Supernovae & the next generation of GW observatories

LIGO-G1700567

Supernovae Workshop Pasadena March 18, 2017 Stefan Ballmer

Photo: Robert Ward / Stefan Ballmer (2016/03/12

Upgrade Path

At higher frequencies relevant for SN:

LIGO

Current observatories limited by quantum noise, coating thermal noise

Cosmic Explorer/Einstein Telescope

40km On surface

LIGO

- 10km
- Underground
- Xylophone

	CE	CE pess	ET-D (HF)	ET-D (LF)
$L_{\rm arm}$	$40\mathrm{km}$	$40\mathrm{km}$	$10\mathrm{km}$	$10\mathrm{km}$
$P_{\rm arm}$	$2\mathrm{MW}$	$1.4\mathrm{MW}$	$3\mathrm{MW}$	$18\mathrm{kW}$
λ	$1550\mathrm{nm}$	$1064\mathrm{nm}$	$1064\mathrm{nm}$	$1550\mathrm{nm}$
$r_{ m sqz}$	3	3	3	3
m_{TM}	$320\mathrm{kg}$	$320\mathrm{kg}$	$200\mathrm{kg}$	$200\mathrm{kg}$
$r_{\rm beam}$	$14\mathrm{cm}$	$12\mathrm{cm}$	$9\mathrm{cm}$	$7\mathrm{cm}~(\mathrm{LG}_{33})$
T	$123\mathrm{K}$	$290\mathrm{K}$	$290\mathrm{K}$	$10\mathrm{K}$
ϕ_{eff}	5×10^{-5}	1.2×10^{-4}	1.2×10^{-4}	1.3×10^{-4}

CE pessimistic scale matched to previous slide

LIGO

12/01/2

CE expected scale matched to previous slide

LIGO

LIGO Additional thoughts, 1

• Polarization?

– Do we need to know both polarizations?

- Do we need 2 detectors seeing mostly the same?

 Or is one detector (plus neutrino coincidence) good enough?

LIGO Additional thoughts, 2

Inclination angle dependence?

Rotational energy dependence?

Calibration will be smaller than this...

Don't worry about calibration...

LIGO What about detuning?

- You can still find old detuned Advanced LIGO design curves with Google (Internet has no delete button)
- The idea was:
 - With an off-resonance signal recycling mirror an optical resonance can enhance the sensitivity
- Has serious problems...

Signal Recycling Detuning

- In principle, ability to target high frequency sources without squeezing
- Less hardware investment with respect to squeezing, but challenge from the controllability of the interferometer
- ♦ Given the same loss in the interferometer, benefit at high frequency is comparable to frequency dependent squeezing in a narrow band, worse elsewhere

→ Signal recycling detuning not particular beneficial for high frequency sources

- → Interesting cases for low-mid frequencies regions
- → Interferometer control more challenging

See G1500599 13

High frequency response of long IFO

- For 40km the Free Spectral Range moves from 37kHz to 3.7kHz
 - Significant antenna pattern changes
 - Frequency dependent antenna pattern
 - Deviations from simple cavity pole

NTY : N

Still relevant - for 40km divide all frequencies by 10...

LIGO-G060665

9/26/06

Frequency corrections to antenna-patterns: forward detector transfer function

LSC Burst Group Telecon. Sept. 26, 2006 Malik Rakhmanov

LSC documents regarding the frequency dependence of the antenna patterns and its implication for calibration:

- T970101-B, D. Sigg, Strain calibration in LIGO,
- T030296, D. Sigg and R. Savage, Analysis proposal to search for gravitational waves at multiples of the LIGO arm cavity free-spectral-range frequency,
- T030186, J. Markowicz, R.L. Savage, and P. Schwinberg, Development of a readout scheme for high-frequency gravitational waves,
- G050205, M. Rakhmanov and R. Savage, LIGO detector response at high frequencies and its implications for calibration above 1kHz,
- T050136, Hunter Elliott, Analysis of the frequency dependence of the LIGO directional sensitivity (Antenna Pattern) and implications for detector calibration,
- T060xxx, Jeffrey Parker, Development of a high-frequency burst pipeline.

See LIGO-G060665

High-frequency antenna patterns

from T970101-B, D.Sigg, Strain calibration in LIGO.

Brief derivation of the detector response to GW

Polarization tensor in the wave frame E_{gw} and the vector pointing to the source \vec{n} :

$$E_{gw} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \begin{array}{ccc} n_x &=& \sin\theta\cos\phi \\ n_y &=& \sin\theta\sin\phi \\ n_z &=& \cos\theta. \end{array}$$

Transformation from the wave frame to the detector frame, $R = R_z(\psi)R_y(\theta)R_z(\phi)$, induces the transformation of the polarization tensor: $E_{det} = R^T E_{gw} R$.

$$A_i = \frac{1 - e^{-(1 - n_i)sT}}{1 - n_i}, \qquad B_i = \frac{1 - e^{-(1 + n_i)sT}}{1 + n_i}.$$

Introduce the equivalent phase response and the cavity field response:

$$\phi_i = \frac{A_i - B_i e^{-2sT}}{2sT}, \qquad \qquad H_{cav}(s) = \frac{1 - r_a r_b}{1 - r_a r_b e^{-2sT}},$$

and two polarization components in detector frame: $E_{xx} = E_{det}(1, 1), E_{yy} = E_{det}(2, 2).$ Then response to gravitational waves is

$$H_{gw}(s) = \frac{1}{2} H_{cav}(s) \left(E_{xx}\phi_x - E_{yy}\phi_y \right).$$

SE U

INA

4

Comparison of $H_{gw}(s)$ and $H_L(s)$ (1)

Calibration: provides $H_L(f)$ not $H_{gw}(f)$. The sensing function in the inverse calibration, C(f), is the response to length. This is transferred to the h(t)-channel.

Comparison of $H_{gw}(s)$ and $H_L(s)$ (2)

JE U

At low frequencies the magnitude of the length response and that of the gravitational-wave response are almost the same. The phase is slightly different though.

Extra Slides

Real US

Photo: Robert Ward / Stefan Ballmer (2016/03/12)