

Guestimation of large angle scattering H. Yamamoto

- Limited data and knowledge about large angle scattering
 - Discrepancy between data about test mass mirrors and the arm loss
 - Uncertainty about the prediction of stray lights

Loss = mirror surface aberration disturbance in a cavity

- More data of uncoated surface and limited data of coated surface
- How to connect uncoated surface data to coated surface information
- How to properly include necessary effects, like source size effect, diffraction effect ...

Limited in situe measurements

- OpLev BRDF : BRDF(ITM@1.2°) ~ 10 x BRDF(ETM@7.7°)
- ACB PD proper handling of diffraction tail
- > Camera image

What are useful for further understanding

- Scattering with spatial wavelength of 0.05~1mm
- Scattering in angle > 20°
- Integrating sphere covering smaller angle

ETM 04 R1 ø160 Z1-6 Removed

(1) Surface after polishing by ASML

Phasemap of coated and uncoated surface

Phasemap and PMM

Aperture size 160mm RMS = 0.1732nm, PV=1.611nm 1 Rms=0.099nmPTV=0.768nm 0.10 0.05 0.00 -0.05 -0.10 -0.10 -0.05 0.00 0.05 0.10 (3) Surface after polishing measured by PMM(phase measuring microscope) with magnification of 50. 0.25mm x 0.25mm square near center. RMS = 0.099nm, PV=0.768nm

Hiro Yamamoto

(2) Surface after multilayer coating by ison spattering Aperture160mm RMS = 0.563nm, PV=4.436nm

ETM Pcal Camera Image

LIGO Seminar November 15,

Integrating sphere loss histogram

LIGO-G1602273

IFO Geometry

LIGO-G1602273

Hiro Yamamoto

LIGO Seminar November 15, 2016

mirror surface aberration and scattered fields

IFO geometry and mirror surface wavelength

LIGO

SEPTEMBER 14, 2015

Distrubance of field in a cavity

Field tail by figure error

LIGO-G1602273

Angular distribution scattered by small anomalies

Power distribution depends on the size of source

Hiro Yamamoto

Clustered small sources scatter like a big source

sources

Uncoated surface PSD and known losses

L1 alog 28668, H1 alog 30622 BRDF by OpLev for ITM and ETM

	ITMX	ITMY	ETMX	ETMy
	θ=1.2°		θ=7.7°	
L1	250ppm	500ppm	30ppm	43ppm
H1	260ppm	420ppm	37ppm	28ppm

Polished surface PSD to BRDF

$$BRDF(\theta) = (\frac{4\pi}{\lambda^2})^2 PSD_{2d}(f) = (\frac{4\pi}{\lambda^2})^2 D \cdot PSD(f)_{1d} / f$$

$$PSD_{1d}(f) \sim f^{-C}$$

$$D = \Gamma(\frac{C+1}{2}) / 2\sqrt{\pi}\Gamma(\frac{C}{2})$$

$$D = 1/4 \text{ for } C = 2, D = 1/2\pi \text{ for } C = 1$$

$$PSD(f)_{1d} = 0.01f^{-0.5}(nm^2mm) \text{ for } \lambda_s < 0.5 \text{ mm}$$

$$\Rightarrow BRDF(\theta) = 1.3\theta^{-1.5}$$

OpLev BRDF : reflection by coated surface from all sources BRDF(θ)=A x polished surface BRDF + total point scatter / 2π A = 8, total point scatter = 30ppm

Hole in the mirror

Integrating sphere large ($\theta > 1^{\circ}$) and small($\theta < 1^{\circ}$) angle

Lens moved out of the path to reduce noise Beam diverging toward the second mirror, which induces larger tail noise of the undisturbed beam.

LIGO aLIGO ITM07 TIS($\theta \ge 1^{\circ}$) Using integrating sphere

 $\theta > 1^{\circ}$

Roughness before and after coating

<TIS> data (w/ coating) vs Zygo rms (w/o coating) at $\lambda_{space} = 70 \sim 1 \mu m$: rms(w/ coat) ~ a few x rms(w/o) PSDs with and without coating $\lambda_s >$ several mm : figured changed $\lambda_s \sim$ few mm : roughness amplified?

larger PD1 \Rightarrow larger reflector area (100ppm PD1 \rightarrow > 2µm defect) (Total reflection < laser power x reflector area)

Summary

Guestimation error ~ factor of several

• Missing information

- » Roughness at spatial wavelength ~ 0.05-1mm
- » Coated surface vs uncoated surface qualities
- » Total loss by random point defects

• Measurements

- » Upgrade of integrating sphere to cover smaller angle
- » More measurements by Fizeau IFO with magnification
- » Camera image analysis
- » ???