Advanced LIGO Suspensions and Control

Brett Shapiro For the Suspensions group LITRAD – IUCAA 19-21 Dec 2016

Advanced LIGO Suspensions and Control

• Monday – Part I: Suspension overview

• Tuesday – Part II: Focus on suspension controls

Advanced LIGO Suspensions and Control

• Monday – Part I: Suspension overview

• Tuesday – Part II: Focus on suspension controls

NOTE: It is tempting to think of the suspension and its controls as two separate systems, but really they are a **single system**. A suspension is *designed and built to be controlled*.

Part I – Suspension Overview

- How to build a working suspension
 - Assembling, testing, debugging
 - Things to watch out for
- Models MATLAB/Mathematics
- Examples of recent improvements
 - BRDs
 - Squeezed film damping mitigation

Why suspensions?

Isolate optics from ground vibrations

Hanford December 17, 2016

Ref: G1100434-v2

Ref: G1100434-v2

G1602410

G1602410

Test mass suspension on 2-stage in-vacuum isolation table

Auxiliary optics on 1-stage in-vacuum isolation table

Cantilever blade springs

Quads

Triples

- Springs provide vertical isolation.
- No springs on lowest stages. Vertical isolation OK without them, also minimizes thermal noise. Lack of springs does produce problematic bounce & roll modes.

Cantilever blade springs

Quad top mass partial assembly

Quad top mass complete assembly

Advanced LIGO seismic isolation

HEPI: Hydraulic External Pre-Isolator

1 stage of isolation

Advanced LIGO seismic isolation

Suspension noise requirements

Test mass noise requirements

Requirement	Value
Residual Seismic Noise	10 ⁻¹⁹ m/√ Hz at 10 Hz (assumes seismic platform noise 2x10 ⁻¹³ m/√ Hz)
Suspension Thermal Noise	10 ⁻¹⁹ m/√ Hz at 10 Hz (longitudinal) 10 ⁻¹⁶ m/√ Hz at 10 Hz (vertical)
Pitch and Yaw Noise	10 ⁻¹⁷ rad/√ Hz at 10 Hz (assumes beam centering to 1 mm)
Active control noise	1/10 of longitudinal thermal noise for each source

Cavity Optics Suspension Subsystem Design Requirements Document <u>https://dcc.ligo.org/LIGO-T010007/public</u>

HAM Small Triple Suspension (HSTS)

SD

Purpose

- PRM, PR2, SRM, SR2
- MC1, MC2, MC3

Location

• HAM 2, 3, 4, 5, (8, 9, 10, 11)

Control

- Local damping at M1
- Global LSC & ASC at all 3

Sensors/Actuators

- 🔵 BOSEMs at M1
- AOSEMs at M2 and M3
- Optical levers and interferometric signals on M3

Naming: L1:SUS-PRM_M1...

- Documentation
- Final design review T0900435
- Controls arrangement E1100109

Optical Sensor ElectroMagnet (OSEM)

Birmingham OSEM (BOSEM)

Advanced LIGO OSEM (AOSEM) - modified iLIGO OSEM Magnet Types (M0900034) • BOSEM – 10 X 10 mm, NdFeB, SmCo 10 X 5 mm, NdFeB, SmCo • AOSEM – 2 X 3 mm, SmCo 2 X 6 mm, SmCo 2 X 0.5 mm, SmCo

Ref: L. Carbone et al. "Sensors and Actuators for the Advanced LIGO Mirror Suspensions", Class. Quantum Grav. 29, 115005 (2012) ²³

Optical Sensor ElectroMagnet (OSEM)

HAM Large Triple Suspension (HLTS)

Purpose

LIGO

• PR3, SR3

Location

• HAM 2, 5, (8, 11)

Control

- Local damping at M1
- Global LSC & ASC at all 3

Sensors/Actuators

- 🔵 BOSEMs at M1
- O AOSEMs at M2 and M3
- Optical levers and interferometric signals on M3
 Naming: L1:SUS-SR3_M1...
 Documentation
- Final design review T1000012
- Controls arrangement E1100109

Lico Beamsplitter/Folding Mirror (BSFM)

Purpose

• BS, (FMX and FMY)

Location

- Beamsplitter BSC 2, (4)
- (Fold Mirror BSC 6, 8)

Control

- Local damping at M1
- Global LSC & ASC at M2

Sensors/Actuators

- O BOSEMs at M1 and M2
- Optical levers and interferometric signals on M3

Naming: L1:SUS-FMX_M1...

Documentation

- Final design review T080218
- Controls arrangement E1100108

LIGO Output Mode Cleaner Double (OMCS)

Location

• HAM 6, (12)

Control

 Local – damping at M1 (true for all SUS's)

Sensors/Actuators

BOSEMs at top mass

Top mass naming convention

• L1:SUS-OMC_M1...

site subsystem unit stage 2 3 3,4 2

Documentation

- Final design review T0900060
- HAM SUS controls arrangement E1100109

In use during S6

TransMon Double

LIGO

Purpose

- Input Test Mass (ITM, TCP)
- End Test Mass (ETM, ERM) Location
- End Test Masses, Input Test Masses

Control

- Local damping at MO, RO
- Global LSC & ASC at all 4

Sensors/Actuators

- BOSEMs at MO, RO, L1
- O AOSEMs at L2
- Optical levers and interf. sigs. at
 L3
- Electrostatic drive (ESD) at L3 **Documentation**
- Final design review T1000286
- Controls arrang. E1000617

Test Mass Electrostatic Drive (ESD)

The ESD acts directly on the test ITM and ETM test masses. • ± 400 V (ΔV 800 V) ≈ 100 μN

 Each quadrant has an independent control channel

 Common bias channel over all quadrants

Quadruple Suspension ESD

 $F = \alpha \Delta V^2$

- α = coupling
 coefficient, depends
 on geometry
- ΔV = differential
 voltage across
 traces

Linearization occurs in the control!

Cartoon diagram illustrating the working principle of the ESD. The upper rectangle represents the test mass containing two polarized molecules; the lower rectangle represents the reaction mass bearing two electrodes. Surface plot shows electrical potential with electric field lines shown in cyan (John Miller PhD thesis, P1000032).

Optical Levers

Ref: G1401207

Monolithic Test Mass Suspension

bounce and roll modes

Thinner test mass fibers?

Reference: Giles Hammond, LITRA Aug 2016

Monolithic Test Mass Suspension

Fibers are laser pulled, then laser welded to the suspension. Uses a 100 W CO_2 laser.

Silica fibers are strong

VIRGO 2009 – 21 kg mass hanging on four 285 micron diameter fibers

Silica Fiber Break Test – MIT 5 Nov 2010

The thermal lensing problem

Fig. 3. An illustration of the thermo-refractive substrate lens, W_{self} , and the thermo-elastic surface deformation, Δs_{self} , from self heating.

Actuators

- 1) Ring heaters (RH)
- 2) CO₂ laser

Reference: P1600169 - https://arxiv.org/abs/1608.02934

The thermal lensing solution

Thermal Compensation System (TCS)

How to make a working suspensions

Test mass suspension procedures:

- <u>https://dcc.ligo.org/LIGO-G1100693/public -</u> Ideal Order/Contents of aLIGO QUAD Testing/ Commissioning
- <u>https://dcc.ligo.org/LIGO-E1000006/public</u> Advanced LIGO Quad Suspension Metal-Build Assembly Procedure
- <u>https://dcc.ligo.org/LIGO-E1000007/public</u> aLIGO SUS Quad Suspension Monolithic Build Assembly Procedure
- <u>https://dcc.ligo.org/LIGO-E1000078/public</u> Electronic setup and testing of aLIGO suspensions
- SUS Operations Manual <u>https://awiki.ligo-wa.caltech.edu/aLIGO/Suspensions/OpsManual</u>. Also archived at <u>https://dcc.ligo.org/LIGO-E1200633</u>

Assemble and install sensors/actuators & electronics

1) Assemble

Top mass being installed

2) Install electronics & sensors & actuators

A BOSEM and its electronics

Top mass with OSEMs installed

60

3) Hang the masses

Hang the masses by turning the earthquake stops away 1 mm from the masses

4a) Suspension Testing

The suspensions are tested using transfer function measurements throughout the assembly and install procedures. See https://dcc.ligo.org/LIGO-E100007845

4b) Suspension Alignment

Pitch fine tuning screws

The quad prototype top mass at MIT Nov, 2007

4b) Suspension Alignment

Spring tip touching clamping screw

5) Debug With Measurements and Model

Regular Measurements Identify Problems Early

Top mass spring tip touching clamp

5) Debug With Measurements and Model

Regular Measurements Identify Problems Early

Top spring and top spring clamp

Top spring touching the clamp

Comparing measurements to **models** helps identify problems

Libraries of messed up transfer function examples

 <u>https://awiki.ligo-wa.caltech.edu/aLIGO/</u> <u>TransferFunctionColoringBook</u>

<u>https://dcc.ligo.org/LIGO-E1000078</u>

Atmospheric Buoyancy

Reference: https://dcc.ligo.org/LIGO-T1100616

Buoyancy is important!

index.php?callRep=15985

just to give one of these stops more room

Spring stiffness is temperature dependent. Test mass sags by 0.225 mm / C.

https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=14027

Modeling reference: https://dcc.ligo.org/LIGO-T1400749

Suspension MATLAB Models

• On SUS SVN at

https://redoubt.ligo-wa.caltech.edu/svn/

or

https://redoubt.ligo-wa.caltech.edu/websvn/ 9

- Quads: ../sus/trunk/Quad/Common/MatlabTools/QuadModel_Production/
- Triples: ../sus/trunk/Common/MatlabTools/TripleModel_Production
- Doubles: ../sus/trunk/Common/MatlabTools/DoubleModel_Production
- Singles: ../sus/trunk/Common/MatlabTools/SingleModel_Production
- Summary of features and instructions at G1401132
- Information also on CSWG wiki https://wiki.ligo.org/CSWG/ALIGO_Suspensions

Mechanical parameters

- Masses
- Wire lengths
- Spring stiffnesses
- etc

Suspension response

- Equations of motion
- Impulse response
- Transfer functions
- Noise predictions

Mechanical parameters

- Masses
- Wire lengths
- Spring stiffnesses
- etc

Suspension response

- Equations of motion
- Impulse response
- Transfer functions
- Noise predictions

Higher order dynamics

- Violin modes
- Mystery dynamics

Mechanical parameters

- Masses
- Wire lengths
- Spring stiffnesses
- etc

Suspension response

- Equations of motion
- Impulse response
- Transfer functions
- Noise predictions

Higher order dynamics

- Violin modes
- Mystery dynamics

Measured data

- Resonant frequencies
- Mass values

Mechanical parameters

- Masses
- Wire lengths
- Spring stiffnesses
- etc

Suspension response

- Equations of motion
- Impulse response
- Transfer functions
- Noise predictions

Higher order dynamics

- Violin modes
- Mystery dynamics

Measured data

- Resonant frequencies
- Mass values

Mass values

Example – Damped Quad Model

LIG

Example – Damped Quad Model

Still to add:

- Length control
- Angular control
- Fully integrated radiation pressure
- Integration with the active seismic isolation
- Better predictions of cross-coupling
- More user friendly interface
- All the above for the smaller suspensions

Recent work to improve suspensions

- Will need to be repeated in LIGO-India Observatory

List of ongoing modifications at https://dcc.ligo.org/LIGO-E1600265

Bounce Roll dampers (BRDs)

10 Hz and 14 Hz Qs decreased from 5e5 to ≈3000

Reference: https://dcc.ligo.org/LIGO-P1600328

Squeezed film damping

The problem

- Oscillating gap size squeezes residual gas in and out of the gap
- This results in passive damping -> therefore thermal noise

Squeezed film damping

The solutions

ETMs: Cut big hole in the End Reaction Mass

ITMS: Gap with Compensation Plate increased from 5mm to 20 mm

Summary of how India can help

- Better suspension models
- Consider thinner, higher stress silica fibers for test masses
- Help improve test mass thermal compensation
- Make lower noise, more reliable optical levers
- Controls, lots of control...but this is tomorrow's topic

Questions?

Advanced LIGO Suspensions and Control

Brett Shapiro For the Suspensions group LITRAD – IUCAA 19-21 Dec 2016

Part II – Suspension Control

- Why we need control
- Local control: top mass damping, violin mode damping
- Global control: cavity length, angular control, paramtric instabilities
- Ongoing work to improve suspension performance
- Other work that could be done (perhaps in India) to improve performance further

Why we need suspension control

- The ground moves and disturbs our mirrors.
- The 4k arms must be aligned to 1 nrad and fixed in length to +-10⁻¹⁴ m RMS.

https://dcc.ligo.org/LIGO-T070236/public

Two classes of control

'Global control' between suspensions for cavity length and alignment

Summary of Suspension Control

Type of control	Purpose	Challenges
Top mass damping	Damp the suspension resonances	Noise above 10 Hz. Dynamics affected by global control and radiation pressure.
Local violin mode damping	Damp the fiber violin modes	The suspension wasn't designed to damp these
Global cavity length	Control the cavity length to 10 ⁻¹⁴ m RMS	Don't saturate the actuators. Dynamics affected by top mass damping. Minimize coupling to angle.
Global cavity alignment	Keep the mirrors pointing at each other to 1 nrad RMS	Noise above 10 Hz. Dynamics affected by top mass damping and radiation pressure. Minimize coupling to length.
Test mass parametric instability damping	The test mass modes > 6 kHz interact unstably with the high power cavity	At high cavity power there are dozens to damp

Keep Noise Low

Local Control Following the Quad SUS example

- Top mass damping
- Violin mode damping

0.43 Hz

1.0 Hz

2.0 Hz

3.4 Hz ⁹⁰

Damping at Livingston (LLO)

Damping at Livingston (LLO)

Damping at Livingston (LLO)

Better Optical Levers for Better Damping

Suspension violin modes

Very high Q (~1 billion) silica fiber violin modes at 500 Hz and higher harmonics.

Ringdown takes days!

Reference: Giles Hammond, LITRA Aug 2016

Suspension violin mode damping

Possible Violin Mode Sensor

Figure 1 VM shadow-sensor system (prototype). Each of the four fused-silica suspension fibres had its own separately housed source of illumination (emitter): B and C at the rear, D and A at the front (as in the experiments at MIT). The two shadow-sensor (detector) enclosures each housed the sensors for a pair of fibres. The four emitter housings were at the centre of the suspension, so as to have their NIR beams directed outwards—towards the two detector housings shown at the left and right edges of the figure (photo taken at the University of Strathclyde, before shipment out to MIT of these parts). The 300 mm steel rule gives the scale of this apparatus.

> Would make violin mode damping feedback more reliable

N. Lockerbie et al. "First results from the 'Violin-Mode' tests on an advanced LIGO suspension at MIT". 2011 Class. Quantum Grav. 28 245001. Also <u>https://dcc.ligo.org/LIGO-G0900588/public</u> 1

Global Control Following the Quad SUS example

- Cavity Length Control
- Alignment (angular) Control

Cavity Length Control

Cavity Length Control

103

- Optical levers provide additional damping feedback for lock acquisition.
- Wavefront sensors (WFS) provide low noise alignment feedback during observational runs.

Degrees of Freedom to Control

Global angular sensor

Reference: G1601167

Global angular sensor

Angular degrees of freedom (pitch and yaw)

Changing Plant Dynamics

Reference: G1601167

Livingston Noise – 18 Oct 2016

Livingston Noise – 18 Oct 2016

Livingston Noise – 18 Oct 2016

Parametric Instability damping

Unstable positive feedback between mechanical and optical modes at high power

Combination of active feedback and thermal tuning of test mass damps the first few in O1 and O2 where the power is \approx 100 kW out of the 750 kW aLIGO design

Reference P1400254

Parametric Instabilities

- First few modes actively controlled in O1 & O2
- Passive damping option in development
- Will these methods be enough at full power?

Reference P1400254

Some Parametric Instability References

- Evans M, Barsotti L, and Fritschel P. A general approach to optomechanical parametric instabilities. Phys. Lett. A, 374 (4):665–671 (2010). URL <u>http://dx.doi.org/10.1016/j.physleta.2009.11.023</u>
- Gras S, Blair DG, and Zhao C. Suppression of parametric instabilities in future gravitational wave detectors using damping rings. Class. Quantum Grav., 26 (13): 135012 (2009). URL http://stacks.iop.org/0264-9381/26/i=13/a=135012
- Ju L, Blair DG, Zhao C, Gras S, Zhang Z, Barriga P, Miao H, Fan Y, and Merrill L. Strategies for the control of parametric instability in advanced gravitational wave detectors. Class. Quantum Grav., 26 (1):015002 (2009). URL <u>http://stacks.iop.org/0264-9381/26/i=1/a=015002</u>
- Miller J, Evans M, Barsotti L, Fritschel P, MacInnis M, Mittleman R, Shapiro B, Soto J, and Torrie C. Damping parametric instabilities in future gravitational wave detectors by means of electrostatic actuators. Physics Letters A, 375 (3): 788 – 794 (2011). URL <u>http://dx.doi.org/10.1016/j.physleta.2010.12.032</u>

Control Interface

Control Loop Signal Flow

Realtime Software – designed in Matlab

What else could be done to improve suspensions?

- Length to pitch decoupling
- Better inertial sensors
- More advanced Controls

>This requires more noisy angular control

More Advanced Controls

Various Top Mass Damping Algorithms

Various Top Mass Damping Algorithms

Control System Working Group

Ongoing topics to improve IFO performance

- Particle swarm optimization for angular control
- Length to angle decoupling: how to drive length and pitch and yaw without impacting the others
- Machine learning for lock maintenance
- Optimal transfer function fitting techniques
- Robust configurations for earthquakes

CSWG tools

- Wiki <u>https://wiki.ligo.org/viewauth/CSWG/WebHome</u>
- alog <u>https://alog.ligo-la.caltech.edu/CSWG/</u>
- Mailing list cswg@sympa.ligo.org
 Sign up at <u>https://grouper.ligo.org/mailinglists/cswg</u>
- Teamspeak channel CSWG
- CSWG Chair: Dennis Coyne
 Co-chairs: Rob Ward, Brett Shapiro

Bi-monthly Teamspeak meetings

• US-western hemisphere: 1st Fri of the month, 9am US-PT (6pm CET, 9:30pm IST)

 US-eastern hemisphere: 3rd US Thu of the month, 4pm US-PT (Fri 9am AET, 8am JST, 4:30am IST)

Summary of how India can help

- Better suspension models
- Consider thinner, higher stress silica fibers for test masses
- Lower noise, more reliable optical levers
- Help improve test mass thermal compensation
- Length to angle decoupling
- More advanced controls techniques
- Get involved in the controls working group

Summary of how India can help

- Better suspension models
- Consider thinner, higher stress silica fibers for test masses
- Lower noise, more reliable optical levers
- Help improve test mass thermal compensation
- Length to angle decoupling
- More advanced controls techniques
- Get involved in the controls working group

Getting involved in the controls early will increase commissioning expertise in India

Questions?

BackUps

Examples of things that can be done to minimize control noise

Examples are applied to damping

An alternative top mass damping technique

Modal Damping

References T1300301 – Frequency Domain LQR P1100102 - Modal Damping of a Quadruple Pendulum P1200057 – Adaptive Modal Damping for Advanced LIGO Suspensions

Typical Damping Format

Modal Damping Format

0.43 Hz

1.0 Hz

2.0 Hz

3.4 Hz

143

Modal Damping Format

Multi-input-multi-output (MIMO) filter matrix State estimator designed using 'optimal control' (Matlab lqr function) 144

Damping Impulse Responses

Modal Damping Adjustability

Modal Damping Adjustability

Adaptive Modal Damping

Measurements of adaptive modal damping gains responding to seismic disturbances

Adaptive Modal Damping

Measurements of adaptive modal damping gains responding to seismic disturbances

Another top mass damping technique

Global Damping

Reference: P1400085 - Noise and Control Decoupling of Advanced LIGO Suspensions

Usual Local Damping

- Each suspension is locally damped from the top mass.
- One suspension receives the cavity length control

Common Arm Length Damping

 Sensors from both suspensions summed together to create 1 common signal

• Both suspensions receive same damping force in the same direction

•Cavity control split equally between suspensions

 If both pendulums are the same, the noise stays in common mode, i.e. no damping noise to cavity!

Ref: G1200774

• No OSEMs are used for differential length damping

• Damping is achieved with the cavity length control, by designing it in a particular way

Simulated Global Damping Noise

Simulated Global Damping Noise

Simulated Global Damping Noise

40 m Lab Noise Measurements

40 m Lab Noise Measurements

40 m Lab Noise Measurements

Decoupled Damping and Cavity Control

Decoupled Damping and Cavity Control

VIRG

Suspension Inventory

- Two Input Test Mass (ITM) suspensions
- Two End Test Mass (ETM) suspensions
- One Beamsplitter (BS) suspension
- Seven HAM Small Triple Suspensions (HSTS)
- Two HAM Large Triple Suspensions (HLTS)
- One, Output Mode Cleaner (OMC) Suspension
- SUS electronics racks
- Spare suspension components/parts
- Spare SUS electronics

Global Damping Backup Slides

Measurements from LHO Slides from G1200774

- The new top mass modes come from the zeros of the TF between the highest stage with large cavity UGF and the test mass. See more detailed discussion in the 'Supporting Math' section.
- This result can be generalized to the zeros in the cavity loop gain transfer functions (based on observations, no hard math yet).

170

LHO Damping Measurements Setup

Reference: G1200774

178/36

180/36

Reference: G1200774

181/36

LHO Damping Measurements

Terminology Key M1: top mass M2: middle mass M3: bottom mass MC2: triple suspension UGF: unity gain frequency or bandwidth

Summary of global damping

- Can isolate nearly all longitudinal damping noise from the interferometer signal
- The damping and cavity control designs decouple from each other
- Requires extra constraints on the cavity control.
- Only works for longitudinal degree of freedom, but this is the 'noisiest' one

Modal Damping Backups

Modal Damping with State Estimation

Adaptive Modal Damping

Measurements of adaptive modal damping gains responding to seismic disturbances

Adaptive Modal Damping

Summary of modal damping

- 'Optimal' more damping with less noise
- MIMO (Multi-Input-Multi-Output) takes advantage of cross couplings between DOFs
- Uses a modal coordinate frame rather than a standard XYZ frame
- Real-time frequency domain tuning each mode's gain independently adjustable

aLIGO design Sensitivity

