!

= — (D (Fyuysr) — Fu (Dysr)) @ da* Ada# A da” A da!

=N =N RN =

~[Dy, Fu]sr ® da* A dat Ada” A da!

11
= = - = ([Dx, Fyw] + [Dy, ] + [Dy, Fyyl) st @ dat Adat A da? A da?

23
[DA’FMV] + [DM’FW\] + [DVvFAM]
D, [Dy, Dy]] + [Dy, [Dy, Dy]] + [Dy, [Dy, D,]]

[\]

= 0
0

which is in the form of the Jacobi identity.

11.2 With Riemann curvature

For our Levi-Civita connection V compatible with metric g, we have the curvature
R(u,v)w = ([Vu, Vo] — V[uw]) w,

which is just the curvature of the connection V.
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(11.12)

(11.13)
(11.14)
(11.15)
(11.16)

(11.17)

(11.18)
(11.19)

(11.20)



0= [u, [v,w] + [v, [w, ul] + [w, [u, V] (

= Vu[v,w] = V[ w)u + (vow cyc) (

= Vu(Vyw — Vyv) = Vi, u + (uvw cyc) (

= [Vu, VyJw — Vi, yw + (uvw cyc) (11.24
(
(

0= R(Vy, Vy)w + (uvw cyc)

Specifically, the Riemann curvature tensor is R%, e, = R(Vs, Vc)eq. Choose u = 04,v = Op,w = O, to
be coordinate basis vector fields.

= 0= R(Va,V1)0c + R(Vi,Ve)0s + R(Ve, Vi) (11.27)
— 0= R%,, + (abc cyc) (11.28)

From eq. (11.19)) applied to the Levi-Civita connection,

0=[Va,[Vy, Vel] + [V, [Ve, Val] + [Ve, [Va, Vi ( )

= [Va, R(Vy, V.)]eq + (abe cyc) ( )

= VaRqee — RNy Ve)Gaa + (abe cyc) (11.32)

= 0=V, R4+ (abc cyc) ( )
— 0=VaR g, + VaR.g. + (abe cyc) (11.34)

where we use eq. (11.28)) in the last step.
Contracting with the metric twice,

0= gec %+ vGb‘Redbc + (abc CyC))
0=—VaRg + VR, + VR 0

( )

( )

0=g""(=VaRy + VsRyy + V°Royup) (11.37)
0=—-V.R+ VIR, +V°R,, (11.38)

— 0=VY2R4y — giaR) ( )

2G4,

— |0 = V9Gy, (11.40)

12 The action of Einstein operator in WLP gauge: Ricci-flat

[This part was quite difficult, even for with the Ricci-flat simplification. The manipulations here are not
referenced anywhere and it took a lot of sweat and trial and error to get the following result.]

12.1 Constraint equations

From G, = 0, we have ostensibly 6 non-zero equations of motion, which correspond to Ggg, Gos, G33 and
G11,G12, Gaa.

17



From the first three, we can construct the combinations
e ((V_2 — p_2w2) Goo + 627p_2w2) Gs33 = \V/ (V_lﬁV + ,0_2V2wﬁw> (12.1)
627p_2 (wGoo + Goz) = v (,0_2‘/26111) (12.2)

where V is the gradient under the flat metric ds? = p2d¢? + dp® + dz?, not ds* = guda®da®
We have Go() = Gog = G33 =0 if and only if

0=V- <V_1§V + p_2V2wﬁw> (12.3)
0=V- (p—szﬁw) (12.4)
and the Bianchi identity VG, = 0 is satisfied.
Furthermore, we have G11 = —G99o automatically, so we are left with
0=—-Gi1 =Gy = 1 ((9,V)? = (9:V)?) — v ((Opw)? — (9.w)?) — Oy (12.5)
4V/2 p 4p2 p p2
9.y 1 %%

which are compatible because given eqgs. (12.3) and (12.4), 0,0.v = 0.0,y is true.
We have shown that there are 4 equations (2 of which are compatible) consistent with 3 metric variables
in the Ricci-flat case.

13 Non-Ricci-flat Perturbations of Ricci-flat Background

Since we know Gy = T(g) —|—€TLE;) +0O(€?) and Tél?) = 0, for sake of brevity, we use the notation T}, = 7d

a ab
so that for the order €' term, G((I? =Ty

14 Linearized Einstein Field Equations of WLP perturbations

15 2z Gauge Fixing

15.1 z+— f(2)

We have a remaining gauge freedom in WLP, z +— f(z) keeps the metric in WLP form. We need to fix
the gauge completely to perform explicit numerical calculations. The map z — f(z) changes the WLP
metric by

ds? = — V(dt — wdg)? + V! (p2d¢2 + 27(dp® + e”‘sz)) (15.1)
s — V(dt — wde)? + V! (p2d¢2 + e (dp? + e (8, f)° dz2)) (15.2)
= V(dt — wd)? + V! (p2d¢2 + €2 (dp? + 2 Flog 8Zf)dz2)) (15.3)

So the gauge freedom is

A=A+ logd. f (15.4)
= Ao+ €6\ =g + €I\ + log 0, f (15.5)

18



We first fix our gauge so that Ao = 0, so the remaining gauge freedom is, for any function G(z) that

is O(e),

0N —0A +log 0, f (15.6)
0% f

00N =00\ + = 15.7

> + o.f (15.7)
~—
G(2)

which means once we fix our gauge with G(z) completely we have the condition that
0.0\ + G(z) = H(p, 2) (15.8)

for an a priori unknown function H (p, z)
From the six original linearized EFEs, and imposing the background Wald equations we have

8p(5)\ = p(T11 — TQQ) (15.9)
— 828,35)\ = paZ(TH — ng) (15.10)

Taking the p partial derivative of eq. (15.8)) yields,

0,0.6\ = 9,H (15.11)
— 8pH = ,Oaz(Tn — TQQ) (1512)

Assuming H(p = R, z) = 0, for some R (which could be oo, we have

= H(p,z) = /RP p'0; (T(p', z) — Taz(p',2)) dp’ + C(2) (15.13)

for some arbitrary constant C(z).
But this C(z) degree of ambiguity for H(p, z) is exactly the gauge degree of freedom G(z) in eq. ((15.8))!
Therefore, we have

P ~
0.0\ = / p'0. (T (p, 2) — Toa(p', 2)) dp' + C(2) (15.14)
R

where C(z) = C(z) — G(2). )
For our numerical purposes, we can just set C'(z) = 0 to completely fix our z gauge degree of freedom.

15.2 Flat Laplacian of /)

Therefore we have explicitly, 9,0\ and 0.0\, so we can construct the flat laplacian of 6\ under the metric
ds® = pd¢? + dp? + dz?,

P p
V26 = <6;2; + Fp + 83) oA = / p'02 (Tn(Pla z) + Toa(p/, Z)) dp’ + pd, (Th1 + Toz) + 2(T11 + Tho)
(15.15)

along with the flat laplacians of §V, dw, and 6y we found earlier.

16 Dynamical Chern-Simons over Kerr Background

Solve for eom
Solve for Cyp, Ty
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17 Numerics

We use non-minimally coupled scalar to the Pontryagin-Chern density, *RR = —%e“deRabe R, def , OVer a
Kerr background.
From eq. l’ we have the equation (with the conventional coupling factor of % from [5])

1 e
7€abcdR(0) R(O) s

0)p(1) — _
E 16 abef~ cd

(17.1)

18 Maximum Principle Proof
19 Transformation to Rational-Polynomial Boyer-Lindquist Coordi-
nates

For a A\g = 0, a Ricci-flat background, the background scalar laplacian is
1 1
Vhued = Voe 2 (2 + 50, 02) £(p.5) = £ (100, + 0,1~ 40,) flr) = Vh  (19.)

Challenges
e Non-Ricci Flat case
e Express constraints in terms of perturbations and background

e Check if ADM equations are automatically satisfied or need to be constrained during the numerical
evolution.

Invert Linearized equation

Relaxation code and numerics

boundary conditions, and compactifying coordinates to bring in infinity.
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Appendices

A Miscellaneous Identities Used in Proofs

A.1 Metric
097 _ 29" 97 9pro) = 99" 9% g + g i
ag;w 89;w ag,ul/ P ag;w
ag"’pl 0g‘m/ ’ ’
= 0% + 8P, + gPP g7 6".6Y,
agwj p agwj o T9 g o' Co
dgP”  DgoP
= + — 4 g’g°"
09w Oguw
= agpa = —gp“gay
09w

A.2 Jacobi Formula

For a generic derivative operator 0

Then one can prove:
1
det A

A.3 Metric Density

, one can show the following two facts:

logdet A = trlog A

dtr F(A) = tr (JZF(A)@A)

ddet A =0logdet A =0trlog A

=tr <dil4 log A6A>
=tr (A710A)
= |0det A = det Atr (A"'0A)
= —det Atr (A(—A?)0A)
ddet A= —det Atr (A9(A™))

9ot + 977 97

’ 8gp/gf
09w

(A1)

(A.4)

Let g = det[g,,] in this context. We use our result from (A.4]). For variational derivatives w.r.t. to the

inverse metric,

]59 = —99u 09"

V=g = 5= x (=50

1
6\/j = - 5 \/jgg,uufs.qlw
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For partial derivatives,

A4

A5

0ig = 99" 0igba
1
iv—g= W fgai(_@

1
OiV/—g = 3 V=99"0igap

Connection Coefficients

7 1 ia
L= 59 (%‘1’ 0jGia —Qergi/j)

1 .
= igmajgia

; 1
Iy = %@‘9

. 1
or | I'f; = 7/jgaj\/jg

N T
P = = g% 9" (0;gar + Okgja — Dagjk)

2

o 1 . .

= 7% g0, gra — 59%” Gk
. . . . 1 .

= ¢?*0:4g"* Gra) — 9% 0; 9" G — 59“9”&19]-;@

1 . 1

= ———V—90.9" — ——9""0aV/—9g

\/jg a \/fg a
p 1 ‘
9T, = — =0 (vV=99")

Covariant Derivatives
Vﬂ) = 817) + P,L'jvj

1 - 1 )
= ——— /O + ——=08jy/— g’
=5 g = j g

T 1 N ’Ui
L
V=g

VZ"U

— | V;Vip = Di(v/—gd'®)

As a consistency check, we do the divergence of a covector field:

97Viw; = g% 0iw; — g/ Ty,

_ 1
&

1

V=997 0w; — ——0;
T Vg

Vlwi

1
-9

ﬁ

ai(\/jggijwj)

which agrees with (A.18)
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(\/jggik)wk

(A7)

(A.8)

(A.9)

(A.10)

(A.11)
(A.12)
(A.13)

(A.14)

(A.15)

(A.16)
(A.17)

(A.18)

(A.19)

(A.20)
(A.21)

(A.22)
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