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1 Overview

This document presents a time domain implementation of the cross correlated DCPD spec-

trum which suppresses sensing noises such as photon shot noise. The idea is to implement

an additional signal stream in the front end digital system and produce a pair of artificial

channels such that the cross correlated power spectrum of them then yields such sensing

noise free spectrum. As opposed to the offline implementation based on a frequency domain

consideration, this scheme offers two advantages: (1) calibration of the resulting spectrum is

automatically achieved as it makes use of the existing calibration front end system and (2)

it allows easy access to the cross correlated spectrum in the control room because it can be

handled by DTT.

2 Review

The main advantage of the cross correlated DCPD spectrum is that it can suppress photon

shot noise and other sensing noises that are incoherent between the two OMC DCPDs. This

allows us to study the structure of underlying noises which are otherwise hidden by sensing

noises. In the rest of this section, we review the idea of the cross correlated DCPD spectrum

and give a brief overview of the offline implementation that we have done for O1 [1, 2].

2.1 DARM control loop

Figure 1 shows a block diagram of the control of the DARM (Differential arm) degree of

freedom. We assume that the two DCPDs have an identical response of H/2 [V/m] for

simplicity. Note that the interferometer response (e.g. cavity pole) is included within H.

The signals from each DCPD (dA, dB) satisfy the following pair of equations,

dA = − (dA + dB)
AFH

2
+

H

2
x + nA,

dB = − (dA + dB)
AFH

2
+

H

2
x + nB,

(1)

where A and F are the actuator response [V/m] and control filter response [V/V], respec-

tively. And where x, nA and nB are interferometer noise [m], and sensing noise of DCPD A
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Figure 1: simplified DARM loop block diagram.

[V] and that of DCPD B [V], respectively.

Summing and subtracting each other of equations (1), one can obtain

d+ =
H

1 + G

(
x +

nA + nB

H

)
,

d− = nA − nB,

(2)

where G is the open loop transfer function of the DARM control defined by G ≡ AFH and

where d+ and d− are the sum and null signals of the DCPDs, respectively. Their definitions

are given by

d+ ≡ dA + dB,

d− ≡ dA − dB.
(3)

As shown in equations (2), the sum signal is used to control DARM and is therefore affected

by the control loop whereas the null is not.

2.2 Cross correlated DCPD spectrum

In general, one can obtain the cross correlated DCPD spectrum by performing a few steps

of signal processing as follows.
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1. Take out the effect of the loop suppression from the sum signal.

2. Produce two channels such that noise in one of the channels consists of only nA and

noise in the other channel consists of only nB by linearly combining the unsuppressed

sum and null signals.

3. Take cross correlated power spectrum of the two channels.

From equations (2) and (3), the in-loop DCPD signals or (dA, dB) can be expressed as

dA =
1

2 (1 + G)
[Hx + (2 + G)nA −GnB] ,

dB =
1

2 (1 + G)
[Hx−GnA + (2 + G)nB] .

(4)

It is clear that the signal from one of the DCPDs, for example dA, contains not only its

sensing noise nA but also sensing noise from the other DCPD nB. This is due to the loop

action which feeds nB (and nA) back in to the interferometer. If one takes a cross correlated

power spectrum of the two in-loop DCPDs
〈
d∗AdB

〉
, it will not remove sensing noises because

it leaves terms proportional to |nA|2 and |nB|2. A good strategy to circumvent this situation

is to remove the loop suppression in a post process and remove nB from dA and remove nA

from dB.

Now, let us remove the effect of the control loop by applying (1 + G) to the sum signal,

d′+ = d+ (1 + G) ,

= Hx + nA + nB.
(5)

Next, linearly combining d′+ and d−, one can obtain

d′A ≡ d′+ + d− = Hx + 2nA,

d′B ≡ d′+ − d− = Hx + 2nB.
(6)

Finally, taking the cross correlated spectrum of the above two signals, one can obtain〈
(d′A)∗ d′B

〉
|H|2

=
〈
|x|2

〉
, (7)
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where we have assumed nA, nB and x are independent of each other

〈x∗nA〉 = 0, 〈x∗nB〉 = 0, 〈n∗AnB〉 = 0. (8)

Equation (7) is the cross correlated spectrum that we would like to obtain in the actual

experiments. It preserves interferometer noise x while sensing noises nA and nB are removed.

2.3 Offline implementation

As explained in [3], one way to obtain the cross correlated spectrum is to do an offline signal

processing in frequency domain.

Equations (6) can be expressed using the in-loop DCPD signals dA and dB as

d′A = (1 + G) (dA + dB) + dA − dB,

d′B = (1 + G) (dA + dB)− (dA − dB) .
(9)

Performing the cross correlation of d′A and d′B using the equations above, one can get

〈
(d′A)

∗
d′B
〉

=
(
|G|2 + 2G

) 〈
|dA|2

〉
+
(
|G|2 + 2G∗

) 〈
|dB|2

〉
+
∣∣G2
∣∣ d∗AB + |2 + G|2 dAB, (10)

where dAB is the cross spectrum of dA and dB, defined by dAB = 〈d∗AdB〉.

Therefore, one can compute the cross correlated DCPD spectrum by using the above equa-

tion. This in reality requires a measurement of the power spectrum of each DCPD (|dA|2,

|dB|2) and the cross correlated spectrum dAB in frequency domain. Moreover, G must be

known in frequency domain.

3 The online implementation

As shown in equation (10), the frequency domain approach involves not only measurement of

a set of DCPD spectra but also knowledge about the DARM control loop. While this is not

an issue in theory, in practice obtaining the information about the DARM control loop may
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not be an easy task for those who are not familiar with the interferometer commissioning.

An improvement for this situation can be achieved if we implement the time domain approach

in which the effect of the DARM control loop is removed in the front end digital system.

3.1 The idea

Conveniently, the calibration front end system (a.k.a. CAL-CS) already provides time series

of calibrated sum signals in which the effect of the control loop is removed. This signal can

be expressed as

S(cal) =
1 + G

H
d+,

= x +
1

H
(nA + nB) .

(11)

This calibrated signal is also known as ∆Lext. Now, if we filter the null signal with a filter

response of 1/H and add and subtract it to the above, one can obtain

S
(cal)
A ≡ S(cal) +

d−
H

= x +
2nA

H
,

S
(cal)
B ≡ S(cal) − d−

H
= x +

2nB

H
.

(12)

Taking cross spectrum of these two new channels, one can obtain the desired cross correlated

spectrum, 〈(
S
(cal)
A

)∗
S
(cal)
B

〉
=
〈
|x|2
〉
. (13)

The main trick of this scheme is to make use of the existing calibration system which con-

veniently removes the control loop effect from the sum signal.

4 Implementation

4.1 Setup

Figure 2 shows a possible implementation of the time domain scheme. In order to calibrate

the null signal in the same way as the sum signal, we need to place two additional filters, N

and H−1 where N is the OMC normalization filter (which is often just a scaler factor).
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Figure 2: A possible implementation of the time domain scheme using the existing front
end systems. It requires the implementation of the additional signal processing components
shown in red.

4.2 Required change in the existing digital system

Here is a list of required changes for implementing the time domain scheme.

• A new filter N in the OMC digital front end model for the null signal.

• Signal transfer from the OMC model to CAL-CS model for the null signal.

• A new filter H1− in the CAL-CS model.

• Sum and subtraction operations to produce the two linearly combined channels.

• Two new channels to record S
(cal)
A and S

(cal)
B .

5 Calibration error

As shown in equations (6), the cross correlation technique relies on accurate subtraction of

sensing noises. If there are calibration errors in the estimated loop components (specifically

errors in A and H), they will spoil the perfect subtraction of sensing noises and consequently

leave the terms proportional to nA and nB in each of the decomposed signals d′A and d′B.

page 7



LIGO-T1700131–v1

They contaminate the resulting cross correlated spectrum by leaving the terms proportional

to |nA|2 and |nB|2 and thus result in less reduction of sensing noises.

In this section, we consider two types of calibration errors and discuss their effects on the

reduction of sensing noises.

5.1 Calibration errors in control loop elements

Assume the filters in the calibration pipelines are inaccurate by a small amount, so that

A(cal) = A + ∆A,

H(cal) = H + ∆H,
(14)

where the variables with superscript ‘cal’ represent those actually installed in the calibration

front end system, and where the variables with ∆ upfront represents errors in the calibration

filters.

In this case, the calibrated DARM signal can be calculated as

x(cal) = S(sum)1 + G(cal)

H(cal)
,

=

[
1− 1

1 + G

(
∆H

H

)
+

G

1 + G

(
∆A

A

)](
x +

nA + nB

H

)
.

(15)

Computing the decomposed signals (12), one can obtain

S
(cal)
A = (1 + r)x + (2 + p)

nA

H
+ q

nB

H
,

S
(cal)
B = (1 + r)x + q

nA

H
+ (2 + p)

nB

H

(16)

where

p = −2 + G

1 + G

(
∆H

H

)
+

G

1 + G

(
∆A

A

)
,

q =
G

1 + G

(
∆H

H

)
+

G

1 + G

(
∆A

A

)
,

r = − 1

1 + G

(
∆H

H

)
+

G

1 + G

(
∆A

A

)
.

(17)
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Plugging these in to the cross correlated spectrum, one gets

〈(
S
(cal)
A

)∗
S
(cal)
B

〉
= (1 + r + r∗)

〈
|x|2
〉

+ 2q

〈
|nA|2

〉
|H|2

+ +2q∗
〈
|nB|2

〉
|H|2

+O
(
∆2
)
. (18)

Therefore, calibration errors let sensing noises nA and nB remain after the cross correlation.

The coefficient of the residuals q has the dependency on G in such a way that the effect of

calibration errors is maxmimized in the control bandwidth because G/(1 + G) ∼ 1 while it

becomes less significant at frequencies out of the control bandwidth because |G/(1 + G)| � 1.

Assuming a conservative calibration error of 10% in the control frequency band, we can

consider q to be on the order of 10% as well. Thus, the suppression factor of sensing noise in

amplitude spectral density (i.e. square root of the cross power spectrum) can be written as

suppression ∼
√

2 |q| ∼ 0.45×
√

∆Calib.

10%
. (19)

While this is true for frequencies in the control bandwidth, the suppression improves as the

frequency goes further away from the control frequency band due to the term G/(1 + G)

in q. If one can reach a calibration error of 1%, the suppression will be 0.14 in the control

band.

5.2 Imbalance between two DCPDs

Another type of error is imbalance between the two DCPDs. This will cause a similar issue to

that we discussed in the previous subsection. Now we consider a pair of imbalanced DCPDs

so that DCPD A has a response of (H + ∆H) /2 and DCPD B has (H −∆H) /2. In this

case the sum and null signals can be written as

d+ =
H

1 + G

[
x +

nA + nB

H

]
,

d− = −G
(

∆H

H

)
d+ + ∆Hx + nA − nB.

(20)
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observe that the sum signal is not affected by the imbalance. Performing a bit of linear

algebra, one can write the two channels as

S
(cal)
A =

(
1− u +

∆H

H

)
x + (2− u)

nA

H
− u

nB

H
,

S
(cal)
B =

(
1− u +

∆H

H

)
x + u

nA

H
+ (2 + u)

nB

H
.

(21)

where u is the coefficient for the residual, defined as

u ≡ G

1 + G

(
∆H

H

)
(22)

Therefore the cross correlated spectrum can be

〈(
S
(cal)
A

)∗
S
(cal)
B

〉
=

(
1 + u− u∗ +

(
∆H

H

)∗
−
(

∆H

H

))〈
|x|2
〉

+ 2u

〈
|nA|2

〉
|H|2

− 2u∗
〈
|nB|2

〉
|H|2

+O
(
∆2
)
.

(23)

Therefore, similarly to the calibration errors, imbalance of the DCPDs can limit the suppres-

sion performance. However, imbalance is typically well compensated in the digital system

to a precision of sub percent [4]. Therefore the effect on the suppression is not as significant

as that for calibration errors,

suppression ∼
√

2 |u| ∼ 0.045×
√

Imbalance.

0.1%
. (24)

6 Summary

A new scheme to implement the DCPD cross correlation spectrum is presented. It makes

use of the existing calibration front end system, offering an easy access to the cross spectrum

for those who are not familiar with the control system.
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