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1 Introduction

1.1 Background and Motivation

Because we know general relativity is not complete, as outlined earlier in the proposal, we are on the
search for a fuller theory of gravity. From an effective field theory standpoint, UV complete theories of
gravity manifest as higher-order corrections to GR in the low energy limit. Therefore, there is a hope that
LIGO and similar experiments can detect variations from the long-standing general theory of relativity
in the strong field limit. Ultimately, in order to see the difference between pure GR and any generic
correction, we need simulate compact binary merger to determine what the characteristics effects of the
correction in experiment.

1.2 Kerr eigenfunctions

Before embarking on merger simulations, we focus on stationary and isolated, black holes, where no matter
is unmodeled. The program we are developing from ground up should be generalizable to binary black
holes and systems with modelled matter.

The Kerr solution will be the background for a family of solutions to non-minimal coupling terms
as a perturbation to the Kerr solution under the Einstein-Hilbert action. The perturbation parameter €
will parameterize the solutions of these “bumpy black holes”. The bumps can arise from corrections to
general relativity or matter itself. What is important is that we are attempting to develop a formalism
where we find eigenfunctions for the linearized Einstein tensor. This way, the analysis of bumpy black
holes can be greatly simplified and clarified.

2 Progress

I derived all the following results from the ground up in the first two weeks.

2.1 Perturbation Theory

We have a 1-parameter family of geometries, described by

dg
9,7 =9, + 2 ;lj\ +0(\?) (1)
A=0
= 9., + Mgy + O(N?) (2)

For our purposes at the moment, gab(o) is the background Ricci-flat spacetime (corresponding to
Schwarzschild or Kerr), and hgp is our metric perturbation.

2.2 Connection on a Background

(N

We have the difference of connections, where V4’ is compatible with the metric gbc()‘):

(VYY) = VIt = CB 0° (3)
(V) = VO = —Cw, (4)

where C¢; is a function of A.

Therefore, we have from 0 = Vé)‘) gab(’\), we have two identities:

c 1 c A A A
ce, = 59 d(}\) (va(O)gdb( ) + vb(O)gad( ) _ vd(o)gab( )) (5)
1 1
Cap = 59“10) (&lgdb(/\) + Obgag adgab()\)) - 598d(0) (algdb(O) + Obg00” — adgab(0)> (6)



For notational convenience let ?a = Va(o) and V, = Va(/\). The Riemann curvature tensor is

= VoViwe — (a <> b)

= Va(Viywe) — CL7300) 4 (Vywq) — (a <> b)

= Va(Vywe — Clwg) — C4 (wad — Chjwe) — (a <> b)

= VoViwe — V Cbcde"‘ Ce.Ctwe — (a <> b)
v %w — VieCifewa + Clfy Ot awe

e — ViCii. + C4, Cb]e>

— | Ry’ = R d(o) — ViCife + CuChie

2.3 Linearized Einstein Operator (possibly Lichnerowicz)

Let V, = Va(o) and gup = ¢ ab(’\) unless otherwise specified.
= 20 (Fagap + Voot — ¥
ab = 59 a9dp T VoYad dYab

Ccab(O) =0
= Oy =0(})

1 - - ~
gb = §>\ng(0) (vahdb + vbhad - vdhub) + O()\2)
We have

Rabcd = Rabcd(O) - ﬁ[acgﬁc + O()‘2)
= Ry =R, —V,C§. + 0\
1 o o o
= Ro = S2g% O (VaVihe, + VaVehg, = VaVehye = (a6 d)) + O

1 o o - o -
= Ry = 2N (Vas VIhee + VaVeh = VVehye = VaVhye + VaVhy, ) + O(N?)

c)e

1 /- - .
Rye = Ry = 5 (V,Nch — VY (oh

+ @d@dh(zc> =+ O()‘z)

where we have hg;, raised and lowered (and traced) by the background metric g°40),
Furthermore, we have

R= gaCRac

1 -~ ~ o~
— <gac(0) . Ahac)RaC(O) _ 5)\gac(O)gde(O) (vavch _ vev(ah

= RO — \p*R, (0 — %)\ (@N“h — 2V°Vh,, + @d@dh) +0(\?)

+ %Whac) +O(\2)

c)e

R=RO® _ ) <h“CRaC(0) +VVih - @C?dhcd> + O\

Therefore the linearized Einstein tensor is



1
Gap =Rap — iRgab

0 1,/g ¢ S S
=R, = 5A (VaVih = VoV iy, + VaVhy)
1 . -
= 50+ M) [RO = X (19RO + V90— VVh,) | + O

1 1
:Gab(O) _ EAhabR(O) + 5)\gab(o)hcdRCd(O)

1 ~ = ~ = ~ o~ 1 ~ = ~ o~
-5 (vavbh — VOV gy + vdvdhab) + 570" (vdvdh - chdhcd) + 0O\

If we have a Ricci-flat background, R, d(o) =0,

1 /- - _ _ _ _
Gap = =5\ (vavbh ~ VNV (ahyye + VaVihgy — 95 " VaVih + gab(o)vcvdhcd) +O(\2)

which agrees with the Fierz-Pauli equation for massless spin-2 bosons in a Minkowski background.

We can also note that \V, = AV, + O()\2), so
— _1 __ e d _ d cxrd 2
G = 2)\ VoVph =V v(ahb)e + ViVehy — g VaVeh + g, V<V, ) + O(N%)

2.4 Gauge conditions
2.4.1 Covariant Derivative Commutator derivation

Given that [V, Vj]w, = —R* b(o)wd, we have

[V, Vol (heav?) = =R, (heav?)
VaVoheat® + Vioheg VotV alogVt? + hegVaVer®? — (a < b) = —R°,_, @ (heqv)
[Va, vb]hcdv =+ hce[va’ Vb] e _ _Recab(o)(hedvd)
@aa@b ch + ceR v = *Re
[ 1h h dab() d )y, d

cab

Va, Vilhea = =R, Oheg — B,

(34)



2.4.2 Lorenz Gauge of the Trace-reverse of Metric Perturbation

In Lorenz gauge, 0 = @“ﬁab = @ahab — % gab@‘lh in 3 + 1 dimensions with a Ricci-flat background

Gap = —%)\ VaVih = VoV (ahyye + VaVhay, — 9y VaVeh + gaﬁc@dhcd) +0(N) (40)
:_?< VaViyh — vwmw+vwhwﬂmWVh+gﬁvam)+mV) (41)
%)\ (ﬁﬁ h = VY (ahyy + VaVehy, QQGNN%) +O(N) (42)

= M (VuToh = VT, — TV, + VaThy ) + OO (43)
= (TaFh = 9 (R + ) = 99 (R G} + TR ) + OO (4
=—2) (@ﬁ Ve~ 5 VoVah — VT, — 5 VaToh + @d@dhab> LoM?)  (45)
%A( VT (alye + V¥ ) + O(N2) (46)
%)\ < g ( Vallye + (a < b)) - iﬁab) +0(\?) (47)
= (o ( ooVt = Bea@hpg + (0 65 8)) + Ohgy) + O(N?) (45)
%)\ (+ ( RYC Oh 4 BRI OR 4 (a b)) +0h,, ) + O(\2) (49)

Gap = — %A( R4 %,y + Oh, )+0u% (50)

2.4.3 Infinitesimal Gauge Transformation

We see that infinitesimal diffeomorphism z¢ 2% = 29 4 k%, is equivalent to an infinitesimal gauge
transformation of the metric at linear order:

9" (x) = g (2') (51)

ral o gt
ox'™ 0z

= 5 a9 @) (52)
= (89 + 0,k (08 + Dpr? ) g™ (a) (53)
( '8 4 68 Dy + Dk 6 + O(k )) 9%(z) (54)

= g"%(2) + 07 kY + 0" K7 + O(K?) (55)

Therefore for first order perturbations, h hab+V((10)/€b+V,()0)na is a gauge transformation for arbitrary
infinitesimal covector field k.



2.5 Decoupling Limit of dCS

The action is

I= / d*z\/—g
Imposing the principle of stationary action,
0=101
m?
_ / {5\5 PR L 900070 + Lo

m2 1
_Pp_ - C
5 R 28698 0

1
= /d4x\/jg{_2gab59ab

m2 1
_Pp_ - C
5 R 28698 0

1
= / d4mx/—g{—29ab59“b

+v/—=gd

M Lo 0000 4 e
7 _5 a + €Lint

+ Eﬁint

+ Eﬁint

m2

pR - 78 00°0 + eLint

2

2

m2 1 1 1
= /d4$\/ _g(sgab {21) (Rab - gabR> — 59ab [_2606669 + 6Ein‘c:|

2 2

19

m2 1
= /d43«"\/_7959ab {;Gab 3

/d%«r{ O 069 % 50+ ¢ 5?;“259}

- / d*a/=g0g" {mgeab {a 00,0 — 1gaba 00 9] + Lintgas + 2€

ol

0= 2/d45€\/ —g5gab {mgGab |:8 00,0 — gaba go° 9:| + E'Clntgab + 2e

+ / diz/=gd0 {+vcvca + 66?91“}

Therefore our equations of motion are:

0
_5 5gab (ng8093d9) + (Sgab(eﬁint)} + /d4x\/jg {_

15(9.00°0)

} d*x

m2 1
+ 7”6}% +9 —5869809 + eLint

mp ab 1 c
+ L Radg" — 50(0.60°6) + 8 [eLin]

50 00 +

Gab {—i@ceace + ecim} — 50556 0040 + €

]

)

00

it 59}

ab

ab

m Gab + eLintGap + 2€

5£mt
dgt

eCab

06 = —

1
= 08040 — 3 guv0:09°0

7, ®
5£int
50
S

o

5£1nt
gab

5£1nt }
9¢

6£1nt }
9¢

(69)

(70)



We have the perturbative expansion from a Ricci-flat, scalarless background:
1
0 =0+ + 5629(2) +0(é%)

9ab = Yap ()—i-eh (1)—1— e’h,, (2)+(’)( )

Rapea = O(1)
Lint = O(€)
S =0(e)
eCup = (’)(62)

1 ¢ _ _
Gab:_§€<2Radb(0)h ()+D( )h ()>—|—O(62)

So in the decoupling limit of € — 0,

2.5.1 Zeroth Order

Just the Kerr solution with no scalar.

2.5.2 First Order

5L (0)
(0) Ly - _ int
O <69 ) € < 50 )

5Lint
©)g(1) — _ ( Okint
a0l ( g >

and

5['int ©
dg°b > -
2G(1) =0

pab_

(287,50 + 00 @) 1, =0

m2GY) 4+ e£© g0 1 2c (

int

where a solution is Ecd(l) =0.

2.5.3 Second Order

Now at O(e?) order, assuming l_lcd(l) =0,

m2G? 4+ el g0 4 2 (ijz;)t)(l) = 0, (e0V) 0y (c0M)) — %gg;)ac (c0®) & (c0™)

which reduces to

) )0 OLiw \ " 15 (0
G =m;? | —eL, —2e< ) + 20,009,010 — —%g0)9.0M 991

D int Yab 5gab 2
—<cf) &
Se
o —i (20, + 02500 1, = 5

(79)

(80)

(84)

(85)

(86)



2.5.4 Third Order

We need to find 0 to subsecond order in e:

1 5L (2)
0) [ Z.2p@) ) — _ int
O <26 0 > € ( 50 )

S0 _ 2 (L
€ 00

Then we have to O(e3) order, assuming Bcd(l) =0,

N\ @
6 =2 | —er®g0 o <5Emt) N %(-;2 (0:610,6) 1 0,62 046 — g0, 800

(3)
760(2) Tab

(3)
Sab



2.6 Birkhoff’s Theorem
2.6.1 Spherical Symmetry

Assuming a spherically symmetric 3 + 1 dimensional spacetime, we can choose coordinates so that the
metric has the general form:

ds?* = A(t,r)dt* + B(t,r)dt dr + C(t,r)dr? + D(t,r)dQ? (91)

We can transform our coordinates (¢,7) so that r becomes v/D. We choose the positive root because we
want the angular coordinates to have positive Lorentzian signature (If we choose the negative convention
our final metric change to reflect the convention change). Therefore we can always rewrite our spherically
symmetric metric as

ds? = A(t,r)dt* + B(t,r)dt dr 4+ C(t,r)dr? + r2dQ? (92)

2 areal dependence in

where we have chosen the coordinate r specifically to give the spatial 2-sphere an r
the 4-fold.
Given any A(t,r), B(t,r),C(t,r), we can transform the ¢ coordinates so that our new coordinates,

t'(t,r) and r, gives

/ !
dt"? = <8tdt atdr) (93)
ot o' ot' o'\ 2
di? — 2 4 990 OV o 2
= () a2 gy () o

DAt 7) @’;) — Aft,) (95)

1\ 2
D7) <2887;gi) = B(t,r) (96)

N
E{',r)— D, r) <gi) =C(t,r) (97)

Since we have three equations for three variables ¢'(¢,7), D (t'(t,r),r), E (t'(t,7),r), the equations are
always soluble up given initial conditions. The choice of initial conditions is part of the gauge choice of
our coordinate system. Then the line element is

ds® = D(t,r)dt* + E(t,r)dr* + r?dQ? (98)

We see that we have two functional degrees of freedom assuming spherical symmetry. Once the vacuum
Einstein Field Equations are imposed, we will see that only a real valued parameter will remain as a
degree of freedom.

2.6.2 Vacuum Einstein Field Equations

In regions where D and E do not blow up or go to 0, we can renaming our metric degrees of freedom, in
two steps:

1
d32 = _621/’(t77”)f t,r dt2 4 d?"2 + T2dQ2 99
) f(t,r) (99)
2 20h(t,r) 2m(t,r) 2 2m(t,r) - 2 2 102
ds* = —eY"" (] — —— 2 )dt*+ 1 — ———= dr” 4+ r2dQ2 (100)
T T



In complete vacuum 7%, = 0, we have that for the Einstein tensor G*,, with the help of Mathematica,

—20,m(t,r)
T 28tm(ta T)
0=G";, = 2 (102)
0=G", -G = % <1 — W) opb(t, ) (103)

By equation , m(t,r) = m(t) and by equation , m(t,r) = m(r). Therefore m(t,r) is a real

constant.

Now by equation , we have ¥(t,r) = ().

We can then rescale ¢ — e ¥®¢, so that gy = — ( — 27m) and all other metric components stay the same.
Therefore the unique spherically symmetric solution to the vacuum Einstein Field equations with

A = 0 is the Schwarzschild solution:

2 om\ !
ds? = — <1 - m> dt? 4+ (1 - m) dr? + r2d0?2 (104)
T T

for some coordinates with the — + ++ Lorentzian signature.

Notice we see that any spherically symmetric solution must be asymptotically flat (as r — oo) and
static (with respect to the time-like vector %); we did not impose these conditions.

Therefore, there is no gravitational monopole radiation.

2.6.3 Komar Mass

It turns out the Komar mass integral of the Schwarzschild solution is m, so m really does correspond to
a physical mass of the metric.

2.7 Weyl-Lewis-Papapetrou

Given a time-like (¢ direction) and an “azimuthal” space-like (¢ direction) Killing vector fields, we osten-
sibly have a metric

ds® = gttdt2 + 2g1pdtde + g¢¢d¢>2 + gz'jdl‘idl'j (105)
for i,j € {2,3}.
Due to Papapetrou, we make a gauge transformation so that any stationary, axisymmetric spacetime
is:

ds? = ~V(dt — wdg)? + V-1 p2d¢? + Q%(dp? + Ad2?) (106)

where V(p, 2),w(p, 2), 2p, z), A(p, z) are the four functional degrees of freedom.
In Ricci-flat spacetimes, this reduces to three functional degrees of freedom.

3 Challenges

Some challenges and near term goals are

e Prove Froebenius’ theorem and, in turn, prove the Weyl-Lewis-Papapetrou (WLP) form for general
stationary axisymmetric spacetimes.

10



e Implement the perturbations off the Schwarzschild solution in WLP formalism. I need to figure out
how to do this explicitly in xAct/xCoba. Then I should proceed with the Kerr background after

this is developed.

e Verify these solutions correspond to nice gauge conditions. We want our solutions space to be a well

defined number of dimensions.
e Determine definitively whether the Einstein operator is an elliptic operator.

See proposal for long term goals.

Appendices

A Miscellaneous Identities Used in Proofs

A.1 Metric
agpo' _ 8(900 gUO' gp’a’) _ agpp/ gUU/g o gpp/ 6900”9 - gpp/gUO'l 59,0’0'
agw/ 89,“, 89,“, re agw/ re 89,“,
agpp’ - 8900’ ) , ,
_ pp oo’ sp sv
= ag/u/ (Spl + aguy 60" +9"" g 6,0/50,
dgP’  Dgor
= + = +g"g%"
ag;w ag;w
—— 8gp0 = —gp“go"/
09,

A.2 Jacobi Formula

For a generic derivative operator 9, one can show the following two facts:

logdet A =trlog A

d
OtrF(A) =tr (dAF(A)aA)
Then one can prove:
1
detAadetA = Ologdet A =0trlog A

d

=tr <dA log A@A)
=tr (A7104)

= |0det A = det Atr (A7'0A)

= —det Atr (A(—A?)0A)

ddet A= —det Atr (A0(A™1))

11
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A.3 Metric Density

Let g = det[g,,] in this context. We use our result from (110]). For variational derivatives w.r.t. to the

inverse metric,

For partial derivatives,

|39 = —99,59"

1
0V/—g = 2\/_—g><(—59)

1
ov/—g = —§x/—ggw5g“”

99 = 99°°0;gba
05 = 5

1
0iv/—g = 3V —990;gap

A.4 Connection Coefficients

% 1 ia
Ly = 29 (02937 + 09ia — Outriy)

1.
= igwajgia
; 1
ij = %89‘9
or FZ] = 7Tgaj\/ —g
ki = L oikgiag. 0 4 o0 — 60
g jk = 29 g ( i9ak + OkGja agjk)
o 1 .. .
— gjkgza i Gk — 5g]kgza agjk
‘ . ‘ . 1 . .
= g 0540"Gra) — 97°0;9" 9ka — 59" 9" Dagjn
1 , 1
= ———=V—90.9"" — ——=9"0aV/—y
_g a _g a
.y 1 .
k
9’ F;’k = _7Tgaa (\/ —ggw)

12
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A.5 Covariant derivatives

Vvl = 90" + I‘ﬁjvj (122)
1 : 1 :
= —\/— 82'11@"‘4 8'\/_ v’ 123
. 1 )
VZ"UZ = —0;(v/— v’ 124
S (V=) (124)

= 0i(=50'0) (125)

As a consistency check, we do the divergence of a covector field:

— | V;Vip =

G97Vwj = g w; — gijl“fjwk (126)

= Va0 = <=0V e (127)

~ = 0(/=g") (128)

Vzwi

ﬁ

which agrees with ({124])
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