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Abstract

Thermal noise is one of the most significant limitations to gravitational wave detector sensitivity.
The next generation of LIGO detectors may be cryogenically cooled to reduce more of the thermal
noise, but this requires research into new materials and geometries to be used for the mirror sus-
pensions. This project is focused on using a finite element analysis software called Ansys to build
new models of the suspensions with crystalline silicon in order to study the thermal noise effects
and guide the design of the upgraded mirror suspensions. If successful, these new models will result
in further reduced contributions of thermal noise and an improvement to the sensitivity and range
of the LIGO detectors.



1 Background Information and Motivation

1.1 Introduction to the LIGO Detectors

The experimental apparatus that the advanced LIGO team used to make the first direct
observations of gravitational waves [1] is based on a Michelson interferometer. The mi-
nuscule perturbations of space-time predicted by Albert Einstein in his general theory of
relativity result in very slight shifts in the lengths of the interferometer arms, and thus
have a measurable effect on the interference pattern produced by the recombined laser
beams [2]. However, the magnitude of this shift is so miniscule that it has taken decades
of efforts in noise reduction to make the detections possible. Much of the seismic vibra-
tions of the Earth are able to be mechanically filtered out of the signal by suspending
the interferometer mirrors and optics. The test mass is designed as a quadruple pen-
dulum as to give 1

f2
noise reduction above the pendulum frequency for each of the four

stages [3]. Another major source of noise comes from the thermally driven excitations
of the atoms within the test mass material. The kinetic energy of these excitations is
distributed in frequency space with sharp peaks at the natural modes of the suspensions
and with widths that depend on the loss of the material. Also, statistical fluctuations in
the local temperature of the material become coupled via the material’s thermal expan-
sion coefficient, resulting in a dissipative flow of heat and producing thermoelastic noise
[4]. In order to effectively deal with these noise sources, a very accurate and precise
model of the thermal activity and loss of the system is required. Rather than using
analytical methods to create these models, the LIGO scientific collaboration uses finite
element analysis software in order to more efficiently take into account all the complex
parameters of the suspension system, such as internal friction, non-uniform shapes, and
material properties that are spatially varying and temperature dependent. With an
accurate model of the thermal noise, the detectors can be designed to optimize the sen-
sitivity of the experiment while still maintaining necessary strength requirements and
realizable construction techniques. The thermal displacement noise can be calculated
from finite element models via Levin’s direct application of the fluctuation-dissipation
theorem [5], which will be discussed in more detail in section 2.

The advanced LIGO scientific collaboration successfully modeled a monolithic fused
silica glass suspension structure [6] consisting of a 40 kg test mass fused to silica fibers
which in turn are fused to a fused silica penultimate mass, and designed the detectors
to concentrate thermal energy close to resonances, thus reducing off-resonance thermal
noise in the measurement band [3, 7]. Figure 1 [6] below shows the advanced LIGO
sensitivity limits from displacement and sensing noise sources. The thermal noise is a
very significant obstacle in detecting low-frequency signals such as those produced by
the long inspiral phase of large astrophysical systems such as solar mass binary black
holes. The more time that we have these signals in-band the better we can model the
signals and understand the sources. Therefore, improving this limitation would be a
great asset to the future LIGO detectors. One potential way to reduce thermal noise is
to cool the mirror and suspension to reduce the kinetic vibrations of molecules.
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Figure 1: Fundamental sensitivity limits for advanced LIGO [6]

2 Thermal Noise

2.1 Fluctuation-Dissipation Theorem

Brownian motion was first observed by Robert Brown in 1827 when he noticed a vigorous
and irregular motion of floating pollen grains on the surface of water [4, 8]. Then in
1905, Einstein showed that the fluctuations were in fact a result of collisions with water
molecules, and these impacts resulted in the pollen losing kinetic energy, thus linking the
fluctuations and dissipation within the system [4, 9]. This was later to be developed by
Callen et al. into the Fluctuation-Dissipation Theorem, which states that the mechanical
loss due to frictional dissipating effects is a direct result of the Brownian fluctuations
of the molecules in the material [4, 10]. The following equations give the force and
displacement spectral densities for mechanical loss due to Brownian fluctuations in a
material [5]:

SF (ω) = 4kBT ·<[Z(ω)]

Sx(ω) =
4kBT

ω2
·<[Y (ω)]

where Z(ω) and Y (ω) are the mechanical impedance and admittance, respectively. Me-
chanical impedance is defined as the ratio of the force applied at a point to the resulting
velocity at that point, and the admittance is the multiplicative inverse of the impedance;
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they play analogous roles to the impedance and admittance of an AC circuit in that the
real part represents dissipative resistance and the imaginary part contributes to a phase
delay. The displacement spectrum can also be written in terms of the imaginary part of
the transfer function of the material, H(ω):

Sx(ω) =
4kBT

w2
·=[H(w)]

This can be represented in yet another form [5, 11]:

x2(ω) =
4kBT

mω

(
ω2
0φ(ω)

ω4
0φ

2(ω) + (ω2
0 − ω2)

2

)

where φ(ω) is the mechanical loss angle of the pendulum and ω0 is the resonant angular
frequency. The mechanical loss of the suspensions can be modeled as the sum of various
loss components [12] which are outlined below.

2.2 Thermo-Elastic Loss

There is a second contribution to thermal noise which arises from the expansion coeffi-
cient of the material, which we call thermoelastic noise. When a material is deformed
from equilibrium, the squeezing and stretching within the molecular structure results in
a temperature gradient that will induce the flow of heat energy [13]. This kind of loss is
called thermo-elastic and can be represented as a function of frequency [11]:

φthermoelastic(ω) =
Y T

ρC

(
α− σ0

β

Y

)2 (
ωτ

1 + (ωτ)2

)

where Y is Young’s modulus of the fibre, T is temperature, ρ is the density of the
material, C is the specific heat capacity per unit mass, α is the linear thermal expansion
coefficient, σ0 is the static stress in the fiber due to the suspended load, β = 1

Y
dY
dT

is the
fractional temperature dependence of the Young’s modulus, and τ is the characteristic
time over which heat flows across the fiber given by

τ =
1

4.32π

ρCd2

κ

where d is the diameter of the fiber and κ is the thermal conductivity [6]. By looking
at the loss equation above, it is clear that the thermoelastic noise can be completely
cancelled by setting the static stress parameter, σ0 = αY

β
[14].

2.3 Surface Loss, Bulk Loss, and Weld Loss

The suspensions also have a loss at the surface, interior bulk, and from welding, which
are especially important when modeling the connection of the test mass to the fibers via
an “ear” with “horns”, as shown in Figure 2 below [11]. From the insets that show the
ear models, we can also see how the fibers are strategically tapered [6].
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Figure 2: Model of the aLIGO monolithic suspension stage [11]

The surface and bulk loss are given by [12]

φsurface ≈
8hφs
d

φbulk = 1.2× 10−11f 0.77

where hφs is the product of the mechanical loss of the material surface, φs, and the
depth, h, over which surface loss mechanisms are believed to occur [6].

2.4 The Dissipation Dilution Factor

According to the fluctuation-dissipation theorem, thermal noise can be reduced by min-
imizing the amount of mechanical loss in the suspensions, which as it turns out, can be
much lower than the loss of the actual material that it is made of. This is because when
a pendulum is displaced from equilibrium, energy is stored not only in the dissipative
elastic potential energy of the stretched fiber, but also in the lossless gravitational field
[15]. Therefore, the total loss of the suspension is attenuated from the material loss by
the ratio of the kinetic energy to the elastic energy, Ekinetic

Eelastic
, which we call the dilution

factor. For a suspension system, the dilution factor can also be calculated using the
following equation [4]:

D =
2L
√
F

n
√
Y I
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where L is the length of the fiber, F is the tension force, Y is the Young’s modulus of the
fiber material, and I is the cross-sectional moment of inertia, and n is the number of wires
suspending the test mass. Thus, in a suspension model made up of η elements, φtotal =
1
D

η∑
i=1

φi where φi is the sum of the surface, bulk, and thermoelastic loss components for

each element in the model.

2.5 Determining Noise Amplitude from Strain Energy

When considering a Gaussian laser beam incident on the test mass surface, we can study
the thermal noise effects by treating the radiation pressure as an oscillatory force with
a Gaussian profile. The displacement thermal noise is shown by Levin [5] to be

Sx(f) =
2kBT

π2f 2

Wdiss

F 2
0

where F0 is the amplitude of the oscillating force and Wdiss is the time-averaged power
dissipated in the test mass when this oscillating pressure is applied. In the case of
homogeneously distributed loss φ(f), the dissipated power is given by

Wdiss = 2πfUmaxφ(f)

where the Umax is the energy of elastic deformation when the test mass is maximally
contracted or extended under the action of the oscillatory pressure [5]. This maximum
energy can be obtained from a finite element analysis of the stress or strain in the
material [16] which will be discussed in more detail in section 3.3.

3 Methods in Finite Element Analysis

The primary software in this project is Ansys (version 14.5), used to build models of
the detector suspensions. Since the LIGO scientific collaboration has been primarily
using COMSOL for most previous finite element models, much of this project so far has
been focused on learning and documenting the Ansys software so that the new modeling
methods and techniques can be effectively communicated to the entire LIGO collabo-
ration for future analyses. Thus, it is important that this work is clearly logged and
documented, which is why Ansys tutorials and analysis results will be uploaded to the
LIGO FEA ELOG page.

So far, we have only begun to investigate very basic models instead of trying to build
up the entire suspension system. This is beneficial for two main reasons: the software
is extremely complex so time is saved by learning only the features relevant to our ex-
periment, and it allows us to make consistency checks with analytical models which can
also be compared with experimental measurements. Thus the final model will be built
up piece by piece, moving towards an accurate and precise analysis of the experiment.
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3.1 Frequency Convergence

Finite element analysis is a technique for solving a large problem by subdividing it into
smaller, simpler parts called elements via meshing, so the accuracy of the results is
strongly dependent on the mesh sizing and methods. One way to check the accuracy of
the FEA results is with the method of frequency convergence in a modal analysis. By
varying the mesh sizes of a simple geometry and then solving for the normal modes, we
can observe how the frequencies of these normal mode solutions behave.

As an example, a steel cantilever was modeled in Ansys, with a circular cross-section
of diameter 50 mm and a length of 0.5 m. The mesh sizings were varied from 30 mm
down to 6 mm, in increments of 1 mm, giving 25 discrete points to be plotted as in
Figure 3 shown below with the first 15 modes in individual plots. In the plots, the
y-axis represents frequency in Hz and the x-axis represents the mesh “fine-ness” as the
size was decreased.

Figure 3: Frequency vs. mesh fine-ness for modes 1-15

As indicated by the flattening regions at finer meshing of transverse modes (all except
modes 8 and 15), a reasonable mesh would be around the 15th size, which was about
16 mm. Any mesh more course this size may not produce an accurate solution, while
a mesh more fine than this size would produce accurate results but may require an
excessive amount of time to compute the solution. Thus, convergence is important in
determining a mesh size optimal for both accuracy and time cost. In this example we
looked for convergence in frequency, but the same techniques can be used for finding
convergence in any other physical value such as the stress or strain energy distribution.

3.2 Comparison of FEA and Analytical Models of a Cantilever

It is important in simple models to compare the FEA solution results with well-known
analytical expressions. The following analytical equation gives the resonant (angular)
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frequencies for each transverse mode of a cantilever beam:

ωn = β2
n

√
EI

mL4
where βn =



1.875, n = 1
4.694, n = 2
7.855, n = 3
10.996, n = 4
14.137, n = 5
π
2
(2n− 1), n ≥ 6

and E is the Young’s modulus, I is the cross-sectional moment of inertia, m is the mass
per unit length, and L is the length of the beam. The moment of inertia for a circular
cross-section is π

64
d4, and for a rectangular cross-section of dimensions a and b, it is ba3

12
.

In Ansys, a cylindrical cantilever was designed, with a cross-sectional diameter of 1
cm, a length of 0.5 m, and with the physical properties of fused silica [4, 17] given in
Table 1 below. I made sure that the mesh size was fine enough to satisfy the convergence
limit using the techniques discussed above in Section 3.1, and then ran a modal analysis
to acquire the resonant frequencies.

Figure 4: Fused silica cantilever with circular cross-section, shown in its 5th resonant mode

Table 1: Physical Properties of Fused Silica [4, 17]
Property Value

Young’s Modulus 7.2× 1010 Pa
Mass Density 2200 kg/m3

Specific Heat 770 J/kg·K
Thermal Conductivity 1.38 W/m·K

Thermal Expansion Coeff. 3.9× 10−7 K−1

Poisson’s Ratio 0.17
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The first six modal results of the finite element analysis in Ansys are shown in Table
2 below, along with their relative deviations from the analytical solutions, and the two
solutions are plotted over each other in Figure 5.

Table 2: Resonant Frequencies of a Cylindrical Fused Silica Cantilever
Mode Analytical Solution, fA Finite Element Solution, fFEA Relative Error, ∆f

fA

1 32.009 Hz 32.014 Hz 0.016%
2 200.61 Hz 200.38 Hz 0.11%
3 561.78 Hz 559.93 Hz 0.33%
4 1100.9 Hz 1094.0 Hz 0.63%
5 1819.7 Hz 1801.7 Hz 0.99%
6 2718.3 Hz 2679.1 Hz 1.44%

Figure 5: Resonant Frequencies of a Cylindrical Fused Silica Cantilever

The strong agreement between the frequencies of the FEA and analytical solutions for
this example is a great first step in building finite element models.

3.3 Extracting Strain Energy Data from Ansys

In order to determine the thermal noise spectrum of a model, we must study how the
maximum stored elastic energy is distributed when a sinusoidal driving force is applied
at a range of frequencies and then use Levin’s displacement fluctuation equation [5]
discussed in section 2.5. In Ansys, a “Harmonic Response” analysis allows us to apply
forces to arbitrary faces, edges, or nodes in our model and sweep a given range of
frequencies, and then determine the strain, stress and deformation response at another
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selected position. The strain energy U stored by a system is given by

U =
1

2
V σε =

1

2
V Y ε2 =

1

2

V

Y
σ2

where V is the volume, σ is stress, ε is strain, and Y = σ
ε

is the Young’s modulus. Thus,
to find the thermal noise spectrum, we need to export either strain or stress data for
each node or element in a range of frequencies. This data can be saved as a text file
which can be imported into a Python or Matlab script that can parse the stress or strain
values and use the appropriate equations to produce a noise plot from this data.

4 Looking Ahead: Research Goals and Obstacles

The next stages of this project will focus on producing the thermal noise spectrum of
fused silica suspension models using the methods discussed in section 3.3 above. We
will be applying the appropriate external forces to the suspension models by using a
cylindrical coordinate system in which we can easily define a Gaussian shape to the
pressure that will simulate the laser beam incident on the face of the test mass. The
thermal noise results of this analysis can be verified by comparing with the noise results
of the advanced LIGO suspensions and other studies on thermal noise of fused silica
suspensions [7].

Once the fused silica models agree with analytical calculations and experimental data,
the project will move toward the important task of modeling new materials for a cryo-
genic interferometer. In particular, silicon suspensions will likely have much better ther-
mal noise performance than fused silica at extremely low temperatures [18], but new
fiber geometries, strengths, and dissipation dilution effects will be tested and studied.
We will begin by studying simple models designed with silicon material properties and
running the analyses at about 120 K. We hope to find a significant reduction in the
thermal noise amplitudes for these cryogenic silicon suspensions.
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