
Template Bank Thinning based on Zeroth Order

Threshold over Chirp Time
(DCC Reference: LIGO-T1600311)

Aravind Pazhayath Ravi, Ofek Birnholtz, Alex H. Nitz

September 13, 2016

Abstract

We present here a modification to the search pipeline PyCBC [1] (py-
cbc inspiral) to accommodate for the usage of injection specific template
bank which allows for thinning/trimming the template bank used for
matched filtering, thereby throwing away the extra computational hours
needed to look over templates in the bank completely unrelated to the in-
jection in question. This relation is quantified by implementing a thresh-
old on chirp time(τ0) of the compact binary system such that only if the
template falls within the window defined by the threshold, would it be
filtered to get to the trigger list. The inspiral code forms only the first
part of the entire search protocol and threshold is decided or rather reverse
engineered by looking at the triggers of the existing runs in O1. The mod-
ified template bank consists of sets of concatenated mini-template banks
whose sizes are dependent on the threshold. This approach is only a ze-
roth order approximation, albeit good enough as a first step in reducing
the size of the bank searched over. This approach can be extended in the
future to include higher order corrections.

1 Introduction

We are trying to implement a threshold on the error in the chirp time comparing
the template and injection parameters. The expression for chirp time can be
obtained through chirp mass which is a function of the component masses given
by

M =
(m1m2)

3
5

(m1 +m2)
1
5

(1)

Chirp Mass M for the lowest order post newtonian approximation, relates the
frequency and frequency derivative to the emitted gravitational waves by [2]

M =
c3

G

((5

96
)3π−8(ω(t))−11(˙ω(t))3

) 1
5

(2)

1

Here, ω(t) is the frequency of the emitted gravitational radiation. We need to
integrate this equation to obtain chirp time (τ0) as a function of M.∫ ∞

ωref

ω
−11
3 dω =

∫ τ0

0

dt

(
GM
c3

) 5
3
(
96

5

)
π

8
3 (3)

Thus evaluating the integral and plugging in the limit,

(ωref)
−8
3 =

256

5

(
GM
c3

) 5
3

π
8
3 τ0 =

(8π)
8
3

5

(
GM
c3

) 5
3

τ0 (4)

Thus the chirp time (τ0) would be

τ0 =
5

(8π)
8
3

(
c3

GM

) 5
3

(ωref)
−8
3 (5)

Plugging equation (1) into equation(5), we get

τ0 =
5

(8π)
8
3

(
c

G
1
3

)5
(m1 +m2)

1
3

m1m2
(ωref)

−8
3 (6)

2 Modifications

The following codes were modified to include the new checks. Modification for
strain.py and inject.py was with an aim to return the injection parameters used
in the PyCBC[1] inspiral pipeline.

1. inject.py
Path /pycbc dev/src/pycbc/pycbc/inject.py
The purpose of this code is to define the function that applies the injection.
Modifications to the code return the parameters of these injections as
in the original code, the parameters of these applied injections are not
stored. Also, not all the injections from the injection file are passed on.
Some checks are performed by the original code and only a subset of the
injections are made. Thus inject.py was modified such that the function
that applies the injection now returns an array with its parameters while
making the injections.

2. strain.py
Path /pycbc dev/src/pycbc/pycbc/strain.py Purpose of this code
is to return the strain data necessary for the analysis. However our mod-
ifications return the injection parameters along with it under the right
conditions. From client, originally there was no option for returning the
injection parameters. Thus we first included a boolean flag named re-
turn injections for this and the control was vested within pycbc inspiral.
If the flag were set to true, we return the strain data along with the in-
jection parameters else (as is the default state), we just return the strain.

2

3. bank.py
Path /pycbc dev/src/pycbc/pycbc/waveform/bank.py
This module provides classes that describe banks of waveforms. The aim of
modifying was to incorporate a method to the class named TemplateBank
which provides some basic helper functions and information about ele-
ments of an xml template bank. The method takes in two inputs namely,
the injection parameters as returned from strain.py and a new option
called the threshold which we define by looking at the plots described
later in this report. The method then calculates the template chirp time
and compares it with the injection chirp time for each injection. If this
difference is within the threshold window we choose, then we include that
particular index of the template bank into the new smaller bank. It is then
ensured that only unique indices remain.This subset bank is all we need
for the injection in question. So many such mini banks are created, one for
each injection. Once all the mini banks are created they are concatenated
and depending on the injection parameter, only some of the mini banks
would be used for the analysis.

4. pycbc inspiral
Path /pycbc dev/src/pycbc/bin/pycbc inspiral
This is the main code which incorporates all the changes made thus far
in the previous three codes. The code has many input options and using
a template bank, injection file and frame file it churns out the trigger
list of a single detector. This is only one part of the multi step process
of the PyCBC analysis[1]. As we said earlier, the control of the boolean
flag controlling the return of injection parameters was implemented in the
code so that we can have both the strain and the injection parameters
returned. This gives one out of the two inputs needed to call upon the
method we defined for the class TemplateBank in bank.py. The other
input is the already talked about threshold window which we empirically
decided from the plot of the error of chirp time v/s the injection chirp
time. An input option was parsed into the code and if the user provides
a threshold value then, we call upon the method to thin our template
bank and return the smaller bank after the cut. Thus depending on the
set of injections provided, we have different number of templates filtered.
We record the number of accepted and rejected templates out of the total
number of templates in the template bank.

3 Analysis and Plots

A part of an existing analysis (Analysis 9, carried out for a few weeks of the
O1 data from Sep 12, 2015 to Oct 20, 2015) had an snr threshold of 5.5. We
have looked at the results of this analysis to empirically get a threshold value
on the chirp time, that we implement at an earlier stage of the analysis. We
first look at the positive deviation and then the negative deviation to get a

3

conservative threshold value below which all the errors in chirp time lie. The
motivation here is that if we consider any injection in the template parameter
space, a fixed window as decided should contain all the templates that can give
a match with the injection. Thus we should not be missing triggers. Both axes
in the plots are in seconds. Deviation (∆τ0) is defined as

∆τ0 = triggerτ0 − injectionτ0 (7)

which is basically a difference between trigger and injection chirp times. Positive
deviation in chirp time (τ0) occurs when the difference between trigger and
injection chirp times becomes positive. Similarly if this difference is negative,
we have a negative deviation.

(a) Positive deviation in Chirp Time (b) Negative deviation in Chirp Time

Figure 2: Deviation in Chirp Mass

Figure(2) is the plot of the de-
viation in chirp mass compared to
the injection chirp mass. Chirp mass
is directly related to the compo-
nent masses and we calculate chirp
time from chirp mass using the pnu-
tils module of pycbc which exactly
matches with the equation (6)

Once the threshold value is avail-
able, we run the modified py-
cbc inspiral over three kinds of injec-
tion files to check for how many tem-
plates were accepted and how many
were rejected. Consider a run over
the entire bank of the data segment
we are looking at. It had 249077 tem-
plates before the implementation of
the cut. After the cut, the number of rejected and accepted templates were
different for different kinds of injection.

4

Type Accepted Rejected

BBH 104302 144775
BNS 114459 134618
NSBH 119492 129585

In order to check that we don’t miss triggers, a preliminary test on highest
values of snr was done. The top six values of snr in the trigger lists both before
and after the cut match. Here we use the template duration to confirm our
matches for the six entries.

SNR Original SNR After Cut Template Duration Template Duration

10.930367 10.930367 1.59989 1.59989
11.0635195 11.0635195 1.60776 1.60776
11.12573 11.12573 1.58739 1.58739
11.391197 11.391197 1.61392 1.61392
11.468006 11.468006 1.61526 1.61526
11.528804 11.528804 1.58343 1.58343

Similarly for the lower SNRs we see that
SNR Original SNR After Cut Template Duration Template Duration

5.500166 5.500166 0.618471 0.618471
5.5006704 5.5006704 0.624299 0.624299
5.501088 5.501088 1.94443 1.94443
5.501197 5.501197 0.909629 0.909629
5.501283 5.501283 0.508037 0.508037
5.501386 5.501386 1.74373 1.74373

From this analysis if we have a look at the individual injections, we find that

1. Injection using maximum number of templates (58354)

(a) Mass1: 10.7736

(b) Mass2: 2.813951

2. Injection using minimum number of templates (14157)

(a) Mass1: 55.80185

(b) Mass2: 37.43661

As we can see lower mass systems use larger number of templates while higher
mass systems use lesser number of templates partly because of the Inspiral phase
duration and partly because the former are much more denser compared to the
latter thus not violating consistency.

To check for more consistency, consider a template bank with 2554 templates
over about 1 hour around the detection time of GW150914[3].

5

Applying different values of threshold, we plot the snr values retained and
those missed.

Figure 3: Threshold = 0.7 Figure 4: Threshold = 1.0

Figure 5: Threshold = 2.0 Figure 6: Threshold = 3.0

Consider a similar analysis on a much larger template bank with millions of
templates . Our analysis should ensure that we don’t miss template matchings
with high snr due to our modifications. By comparing the gps end times of the
injections with the trigger gps times, we have plotted a set of values recovered
with different thresholds. As the threshold increases, the significance of the
missed triggers become less and less important. The X axis in the figures 7,8
and 9 pertain to the gps end times for all the injections. In our case we look at
21 injections over the entire dataset. The threshold values were 0.5, 2 and 3.

6

Figure 7: Threshold = 1.0 Figure 8: Threshold = 2.0

Figure 9: Threshold = 3.0

4 Conclusion

We see how with increasing the threshold values, the number of missed values
decrease drastically. Thus we have for higher thresholds, pertaining to each
missed case (if any) a higher SNR in the recovered trigger list, thereby not
missing out on any injection. We had made an empirical guess of a window of
3.0 around the chirp time, the first step towards optimising the template match-
ing algorithm. The plot over large and small data for this value of threshold
reassures us that it was indeed a sober decision to make as the snr of the missed
triggers are low and hence we don’t miss out on any high snr triggers.

References

[1] B.P.Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration.)
GW150914: First results from the search for binary black hole coalescence
with Advanced LIGO.

7

Phys. Rev. D 93, 122003 Published 7 June 2016.

[2] B.P.Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration.)
The basic physics of the binary black hole merger GW150914
arXiv:1608.01940 - August 5, 2016

[3] B.P.Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration.)
Observation of Gravitational Waves from a Binary Black Hole Merger Phys.
Rev. Lett. 116, 061102 Published 11 February 2016.

8

