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the gravitational-wave signal extraction by broadening the
bandwidth of the arm cavities [51,52]. The interferometer
is illuminated with a 1064-nm wavelength Nd:YAG laser,
stabilized in amplitude, frequency, and beam geometry
[53,54]. The gravitational-wave signal is extracted at the
output port using a homodyne readout [55].
These interferometry techniques are designed to maxi-

mize the conversion of strain to optical signal, thereby
minimizing the impact of photon shot noise (the principal
noise at high frequencies). High strain sensitivity also
requires that the test masses have low displacement noise,
which is achieved by isolating them from seismic noise (low
frequencies) and designing them to have low thermal noise
(intermediate frequencies). Each test mass is suspended as
the final stage of a quadruple-pendulum system [56],
supported by an active seismic isolation platform [57].
These systems collectively provide more than 10 orders
of magnitude of isolation from ground motion for frequen-
cies above 10 Hz. Thermal noise is minimized by using
low-mechanical-loss materials in the test masses and their

suspensions: the test masses are 40-kg fused silica substrates
with low-loss dielectric optical coatings [58,59], and are
suspended with fused silica fibers from the stage above [60].
To minimize additional noise sources, all components

other than the laser source are mounted on vibration
isolation stages in ultrahigh vacuum. To reduce optical
phase fluctuations caused by Rayleigh scattering, the
pressure in the 1.2-m diameter tubes containing the arm-
cavity beams is maintained below 1 μPa.
Servo controls are used to hold the arm cavities on

resonance [61] and maintain proper alignment of the optical
components [62]. The detector output is calibrated in strain
by measuring its response to test mass motion induced by
photon pressure from a modulated calibration laser beam
[63]. The calibration is established to an uncertainty (1σ) of
less than 10% in amplitude and 10 degrees in phase, and is
continuously monitored with calibration laser excitations at
selected frequencies. Two alternative methods are used to
validate the absolute calibration, one referenced to the main
laser wavelength and the other to a radio-frequency oscillator
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FIG. 3. Simplified diagram of an Advanced LIGO detector (not to scale). A gravitational wave propagating orthogonally to the
detector plane and linearly polarized parallel to the 4-km optical cavities will have the effect of lengthening one 4-km arm and shortening
the other during one half-cycle of the wave; these length changes are reversed during the other half-cycle. The output photodetector
records these differential cavity length variations. While a detector’s directional response is maximal for this case, it is still significant for
most other angles of incidence or polarizations (gravitational waves propagate freely through the Earth). Inset (a): Location and
orientation of the LIGO detectors at Hanford, WA (H1) and Livingston, LA (L1). Inset (b): The instrument noise for each detector near
the time of the signal detection; this is an amplitude spectral density, expressed in terms of equivalent gravitational-wave strain
amplitude. The sensitivity is limited by photon shot noise at frequencies above 150 Hz, and by a superposition of other noise sources at
lower frequencies [47]. Narrow-band features include calibration lines (33–38, 330, and 1080 Hz), vibrational modes of suspension
fibers (500 Hz and harmonics), and 60 Hz electric power grid harmonics.
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E X P E C T E D  N S - N S  M E R G E R  R AT E S
observed short GRB rate ~ 0.1 to 10 yr-1 Gpc-3  
we won’t observe all GRBs because 

most GRB satellites are not sensitive to the whole sky 
and gamma emission is not expected to be isotropic 

comoving volume rate depends on the beaming angle 
smaller the beaming angle, less likely we will observe 
them and so greater the intrinsic rate 

half beaming angle of [5o  ,90o] gives a comoving 
volume rate of [0.1, 1,000] yr-1 Gpc-3 

implies a detection rate of ~ 0.03-30 yr-1 at LIGO-
Virgo design sensitivity
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FIG. 8. Snapshots of the rest-mass density on the (x, y) plane for the binary ALF2-q10-M1325. From left to right, the panels refer to
five characteristic times: the initial time, the time of the merger, the time right after the merger (i.e., at t = 1.0ms), when the ` = m = 2
deformation in the HMNS starts to develop (i.e., at t = 3.0ms), and a later time (i.e., at t = 10.0ms). Note that only in the last panel is the
bar-deformed HMNS well defined and quasistationary.

on the (x, y) plane at five characteristic times: the initial time,
the time of the merger, the time right after the merger (i.e., at
t = 1.0ms), when the stellar core stops oscillating and an
` = m = 2 deformation in the HMNS starts to develop (i.e., at
t = 3.0ms), and then when the bar-deformed HMNS (cf., re-
gion in white) is well defined and with a quasistationary core
(i.e., at t = 10.0ms).

Following this phenomenology, it is possible to build a me-
chanical toy model, whose mathematical details are presented
in Appendix A, in which the object produced right after the
stellar contact is composed of an axisymmetric disk rotating
rapidly at a given angular frequency, say ⌦(t), to which two
spheres are connected (e.g., via a shaft) but are also free to
oscillate via a spring that connects them (see Fig. 17 in Ap-
pendix A). In such a system, the two spheres will either ap-
proach each other, decreasing the moment of inertia of the
system, or move away from each other, increasing the moment
of inertia. Because the total angular momentum is essentially
conserved, the system’s angular frequency will vary between
a minimum value ⌦1 (corresponding to the time when the two
spheres are at the largest separation) and a maximum value
⌦3 (corresponding to the time when the two spheres are at the
smallest separation). The values of ⌦1 and ⌦3 depend nonlin-
early on the properties of the system (i.e., the mass and radius
of the disk, and the mass of the spheres) but are such that
⌦2 = 1

2 (⌦1 + ⌦3), just as f2 ⇡ 1
2 (f1 + f3) in the PSDs we

have computed. Stated differently, the mechanical toy model
considered here will rotate with an angular frequency that is a
function of time and bounded by ⌦1 and ⌦3. Because the time
spent at a given frequency is ⌧⌦ ⌘ ⌦/(d⌦/dt), more time is
obviously spent at the frequencies ⌦(t) = ⌦1 and ⌦(t) = ⌦3,
where d⌦/dt ' 0. As a result, more power is expected to ap-
pear in the GW signal at these frequencies, hence producing
a low-frequency peak around ⌦1 and a high-frequency peak
around ⌦3. If dissipative processes are present, e.g., if the
spring is not ideal and the oscillations are damped, then the
angular frequency will tend secularly to ⌦2, i.e., ⌦(t) = ⌦2

for t ! 1 (cf., Fig. 18 below). As a result, most of the power
in the PSD will appear around ⌦2, with two main sidebands
at ⌦1 and ⌦3. Conversely, if dissipative processes are not
present, then the GW signal will have contributions at fre-
quencies ⌦2 and at its overtones ⌦

n

' (n/2)⌦2, such that

⌦2 ' 1
2 (⌦1 + ⌦3). (Note that in the presence of dissipative

processes a ' sign is needed in the estimate of ⌦2 because
the asymptotic frequency is only approximately the average
of ⌦1 and ⌦3; this is shown in the middle panel of Fig. 18
and reflects the fact that the system is not perfectly balanced.)
Overall, and as we will discuss in more detail in Appendix A,
this toy model can therefore account for both the presence of
the main peak f2 and for the two equally distant sidebands at
f1 and f3.

There is a simple way of testing whether these modes are
coming just from the immediate post-merger phase or are pro-
duced on longer time scales in terms of nonlinear couplings.
This is shown in Fig. 9, which reports again the PSDs for
the five EOSs and for a representative value of the mass,
i.e., M̄ = 1.30M�. Thin solid lines of different colors show
the same PSDs as in Fig. 7, with the two vertical dashed
lines marking the positions of the peak frequencies f1 and f2.
Shown instead with thick solid lines of the same colors are
the PSDs when the waveforms are restricted to the interval
t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms, that is, when the first
3ms after the merger are cut from the time series. Remark-
ably, in this case the f1 and f3 peaks essentially disappear,
while the f2 peaks remain very strong and without consider-
able changes in frequency apart for the very soft EOSs. We
find this result a convincing validation of the correctness of
the toy model and a strong evidence that most of the power in
the f1 and f3 peaks is built essentially over 2-3ms after the
merger.

We should also note that when the dominant contribution
from the initial f1 and f3 peaks is removed, and hence one
is able to measure the power produced by the long evolution
of the HMNS, smaller peaks do appear on either side of f2,
and they are close to the f1 or f3 frequencies. It is then pos-
sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
results and explore the long-term spectrum of the HMNS.

Another concrete indication that the toy model provides a
good description of the dynamics right after the merger is of-
fered by Fig. 10, whose top panel shows the full numerical-
relativity strain in the + polarization as computed for the bi-
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FIG. 8. Snapshots of the rest-mass density on the (x, y) plane for the binary ALF2-q10-M1325. From left to right, the panels refer to
five characteristic times: the initial time, the time of the merger, the time right after the merger (i.e., at t = 1.0ms), when the ` = m = 2
deformation in the HMNS starts to develop (i.e., at t = 3.0ms), and a later time (i.e., at t = 10.0ms). Note that only in the last panel is the
bar-deformed HMNS well defined and quasistationary.
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of inertia. Because the total angular momentum is essentially
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a minimum value ⌦1 (corresponding to the time when the two
spheres are at the largest separation) and a maximum value
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smallest separation). The values of ⌦1 and ⌦3 depend nonlin-
early on the properties of the system (i.e., the mass and radius
of the disk, and the mass of the spheres) but are such that
⌦2 = 1
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2 (f1 + f3) in the PSDs we

have computed. Stated differently, the mechanical toy model
considered here will rotate with an angular frequency that is a
function of time and bounded by ⌦1 and ⌦3. Because the time
spent at a given frequency is ⌧⌦ ⌘ ⌦/(d⌦/dt), more time is
obviously spent at the frequencies ⌦(t) = ⌦1 and ⌦(t) = ⌦3,
where d⌦/dt ' 0. As a result, more power is expected to ap-
pear in the GW signal at these frequencies, hence producing
a low-frequency peak around ⌦1 and a high-frequency peak
around ⌦3. If dissipative processes are present, e.g., if the
spring is not ideal and the oscillations are damped, then the
angular frequency will tend secularly to ⌦2, i.e., ⌦(t) = ⌦2
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This is shown in Fig. 9, which reports again the PSDs for
the five EOSs and for a representative value of the mass,
i.e., M̄ = 1.30M�. Thin solid lines of different colors show
the same PSDs as in Fig. 7, with the two vertical dashed
lines marking the positions of the peak frequencies f1 and f2.
Shown instead with thick solid lines of the same colors are
the PSDs when the waveforms are restricted to the interval
t 2 [609, 5000]M� ⇡ [3.00, 24.63]ms, that is, when the first
3ms after the merger are cut from the time series. Remark-
ably, in this case the f1 and f3 peaks essentially disappear,
while the f2 peaks remain very strong and without consider-
able changes in frequency apart for the very soft EOSs. We
find this result a convincing validation of the correctness of
the toy model and a strong evidence that most of the power in
the f1 and f3 peaks is built essentially over 2-3ms after the
merger.

We should also note that when the dominant contribution
from the initial f1 and f3 peaks is removed, and hence one
is able to measure the power produced by the long evolution
of the HMNS, smaller peaks do appear on either side of f2,
and they are close to the f1 or f3 frequencies. It is then pos-
sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
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sible that these smaller-amplitude peaks represent the mani-
festation of the nonlinear couplings mentioned above and are
therefore carriers of interesting information on the properties
of the HMNS. Clearly, more work is needed to validate these
results and explore the long-term spectrum of the HMNS.
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Whence Plutonium? 

  Supernovae or NS Mergers? 

!MA>130 ~ 10−7M!  yr-1
Galactic r-process rate:

(Qian 2000) 

Rapid Neutron Capture (r-Process) Nucleosynthesis  

See talk by Jim Lattimer 

Metzger & Berger 2012 BDM & Berger 12  

Short 
GRB 

Electromagnetic Counterparts of NS Mergers 

BDM & Berger 12 

❖ binary neutron star 
mergers are multi-
messenger sources  

❖ afterglows are largely 
driven by production 
of heavy elements by 
neutron capture (r-
process) and their 
nuclear decay

Metzger and Berger, 2012
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B I N A R Y  N E U T R O N  S TA R S :  
P O S T- M E R G E R  WAV E F O R M S 10
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FIG. 6. Gravitational waveforms for all the binaries with equal masses and nuclear-physics EOSs as evolved at the reference medium resolution.
Each row refers to a given EOS, while each column concentrates on a given initial mass. The different EOSs are distinguished by different
colors, and we will adopt this color coding also for all the subsequent plots; more details on the various binaries are shown in Table II.

Also in the frequency domain, a rapid scan of the panels
allows one to discern the most important features. First, and
as discussed by several authors [8, 23–27, 66, 70], all PSDs
show a clear and strong peak, i.e., the f2 peak, which, at these
distances, can be 1 order of magnitude or more above the sen-
sitivity curve of the Advanced LIGO detectors. This peak
is clearly related to the rotation of the bar-deformed HMNS
and corresponds, in a corotating frame, to a (quadrupolar)
` = m = 2 mode moving at a positive pattern speed in
the prograde direction [28]4. As we will comment later in
Sec. V E, this mode can be seen to correlate with a number
of properties of the stars comprising the binary, although this
dependence is different for different EOSs and is “universal”
only at a fixed mass.

All of the panels also show the presence of a low-frequency
peak, i.e., the f1 peak, which has already been discussed in

4 As customary, the prograde direction is the direction of rotation of the
HMNS as seen in an inertial frame.

detail in Ref. [28], where it was indicated as f�. This peak
always has a power smaller than that of f2 and it can hap-
pen that if the EOS is particularly soft (e.g., as for the bi-
nary APR4-q10-M1275) or if the mass is particularly small
(e.g., as for the binary SLy-q10-M1250), it is hard to dis-
tinguish it from the background. However, because the peak
is also sitting in a region where the sensitivity of detectors
is higher, it will be detectable at these distances with a SNR
smaller but comparable to that of the f2 peak (cf., Table III).
As remarked in [30], this peak is is produced by the nonlin-
ear oscillations of the two stellar cores that collide and bounce
repeatedly right after the merger. More important, as we will
comment later in Sec. V D, this mode correlates tightly with
the stellar compactness C in a way that is essentially universal,
that is independent of the EOS.

In addition to the f1 and f2 peaks, the PSDs also show the
presence of an additional peak at frequencies higher than f2

(see top left panel of Fig. 7). We have dubbed this peak as
f3 (in Ref. [28] it was instead indicated as f+) and its value
is approximated as f3 ⇠ 2f2 � f1 with a precision of about

Takami, Rezzolla, Baiotti, 2014
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FIG. 7. PSDs 2h̃(f)f1/2 for the equal-mass binaries with nuclear-physics EOS shown in Fig. 6. Solid lines of different colors refer to the
high-passed waveforms, while the dashed lines refer to the full waveforms. Indicated with colored circles are the various contact frequencies
f

cont

, while the curves of Advanced LIGO and ET are shown as green and light-blue lines, respectively.

10%. While equally interesting and potentially containing ad-
ditional information on the merging system, this peak is the
one with the least power of the three and is usually located at
very high frequencies, always below the sensitivity curve of
Advanced LIGO. Hence, more sensitive detectors, such as ET,
will be needed to observe this spectral feature even at moder-
ate distances.

B. On the origin of the f

1

and f

3

peaks

It has so far been unclear what is the actual physical ori-
gin of the two frequency peaks f1 and f3. It is possible to
attribute f1 to a nonlinear interaction between the quadrupole
and quasiradial modes [28]; similarly, it is possible that f3
is an overtone or the result of the nonlinear interaction of
the f2 mode with other nonquasiradial modes [28]. These
perturbative suggestions are given substance by the fact that
the f2 peak is, to first approximation, the average of the f1

and f3 frequencies, and it is well known that if a perturbed
system has eigenfrequencies f

i

, the nonlinearity of the equa-

tions will also produce modes at frequencies f

i

± f

j

(see
Sec. 28 of Ref. [76]). On the other hand, the amplitudes of
these nonlinear couplings are usually found to be considerably
smaller than the originating eigenfrequencies (see the discus-
sion in [77]), and our PSDs show instead that the amplitudes
in the f1 � f3 peaks vary by a factor of few and not of orders
of magnitude.

On the other hand, a different interpretation is possible on
the origin of these modes. In this interpretation, which we
suggest here, they are simply produced by the GW emission
due to the nonlinear oscillations of the two stellar cores that
collide and bounce repeatedly. Animations of the few mil-
liseconds following the instant when the stars get in contact,
in fact, show that the HMNS attains a quasistationary con-
figuration with a marked bar-mode deformation only ⇠ 5ms
after the merger. On the other hand, the object produced af-
ter the contact is far more irregular and the two stellar cores
collide and bounce repeatedly as a result of the strong rota-
tion and very high densities. This is shown in Fig. 8 for the
representative binary ALF2-q10-M1325. The figure con-
tains four different panels reproducing the rest-mass density
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• Tidal tensors εij of one of the component of the binary induces 
quadrupole moment Qij in the other 

• variation in the quadrupole moment causes GW emission 
• in the adiabatic approximation                                 

• where λ(m) is EoS dependent tidal deformability, k2(m) is the Love 
number and R is the NS radius 

• Just from the scaling this is a 5-PN effect (v/c)10

13

4

Hz [18], the tidal tensors Eij of one component of the
binary will start to induce a significant quadrupole mo-
ment Qij in the other. In the adiabatic approximation,
the two are related by [44, 64, 65]

Qij = ��(m) Eij , (3)

where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function �(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn a↵ect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability �(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through �(m) =
(2/3) k2(m)R5(m). Tidal e↵ects only enter the phase
starting at 5PN order [65], but as mentioned before, the

prefactors are sizable (�/M5 / (R/M)5 ⇠ 102 � 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The e↵ects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (⇡Mf)1/3, one has

 (v) =  PP(v) + tidal(v), (4)

where  PP(v) is the phase for the inspiral of point parti-
cles, and  tidal(v) is the contribution from tidal e↵ects.
The latter takes the form

 tidal(v) =
3
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued
to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a sti↵ (MS1) EOS,
are illustrated in Fig. 4.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18], with maximum
residuals of ⇠ 0.02 (which will turn out to be negligible
compared to the measurability of �). Examples of such
fits for a soft (labeled SQM3), a moderate (H4), and a
sti↵ EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed

to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = �5

2
lim
r!1

⇣ r

M

⌘3
Z 1

�1
⌫(r, ✓)P2(cos ✓) d cos ✓, (6)

where P2(x) = (3x2 � 1)/2 is the second Legendre poly-
nomial, and ⌫ is a potential related to the metric of
a stationary axially symmetric body; more specifically,
the line element in the form introduced by Komatsu-
Eriguchi-Hachisu [66] reads:

ds2 = �e�2⌫dt2 + r2 sin2 ✓ e2� (d�� !dt)2

+ e2↵
�
dr2 + r2d✓2

�
, (7)

where the undetermined ↵,�, ⌫ are all functions of (r, ✓).
The quadrupole moment q is the leading-order (1/r3)
coe�cient of the second multipole in the asymptotic ex-
pansion of ⌫(r, ✓) and can be calculated numerically. This
quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.
Since a sti↵er EOS implies a larger neutron star (NS)

radius for a given mass, the quadrupole moment increases
in absolute value with the sti↵ness of the EOS. Examples
of q estimates for di↵erent EOS were calculated numer-
ically in [50] based on the expressions of Ryan [67, 68].
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should note that the calculation leading to this expression
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
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these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued
to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a sti↵ (MS1) EOS,
are illustrated in Fig. 4.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18], with maximum
residuals of ⇠ 0.02 (which will turn out to be negligible
compared to the measurability of �). Examples of such
fits for a soft (labeled SQM3), a moderate (H4), and a
sti↵ EOS (MS1) are shown in Fig. 1.
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
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7PN phase contribution; in [19] these too were argued
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to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a sti↵ (MS1) EOS,
are illustrated in Fig. 4.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18], with maximum
residuals of ⇠ 0.02 (which will turn out to be negligible
compared to the measurability of �). Examples of such
fits for a soft (labeled SQM3), a moderate (H4), and a
sti↵ EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed

to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = �5

2
lim
r!1

⇣ r

M

⌘3
Z 1

�1
⌫(r, ✓)P2(cos ✓) d cos ✓, (6)

where P2(x) = (3x2 � 1)/2 is the second Legendre poly-
nomial, and ⌫ is a potential related to the metric of
a stationary axially symmetric body; more specifically,
the line element in the form introduced by Komatsu-
Eriguchi-Hachisu [66] reads:

ds2 = �e�2⌫dt2 + r2 sin2 ✓ e2� (d�� !dt)2

+ e2↵
�
dr2 + r2d✓2

�
, (7)

where the undetermined ↵,�, ⌫ are all functions of (r, ✓).
The quadrupole moment q is the leading-order (1/r3)
coe�cient of the second multipole in the asymptotic ex-
pansion of ⌫(r, ✓) and can be calculated numerically. This
quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.
Since a sti↵er EOS implies a larger neutron star (NS)

radius for a given mass, the quadrupole moment increases
in absolute value with the sti↵ness of the EOS. Examples
of q estimates for di↵erent EOS were calculated numer-
ically in [50] based on the expressions of Ryan [67, 68].

4

Hz [18], the tidal tensors Eij of one component of the
binary will start to induce a significant quadrupole mo-
ment Qij in the other. In the adiabatic approximation,
the two are related by [44, 64, 65]

Qij = ��(m) Eij , (3)

where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function �(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn a↵ect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability �(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through �(m) =
(2/3) k2(m)R5(m). Tidal e↵ects only enter the phase
starting at 5PN order [65], but as mentioned before, the

prefactors are sizable (�/M5 / (R/M)5 ⇠ 102 � 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The e↵ects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (⇡Mf)1/3, one has

 (v) =  PP(v) + tidal(v), (4)

where  PP(v) is the phase for the inspiral of point parti-
cles, and  tidal(v) is the contribution from tidal e↵ects.
The latter takes the form

 tidal(v) =
3

128⌘
v�5

2X

A=1

�A

M5XA


�24 (12� 11XA) v

10 +
5

28

�
3179� 919XA � 2286X2

A + 260X3
A

�
v12

+24⇡(12� 11XA)v
13

�24

✓
39927845

508032
� 480043345

9144576
XA +

9860575

127008
X2

A � 421821905

2286144
X3

A +
4359700

35721
X4

A � 10578445

285768
X5

A

◆
v14

+
⇡

28

�
27719� 22127XA + 7022X2

A � 10232X3
A

�
v15

i
, (5)

where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued
to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a sti↵ (MS1) EOS,
are illustrated in Fig. 4.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18], with maximum
residuals of ⇠ 0.02 (which will turn out to be negligible
compared to the measurability of �). Examples of such
fits for a soft (labeled SQM3), a moderate (H4), and a
sti↵ EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed

to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = �5

2
lim
r!1

⇣ r

M

⌘3
Z 1

�1
⌫(r, ✓)P2(cos ✓) d cos ✓, (6)

where P2(x) = (3x2 � 1)/2 is the second Legendre poly-
nomial, and ⌫ is a potential related to the metric of
a stationary axially symmetric body; more specifically,
the line element in the form introduced by Komatsu-
Eriguchi-Hachisu [66] reads:

ds2 = �e�2⌫dt2 + r2 sin2 ✓ e2� (d�� !dt)2

+ e2↵
�
dr2 + r2d✓2

�
, (7)

where the undetermined ↵,�, ⌫ are all functions of (r, ✓).
The quadrupole moment q is the leading-order (1/r3)
coe�cient of the second multipole in the asymptotic ex-
pansion of ⌫(r, ✓) and can be calculated numerically. This
quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.
Since a sti↵er EOS implies a larger neutron star (NS)

radius for a given mass, the quadrupole moment increases
in absolute value with the sti↵ness of the EOS. Examples
of q estimates for di↵erent EOS were calculated numer-
ically in [50] based on the expressions of Ryan [67, 68].

4

Hz [18], the tidal tensors Eij of one component of the
binary will start to induce a significant quadrupole mo-
ment Qij in the other. In the adiabatic approximation,
the two are related by [44, 64, 65]

Qij = ��(m) Eij , (3)

where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function �(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn a↵ect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability �(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through �(m) =
(2/3) k2(m)R5(m). Tidal e↵ects only enter the phase
starting at 5PN order [65], but as mentioned before, the

prefactors are sizable (�/M5 / (R/M)5 ⇠ 102 � 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The e↵ects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (⇡Mf)1/3, one has

 (v) =  PP(v) + tidal(v), (4)

where  PP(v) is the phase for the inspiral of point parti-
cles, and  tidal(v) is the contribution from tidal e↵ects.
The latter takes the form

 tidal(v) =
3

128⌘
v�5

2X

A=1

�A

M5XA


�24 (12� 11XA) v

10 +
5

28

�
3179� 919XA � 2286X2

A + 260X3
A

�
v12

+24⇡(12� 11XA)v
13

�24

✓
39927845

508032
� 480043345

9144576
XA +

9860575

127008
X2

A � 421821905

2286144
X3

A +
4359700

35721
X4

A � 10578445

285768
X5

A

◆
v14

+
⇡

28

�
27719� 22127XA + 7022X2

A � 10232X3
A

�
v15

i
, (5)

where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued
to be negligible and we refer to that paper for details.
Contributions to the phase at increasing PN order, for a
BNS system of (1.35, 1.35)M� with a sti↵ (MS1) EOS,
are illustrated in Fig. 4.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18], with maximum
residuals of ⇠ 0.02 (which will turn out to be negligible
compared to the measurability of �). Examples of such
fits for a soft (labeled SQM3), a moderate (H4), and a
sti↵ EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed

to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = �5

2
lim
r!1

⇣ r

M

⌘3
Z 1

�1
⌫(r, ✓)P2(cos ✓) d cos ✓, (6)

where P2(x) = (3x2 � 1)/2 is the second Legendre poly-
nomial, and ⌫ is a potential related to the metric of
a stationary axially symmetric body; more specifically,
the line element in the form introduced by Komatsu-
Eriguchi-Hachisu [66] reads:

ds2 = �e�2⌫dt2 + r2 sin2 ✓ e2� (d�� !dt)2

+ e2↵
�
dr2 + r2d✓2

�
, (7)

where the undetermined ↵,�, ⌫ are all functions of (r, ✓).
The quadrupole moment q is the leading-order (1/r3)
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FIG. 1: The tidal deformability parameter �(m) as a func-
tion of neutron star mass for three di↵erent EOS: a soft
one (SQM3), a moderate one (H4), and a sti↵ one (MS1).
Adapted from [18]. Curves are fitted quartic polynomials,
whose residuals are shown in the lower subplot. Only masses
within the unshaded region [1, 2]M� will be considered in our
analyses.

These demonstrated the dependence on the dimension-
less spin �, which for a fixed NS mass can be fit very well
up to the maximum spin value �max (also dependent on
the EOS) by a quadratic rule:

q ' �a�2, (8)

where a = aEOS(m) is a mass-dependent parameter. Fur-
ther evidence to support the quadratic relation Eq. (8) is
given in [69, 70]. The authors of [69, 71] also point out a
spin correction in the identification of multipole moments
that was previously overlooked; this correction preserves
the quadratic spin behaviour of Eq. (8), and vanishes in
the slow-rotation limit. Assuming that this relation will
hold for any EOS, we will only be concerned with the
spin-independent parameter a which, similar to the tidal
deformability parameter �, has a functional dependence
on the neutron mass that is determined by the EOS.

The e↵ect of such a quadrupole moment on the grav-
itational waveform emitted by a binary system was de-
rived in [49]. To Newtonian order it introduces an ad-
ditional coupling in the e↵ective gravitational potential,
between the mass quadrupole of each spinning neutron
star and the mass of its companion, whence the name
“quadrupole-monopole (QM) e↵ect”. In the stationary
phase approximation, the additional contribution to the
GW phase due to the QM interaction reads:

 QM(v) = � 30
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making it of 2PN order in phase. The parameter �QM

FIG. 2: The quadrupole parameter a(m) as a function of neu-
tron star mass for the three di↵erent EOSs in Fig. 1. The hor-
izontal dashed line indicates the value for black holes, which is
a = 1 [74]. Only masses within the unshaded region [1, 2]M�
will be considered in our analyses.

depends on masses and spins through

�QM =� 5

2

X

A=1,2

qA
⇣mA

M

⌘2 h
3(�̂A · L̂)2 � 1

i
(10)

'5

2

X

A=1,2

a(mA)
⇣mA

M

⌘2 h
3(�̂A · L̂)2 � 1

i
�2
A ,

where the unit vectors �̂A are the direction of the spins.
In the last line we used the rule (8); we see that with
this assumption,  QM(v) is quadratic in the component
spins. Finally, note that in the case of (anti-)aligned
spins, which we will assume throughout, 3(�̂A · L̂)2�1 =
2.
As mentioned above, in our simulations we will use

predictions for �(m) corresponding to di↵erent EOSs
from [18]. In order to compute a(m), we make use of
the recently discovered phenomenological Love-Q rela-
tion [72, 73], which is believed to hold irrespective of the
EOS:
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The relative fractional errors due to the universal fit were
estimated in [73] for several EOSs to be at the 1% level.
Together with Eqs. (10) and (9), this then allows us to
compute the QM contribution to the phase. Fig. 2 shows
a(m) for the EOSs in Fig. 1. QM contributions to the
phase are expected to be subdominant compared to the
tidal e↵ects of Sec. II B, even for relatively fast spinning
NS, as shown in Fig. 4.
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FIG. 3: The frequencies fLSO and fcontact as functions of m1,
m2 for the EOS shown in Fig. 1.

D. Termination of the waveform at contact

In the recent simulations [25, 26], the waveform was
cut o↵ at a frequency corresponding to the last stable
circular orbit (LSO) in the point particle limit, given by

fLSO =
1

63/2⇡M
. (12)

However, as we shall see below, it will often happen
that the two neutron stars attain physical contact be-
fore the corresponding distance between the components
is reached. In this paper, we instead impose the cuto↵

fcut = min{fLSO, fcontact}, (13)

where, using Kepler’s third law, the “contact frequency”
is given by

fcontact =
1

⇡

✓
M

R(m1) +R(m2)

◆1/2

. (14)

We stress that the termination condition (13) is still
a heuristic one, but it will be more realistic than termi-
nation at fLSO. Moreover, the length of the waveform
itself carries physical information [75], in this case on the
EOS, which we wish to incorporate [84]. On the other
hand, shorter waveforms have a smaller number of cycles
from which information can be extracted; when we come
to the results of our simulations we will see which e↵ect
wins out.

In order to compute the radii R(m1), R(m2), we again
make use of a recently discovered phenomenological re-
lation, this time between the compactness C = m/R and
� [76]:
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FIG. 4: Phase contributions of the QM e↵ect and tidal e↵ects
up to di↵erent PN orders as functions of GW frequency for
a (1.35, 1.35)M� binary with a sti↵ EOS (MS1). The QM
contribution from each NS scales quadratically with its spin
and is shown here for �1 = �2 = 0.1. The dashed vertical
lines indicate the contact and LSO frequencies.

For a given EOS (i.e a given relationship �(m)), the
above expression gives us R(m), from which the con-
tact frequency (14) is obtained. The relative error in
the compactness (and hence in the radius) due to the fit
of Eq. (15) was found to be at the 2% level, implying a
similar error in the contact frequency.
Fig. 3 shows the dependence of fLSO and fcontact on

component massesm1, m2 for the EOS considered above.
Note how in the astrophysically relevant range mA 2
[1, 2]M�, A = 1, 2, it often happens that fcontact < fLSO,
especially for low masses and for the sti↵er EOS (MS1)
which can support larger neutron star radii.

III. BAYESIAN METHODS FOR INFERRING
THE NEUTRON STAR EQUATION OF STATE

In this section we present two qualitatively di↵erent
Bayesian methods that one may use to acquire informa-
tion on the neutron star equation of state: (i) hypothesis
ranking for di↵erent proposed EOS based on how well
each of them matches the available data, and (ii) the es-
timation of parameters which for a given EOS will be the
same across sources. Both of these allow us to combine
information from multiple detections so as to arrive at a
stronger result. These methods were already explained
in [25]; for completeness we recall the basic ideas.

A. Hypothesis ranking

Given a set of (finitely many) EOS models
{M1,M2, . . . ,MK}, we will be interested in ranking them
in the light of the available data. The ranking process
will be on a set of hypotheses {Hi; i = 1, . . . ,K}, where
Hi states that Mi is the true model for the neutron star
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D. Termination of the waveform at contact

In the recent simulations [25, 26], the waveform was
cut o↵ at a frequency corresponding to the last stable
circular orbit (LSO) in the point particle limit, given by

fLSO =
1

63/2⇡M
. (12)

However, as we shall see below, it will often happen
that the two neutron stars attain physical contact be-
fore the corresponding distance between the components
is reached. In this paper, we instead impose the cuto↵

fcut = min{fLSO, fcontact}, (13)

where, using Kepler’s third law, the “contact frequency”
is given by

fcontact =
1

⇡

✓
M

R(m1) +R(m2)

◆1/2

. (14)

We stress that the termination condition (13) is still
a heuristic one, but it will be more realistic than termi-
nation at fLSO. Moreover, the length of the waveform
itself carries physical information [75], in this case on the
EOS, which we wish to incorporate [84]. On the other
hand, shorter waveforms have a smaller number of cycles
from which information can be extracted; when we come
to the results of our simulations we will see which e↵ect
wins out.

In order to compute the radii R(m1), R(m2), we again
make use of a recently discovered phenomenological re-
lation, this time between the compactness C = m/R and
� [76]:

C = 0.371� 3.91⇥ 10�2 ln
�

m5
+1.056⇥ 10�3

✓
ln

�

m5

◆2

.
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FIG. 4: Phase contributions of the QM e↵ect and tidal e↵ects
up to di↵erent PN orders as functions of GW frequency for
a (1.35, 1.35)M� binary with a sti↵ EOS (MS1). The QM
contribution from each NS scales quadratically with its spin
and is shown here for �1 = �2 = 0.1. The dashed vertical
lines indicate the contact and LSO frequencies.

For a given EOS (i.e a given relationship �(m)), the
above expression gives us R(m), from which the con-
tact frequency (14) is obtained. The relative error in
the compactness (and hence in the radius) due to the fit
of Eq. (15) was found to be at the 2% level, implying a
similar error in the contact frequency.
Fig. 3 shows the dependence of fLSO and fcontact on

component massesm1, m2 for the EOS considered above.
Note how in the astrophysically relevant range mA 2
[1, 2]M�, A = 1, 2, it often happens that fcontact < fLSO,
especially for low masses and for the sti↵er EOS (MS1)
which can support larger neutron star radii.

III. BAYESIAN METHODS FOR INFERRING
THE NEUTRON STAR EQUATION OF STATE

In this section we present two qualitatively di↵erent
Bayesian methods that one may use to acquire informa-
tion on the neutron star equation of state: (i) hypothesis
ranking for di↵erent proposed EOS based on how well
each of them matches the available data, and (ii) the es-
timation of parameters which for a given EOS will be the
same across sources. Both of these allow us to combine
information from multiple detections so as to arrive at a
stronger result. These methods were already explained
in [25]; for completeness we recall the basic ideas.

A. Hypothesis ranking

Given a set of (finitely many) EOS models
{M1,M2, . . . ,MK}, we will be interested in ranking them
in the light of the available data. The ranking process
will be on a set of hypotheses {Hi; i = 1, . . . ,K}, where
Hi states that Mi is the true model for the neutron star
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D. Termination of the waveform at contact

In the recent simulations [25, 26], the waveform was
cut o↵ at a frequency corresponding to the last stable
circular orbit (LSO) in the point particle limit, given by

fLSO =
1

63/2⇡M
. (12)

However, as we shall see below, it will often happen
that the two neutron stars attain physical contact be-
fore the corresponding distance between the components
is reached. In this paper, we instead impose the cuto↵

fcut = min{fLSO, fcontact}, (13)

where, using Kepler’s third law, the “contact frequency”
is given by

fcontact =
1

⇡
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. (14)

We stress that the termination condition (13) is still
a heuristic one, but it will be more realistic than termi-
nation at fLSO. Moreover, the length of the waveform
itself carries physical information [75], in this case on the
EOS, which we wish to incorporate [84]. On the other
hand, shorter waveforms have a smaller number of cycles
from which information can be extracted; when we come
to the results of our simulations we will see which e↵ect
wins out.

In order to compute the radii R(m1), R(m2), we again
make use of a recently discovered phenomenological re-
lation, this time between the compactness C = m/R and
� [76]:
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For a given EOS (i.e a given relationship �(m)), the
above expression gives us R(m), from which the con-
tact frequency (14) is obtained. The relative error in
the compactness (and hence in the radius) due to the fit
of Eq. (15) was found to be at the 2% level, implying a
similar error in the contact frequency.
Fig. 3 shows the dependence of fLSO and fcontact on

component massesm1, m2 for the EOS considered above.
Note how in the astrophysically relevant range mA 2
[1, 2]M�, A = 1, 2, it often happens that fcontact < fLSO,
especially for low masses and for the sti↵er EOS (MS1)
which can support larger neutron star radii.

III. BAYESIAN METHODS FOR INFERRING
THE NEUTRON STAR EQUATION OF STATE

In this section we present two qualitatively di↵erent
Bayesian methods that one may use to acquire informa-
tion on the neutron star equation of state: (i) hypothesis
ranking for di↵erent proposed EOS based on how well
each of them matches the available data, and (ii) the es-
timation of parameters which for a given EOS will be the
same across sources. Both of these allow us to combine
information from multiple detections so as to arrive at a
stronger result. These methods were already explained
in [25]; for completeness we recall the basic ideas.

A. Hypothesis ranking

Given a set of (finitely many) EOS models
{M1,M2, . . . ,MK}, we will be interested in ranking them
in the light of the available data. The ranking process
will be on a set of hypotheses {Hi; i = 1, . . . ,K}, where
Hi states that Mi is the true model for the neutron star
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FIG. 1: The tidal deformability parameter �(m) as a func-
tion of neutron star mass for three di↵erent EOS: a soft
one (SQM3), a moderate one (H4), and a sti↵ one (MS1).
Adapted from [18]. Curves are fitted quartic polynomials,
whose residuals are shown in the lower subplot. Only masses
within the unshaded region [1, 2]M� will be considered in our
analyses.

These demonstrated the dependence on the dimension-
less spin �, which for a fixed NS mass can be fit very well
up to the maximum spin value �max (also dependent on
the EOS) by a quadratic rule:

q ' �a�2, (8)

where a = aEOS(m) is a mass-dependent parameter. Fur-
ther evidence to support the quadratic relation Eq. (8) is
given in [69, 70]. The authors of [69, 71] also point out a
spin correction in the identification of multipole moments
that was previously overlooked; this correction preserves
the quadratic spin behaviour of Eq. (8), and vanishes in
the slow-rotation limit. Assuming that this relation will
hold for any EOS, we will only be concerned with the
spin-independent parameter a which, similar to the tidal
deformability parameter �, has a functional dependence
on the neutron mass that is determined by the EOS.

The e↵ect of such a quadrupole moment on the grav-
itational waveform emitted by a binary system was de-
rived in [49]. To Newtonian order it introduces an ad-
ditional coupling in the e↵ective gravitational potential,
between the mass quadrupole of each spinning neutron
star and the mass of its companion, whence the name
“quadrupole-monopole (QM) e↵ect”. In the stationary
phase approximation, the additional contribution to the
GW phase due to the QM interaction reads:

 QM(v) = � 30

128⌘
�QMv�1, (9)

making it of 2PN order in phase. The parameter �QM

FIG. 2: The quadrupole parameter a(m) as a function of neu-
tron star mass for the three di↵erent EOSs in Fig. 1. The hor-
izontal dashed line indicates the value for black holes, which is
a = 1 [74]. Only masses within the unshaded region [1, 2]M�
will be considered in our analyses.

depends on masses and spins through

�QM =� 5

2

X

A=1,2

qA
⇣mA

M

⌘2 h
3(�̂A · L̂)2 � 1

i
(10)

'5

2

X

A=1,2

a(mA)
⇣mA

M

⌘2 h
3(�̂A · L̂)2 � 1

i
�2
A ,

where the unit vectors �̂A are the direction of the spins.
In the last line we used the rule (8); we see that with
this assumption,  QM(v) is quadratic in the component
spins. Finally, note that in the case of (anti-)aligned
spins, which we will assume throughout, 3(�̂A · L̂)2�1 =
2.
As mentioned above, in our simulations we will use

predictions for �(m) corresponding to di↵erent EOSs
from [18]. In order to compute a(m), we make use of
the recently discovered phenomenological Love-Q rela-
tion [72, 73], which is believed to hold irrespective of the
EOS:

ln a(m) = 0.194 + 0.0936 ln
�

m5
+ 0.0474

✓
ln

�

m5

◆2

�4.21⇥ 10�3

✓
ln

�

m5

◆3

+ 1.23⇥ 10�4

✓
ln

�

m5

◆4

.

(11)

The relative fractional errors due to the universal fit were
estimated in [73] for several EOSs to be at the 1% level.
Together with Eqs. (10) and (9), this then allows us to
compute the QM contribution to the phase. Fig. 2 shows
a(m) for the EOSs in Fig. 1. QM contributions to the
phase are expected to be subdominant compared to the
tidal e↵ects of Sec. II B, even for relatively fast spinning
NS, as shown in Fig. 4.

The tidal deformability parameter λ(m) as a function of neutron star mass for three 
different EOS: a soft one (SQM3), a moderate one (H4), and a stiff one (MS1). Adapted 
from [18]. Curves are fitted quartic polynomials, whose residuals are shown in the lower 
subplot. Only masses within the unshaded region [1, 2]M⊙ will be considered in our 
analyses. 
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FIG. 10: The same as in Fig. 9, but now the signals not only
have Gaussian distributed masses, but non-zero spins as well.
Systematic errors remain, and statistical errors have increased
due to the larger parameter space that needs to be probed.

probed by the sampling algorithm.
Finally, we mention that the higher-order coe�cients

c1 and c2 are essentially unmeasurable in all the cases we
considered (with or without a Gaussian mass distribution
or spins); even with 100 sources, the posteriors are not
significantly di↵erent from the priors.

VI. DISCUSSION

We have revisited the question of how well the equa-
tion of state of neutron stars can be measured with obser-
vations of binary neutron star inspirals using Advanced
Virgo and Advanced LIGO. Our starting points were
the Bayesian model selection and parameter estimation
frameworks introduced in our earlier paper [25]. Given a
set of hypotheses associated with a list of di↵erent EOSs
one can calculate the odds ratios for all pairs in the set,
which provides a ranking in which EOSs that are more
similar to the underlying one will tend to come out near
the top, whereas EOSs that di↵er from it signficantly will
get deprecated. Another way to gain information about
the EOS from multiple sources is to model the tidal de-
formability �(m) as a series expansion in (m�m0)/M�
(with m0 some reference mass), which is truncated at
some suitable order. Since the coe�cients in such an ex-
pansion are source-independent, their posterior density
distributions can be combined. For the EOS we con-
sidered a “sti↵” (MS1), “moderate” (H4), and “soft”
(SQM3) equation of state, as well as the point particle
model (PP). In [25] it was found that for m0 = 1.4M�,
the deformability �(m0) could be determined with ⇠ 10%
accuracy by combining information from O(20) sources.
This was confirmed in recent work by Lackey and Wade
[26], who used a qualitatively similar waveform model as
in [25] but implemented a more physical parametrization
of the EOS in terms of piecewise polytropes.

We have significantly extended our earlier study [25],

not only by expanding the number of simulated BNS
sources, but also by incorporating as much of the rele-
vant astrophysics as has been analytically modeled, such
as tidal e↵ects to the highest known order [19], neutron
star spins, the quadrupole-monopole interaction [49, 50],
the impact of possible early waveform termination due
to the finite radii of the neutron stars, and a strongly
peaked Gaussian distribution of the component masses
[51–54].

In order to separate the impact of spins from the other
e↵ects, we first set spins to zero both in injections and
templates (in which case the QM e↵ect is also absent)
while retaining the tidal e↵ects as well as the potentially
earlier termination of the waveform, and looked at hy-
pothesis ranking for MS1 injections. When choosing a
wide, uniform distribution for the component masses,
we saw that, as in [25], EOSs tend to be ordered cor-
rectly according to sti↵ness and similarity to the true
EOS. On the other hand, the log odds ratios between
the incorrect and correct EOSs seemed to stretch to less
negative values, presumably because of early waveform
termination. Nevertheless (and again as in [25]), hy-
pothesis ranking worked well with catalogs of O(20) de-
tected sources. The picture changed dramatically when
the injected mass distribution was taken to be a strongly
peaked Gaussian while keeping the mass prior to be uni-
form and wide as before. In that case & 100 detections
were needed to approach the discernibility of EOS seen
in earlier work. Next we focused on a Gaussian distribu-
tion for the masses, and switched on spins. At least for
MS1 injections, this turned out not to have a significant
additional detrimental e↵ect on our ability to distinguish
between the EOSs. For H4, being in between MS1 and
SQM3 in terms of sti↵ness, we saw that the correct EOS
got ranked above the others a reasonable fraction of the
time, but the internal ordering became less clear. Finally,
for SQM3, even with catalogs of 100 sources only MS1
could be distinguished from the injected EOS reasonably
well, but not H4 or PP.

We also looked at parameter estimation for the coef-
ficients in a series expansion of �(m) in the small quan-
tity (m � m0)/M�, truncated at some suitable order.
Contrary to our earlier work we used a quadratic rather
than a linearized approximation; nevertheless we found
that, here too, only the leading-order coe�cient is mea-
surable. When the signals have a strongly peaked Gaus-
sian mass distribution rather than a flat one, again keep-
ing the wide, flat mass prior, systematic errors are intro-
duced. Switching on spins as additional parameters also
increases the statistical errors.

In the Appendix we investigated the e↵ect on parame-
ter estimation of the prior on the masses. We found that,
if we can assume to have exact knowledge of the astro-
physical distribution of the source masses so that it can
be used as the prior distribution, the biases in the esti-
mation of c0 largely disappear. Recent estimates for this
distribution [51–54] are based on a rather small number
of observed BNS systems and show dependence on the
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Develop analytical time-domain fits of post-merger waveforms 
and combine them with those of pre-merger waveforms. 

Use these waveforms to estimate errors in BNS parameters, 
including NS EOS parameters. 
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2

EOS parameter, to 10% accuracy. Our analysis is different in
that instead of constructing Bayesian posteriors of c

0

from the
inspiral waveform, we use the Fisher matrix to estimate the
mean population radius R

0

, as described above. SB: Should
we emphasize here that we determine R

0

to a better accuracy?
SB: I added this paragraph. In Ref. [19], Clark et al.

demonstrate how Principal Component Analysis can be used
to infer the post-merger waveform in various planned or pro-
posed detectors and deduce that in aLIGO the radius of a
BNS at a distance of 30 Mpc and with component masses of
1.35 M� each can be estimated to within 0.43km, which is a
3-4% error. Prima facie this result appears to agree with our
strong signal case discussed below, except that they do not ex-
plicitly account for the deterioration in the measurement aris-
ing from covariances of BNS masses and the post-merger os-
cillation frequency values, on one hand, and the improvement
in estimation accuracy that can be had from knowledge of the
component masses from the inspiral phase, on the other hand.
Here we show that the two effects somewhat compensate for
each other to yield a commensurate error for a single nearby
BNS source in aLIGO.
Postmerger waveforms. Numerical-relativity simulations
have now shown that the most likely (although not exclusive)
product of a BNS merger is a metastable HMNS that exists
for several tens of milliseconds before collapsing to a rotating
black hole. The GW emitted from such an oscillating, bar-
shaped object shows a strong dependence upon the stiffness
of the nuclear material and hence upon EOS [2]. Although
dependent on the total mass, mass ratio and EOS, the spec-
tral properties of the postmerger GW signal are quite robust,
characterized by the presence of certain prominent peaks at
increasing frequencies f

1

, f

2

, f

3

. These peaks are reminiscent
of spectral lines in atomic transitions; imprint in the spectrum
of the post-merger signal is the state of dense, nuclear matter.
The analogy with atomic spectral lines is broader as it is possi-
ble to infer cosmological redshift to a BNS merger from GW
observations alone, by measuring the Doppler shift in post-
merger spectral peaks of BNS mergers [20].

It is generally accepted that the most prominent, narrow
banded, f

2

peak (see Fig. 1) reflects the spinning frequency of
the m = 2 deformed HMNS, while the origin of the broader
f

1

peak is still a matter of debate. The fact that this peak is
short lived, disappearing after a few milliseconds, and is ac-
companied by a symmetric peak at even larger frequencies
f

3

⇠ 2f
2

� f

1

, supports the interpretation that it is a transient
signal produced right after the merger by the damped collision
of the two stars (see Refs. [10, 18] fora toy model).

Accurate model of the GW waveform from BNSs re-
quires computationally formidable, numerical-relativity cal-
culations. Since we are interested in a Fisher-matrix analy-
sis of the ability to measure the stellar compactness C from
' 100 binaries, it is clear that the accuracy and costs of the
numerical-relativity calculations would need to be replaced by
a less accurate but computationally efficient description of the
waveform. To this end, we propose a model for the postmerger
waveform using analytical fits in the time domain to a cata-

logue of numerical-relativity waveforms [10, 18], which can
be expressed as a superposition of damped sinusoids with a
time-evolving instantaneous frequency Ref. [19, 21]:
h(t) = ↵ exp(�t/⌧

1

)
⇥
sin(2⇡f

1

t) + sin(2⇡(f
1

� f

1✏)t) +

sin(2⇡(f
1

+f

1✏)t)
⇤
+exp(�t/⌧

2

) sin(2⇡f
2

t+2⇡�
2

t

2+⇡�

2

).
Here, t = 0 in the expression refers to the epoch of the merger
and hence the ansatz reproduces all of the postmerger signal;
this is to be contrasted with the ansatz considered in Ref. [21],
which models the waveforms only after their amplitudes have
decayed to half of their initial values. SB: The above fit not
only agrees very well with the signal spectra near f

1

and f

2

,
but also the signal phase in the time-domain. Therefore, when
combined with a semi-analytical model of the inspiral wave-
form, e.g., in terms of a post-Newtonian expansion with tidal
corrections, the fitting ansatz gives a complete analytic de-
scription of the signal from merging BNSs. The above fit,
parameterized by seven parameters (not counting the initial
phase �

2

) listed in Table I, produces an accurate representa-
tion of the waveform phase and a reasonably good description
of its amplitude. Top panels in Fig. 1 show numerical rela-
tivity waveforms and model analytical fits for four different
EOSs for sources at 50Mpc. Bottom panels show the corre-
sponding characteristic spectral amplitudes, 2

p
f |h̃(f)|, h̃(f)

being the Fourier transform h(t), together with the sensitivity
curves Advanced LIGO and the Einstein Telescope [22].

Two remarks are in order: First, the four EOSs chosen pro-
vide a good coverage of the plausible range in stiffness of
nuclear matter, but do not represent very soft EOSs, such as
APR4 [23] that have much more complex postmerger signals
[10, 18], with beats between different frequencies not repro-
duced with the simple fitting ansatz of this paper. Second, the
fits presented above refer to equal-mass systems. Although
masses of neutron stars in radio binaries do not differ signifi-
cantly, it is unlikely that LIGO sources have mass ratio q = 1.
Even so, the universal relations between frequencies f

1

and f

2

and the stellar properties continue to be valid also for systems
with mass ratio q & 0.8 [10, 18]. Furthermore, the inherent
spread in the values of f

1

and f

2

, when the EOS and the total
mass of the binary are kept constant, was found to be below
20% and 9%, respectively, and taken into account in deter-
mining the accuracy with which the neutron-star radius can
be inferred.

Our analytic waveform model facilitates the computation of
the Fisher information matrix to estimate measurement accu-
racy of f

1

and f

2

from GW observations. We illustrate this
for f

2

, but apply it for jointly estimating the errors in both
f

1

and f

2

as listed in Table I. The measurement errors de-
pend on the matched filter SNR of the signal. For a source
even at 50Mpc, the postmerger signal alone is not detectable.
As an example, consider the postmerger waveform with the
H4 EOS, with BNS masses of 2 ⇥ 1.325M� (H4-1325).
The bottom panel of Fig. 1 shows that at f

2

' 2450Hz,
|2h̃(f)f1/2| ' 10�22

/

p
Hz and the frequency bin-width is

�f ⇠ 100Hz. The noise amplitude for Advanced LIGO at
this frequency is Sh(f2) ' 1.26 ⇥ 10�46 Hz�1, yielding a
small SNR of [|2h̃(f)f |/�fSh(f)]

1/2 ' 0.89. A small SNR,
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FIG. 1. Top panels: GWs for four different EOSs and a representative mass of M = 2⇥ 1.325M�, with the fit being shown as a transparent
line of the same color. The postmerger waveforms extend to 25ms but we report only the initial 12ms to aid easy comparison with the fits.
Bottom panels: Corresponding spectral amplitudes and analytical fits of the waveforms with the same color convention, superposed on the
strain sensitivity curves of Advanced LIGO (adLIGO) and Einstein Telescope (ET). Similarly good matches in time and frequency have been
produced also for M = 2⇥ 1.25M� (cf. Table I and Fig. 5).
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ALF2-1325 2.05 15 2.64 10.37 �863 0.50 79 60 1.6
SLy-1325 2.30 1 3.22 13.59 �617 0.50 1137 74 2.0

TABLE I. Values of the parameters in the analytic waveform model
fits for equal-mass binaries. f1✏ = 50 Hz in all cases except SLy-
1250, for which it is 300 Hz. Note that �2 is adjusted to get the
initial phase of the f2 oscillations relative to f1 to match numerical
relativity waveforms. Here, �f1, �f2, and � := �C/C are Fisher
matrix estimates of measurement errors for a reference population of
100 binaries at a distance of 200Mpc.
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FIG. 1. Top panels: GWs for four different EOSs and a representative mass of M = 2⇥ 1.325M�, with the fit being shown as a transparent
line of the same color. The postmerger waveforms extend to 25ms but we report only the initial 12ms to aid easy comparison with the fits.
Bottom panels: Corresponding spectral amplitudes and analytical fits of the waveforms with the same color convention, superposed on the
strain sensitivity curves of Advanced LIGO (adLIGO) and Einstein Telescope (ET). Similarly good matches in time and frequency have been
produced also for M = 2⇥ 1.25M� (cf. Table I and Fig. 5).
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matrix estimates of measurement errors for a reference population of
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FIG. 1. Top panels: GWs for four different EOSs and a representative mass of M = 2⇥ 1.325M�, with the fit being shown as a transparent
line of the same color. The postmerger waveforms extend to 25ms but we report only the initial 12ms to aid easy comparison with the fits.
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produced also for M = 2⇥ 1.25M� (cf. Table I and Fig. 5).
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the ` = 2 dimensionless tidal Love number. For a GW sig-
nal with an SNR ' 10 the inspiral phase will determine M̄

with an accuracy of about 20–30% [24], which is better than
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FIG. 3. Quasi-universal relation between the tidal deformability pa-
rameter and the stellar compactness for the five EOSs considered
here. Indicated with a black solid line is the fit given by Eq. (6).

Fisher matrix analysis described in the main text. Although
most of the information on these relations has been presented
in a number of previous publications [9, 10, 18], it is useful to
recall it here.

We start by recalling some definitions. The tidal polariz-
ability parameter 

T

2

for a generic unequal-mass binary is de-
fined as



T
2

⌘ 2

"
q

✓
XA

CA

◆
5

k

A

2

+
1

q

✓
XB

CB

◆
5

k

B

2

#
, (2)

where A and B refer to the primary and secondary stars in the
binary,

q ⌘ MB

MA

 1 , XA,B ⌘
MA,B

MA +MB

, (3)

k

A,B

2

are the ` = 2 dimensionless tidal Love numbers, and
CA,B ⌘ MA,B/RA,B are the compactnesses. In the case of
equal-mass binaries, kA

2

= k

B
2

= k̄

2

, and expression (2) re-
duces to



T

2

⌘ 1

8
k̄

2

✓
R̄

M̄

◆
5

=
3

16
⇤ =

3

16

�

M̄

5

, (4)

where the quantity

� ⌘ 2

3
k̄

2

R̄

5

, (5)

is another common way of expressing the tidal Love number
for equal-mass binaries [12], while ⇤ ⌘ �/M̄

5 is its dimen-
sionless counterpart and was employed in [10].

A universal relation, which is also present at the level of
equilibrium solutions of nonrotating models, is the one relat-
ing the tidal deformability and the stellar compactness shown
in Fig. 3 for the five EOSs considered here. It is not difficult
to express this rather tight correlation with a polynomial of the
type

log
10

(T
2

) ' d

0

+ d

1

C + d

2

C2 + d

3

C3

, (6)

where d

0

= 6.29, d
1

= �37.41, d
2

= 85.68, d
3

= �101.07
for stable models with C > 0.05. It is shown as a black solid
line in Fig. 3. Note that this relation is valid over a range of
compactness that is much larger than the one considered in
the analysis here; more importantly, it effectively represents a
way to map any measured quantity expressed in terms of T

2

to a quantity expressed in terms of C and vice versa.
Figure 4 shows the quasi-universal behavior found numer-

ically. The left two panels refer to the f

1

and f

2

frequen-
cies when expressed as a function of the average compactness
C = M̄/R̄ of the neutron stars comprising the binary. Filled
circles of different colors refer to equal-mass binaries with
different EOSs, while the empty squares to unequal-mass bi-
naries, and stars to the hot-EOS binaries. Black solid lines
correspond to the analytic fits. The right two panels show f

1

and f

2

as a function of the tidal deformability parameter T
2

.
As before the black solid line shows the analytic fit. In all
cases the quasi-universal behaviour is not exact, but the dis-
persion in the correlation is fully accounted for in our analysis
LR: is this correct?

Fig. 5, analogous Fig. 1, shows numerical waveforms and
corresponding analytic fits for a series of low-mass binaries,
i.e., M = 2 ⇥ 1.250M�. Note that in this case too the match
between the numerical waveforms and the analytic ansatz is
very good, both in the time and frequency domains. Ob-
viously, even better matches can be obtained if the analytic
ansatz is extended to include also very high-frequency compo-
ments, namely, by including the modelling of the f

3

frequency
peak.

Finally, Fig. 6, complementary to Fig. 2, shows errors in
the reconstructed radii when the population of BNSs is char-
acterised by a single value of the average mass, i.e., either
M̄ = 1.250M� or M̄ = 1.320M�, for four different EOSs.
Different values of shading refer to different number of bina-
ries considered, i.e., N = 20, 50, 100.

The errors clearly grow as a function of the tidal deforma-
bility. In view of the discussion relative to Fig. 3 and the
quasi-universal relation (6), Fig. 6 essentially highlights a ba-
sic but important result: stellar radii measurements will be
more accurate for stiff EOSs, while they will systematically
suffer from larger uncertainties for soft EOSs.
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A C C U R A C Y  O F  
C O M PA C T N E S S

• Above: Statistical error estimates of f_2, and the compactness C deduced 
from it, for 100 post-merger systems distributed uniformly in aLIGO 
volume, with an average distance of 200 Mpc and SNR of 8. 

• If component masses can be determined to an accuracy of 10 - 20% from 
the inspiral phase, then the above compactness errors imply that the radius 
will be measured to an accuracy of ~10-20%. (But this is a loose statement 
since masses and radii will vary among the 100 sources.) 

• CAVEAT: At the moment systematic errors between post-merger 
waveforms from different NR groups can be as high as ~10% in estimating 
the compactness. (Compare this to a few percent statistical error listed in 
the table above, arising from detector noise.) 30

4

binary f1 ⌧1 f2 ⌧2 �2 ⇠2 ↵ �f1 �f2 �C/C �fMC
2 [�R/R]MC

[kHz] [ms] [kHz] [ms] [Hz2] [Hz3] [Hz] [Hz] [%] [Hz] [%]
GNH3-1250 1.60 2 2.30 23.45 38 -9.e2 0.46 371 29 1.0 14.3 1.8
H4-1250 1.65 5 2.22 20.45 -677 0.0 0.55 151 43 1.2 50 2.7
ALF2-1250 1.85 15 2.42 10.37 -3467 2.e4 0.55 66 133 3.4 62.5 3.0
SLy-1250 2.30 1 3.00 13.59 0 0.0 0.50 1683 82 2.2 52.0 2.4
GNH3-1325 1.70 2 2.45 23.45 342 5.e4 0.35 371 40 1.0 100 4.5
H4-1325 1.75 5 2.47 20.45 -1077 4.5e3 0.30 177 27 1.0 50 2.7
ALF2-1325 2.05 15 2.64 10.37 -863 2.5e4 0.50 79 60 1.6 97 4.0
SLy-1325 2.30 1 3.22 13.59 -617 5.5e4 0.50 1137 74 2.0 312 9.8

TABLE I. Parameter values for the analytic waveform models. �2 is adjusted to match numerical-relativity waveforms. �f1,2 are Fisher-matrix
errors estimates from postmerger signals in a single aLIGO detector for a reference population of 100 binaries with optimal orientation and
sky position, a distance of 200Mpc, and an integration time of 25ms. � C/C is deduced from �f2 by error-propagation using quasi-universal
relations. The errors in f2 and the average radius of a BNS population with identical component masses and EOS, distributed uniformly in
volume between 100 Mpc to 300 Mpc, and averaged over orientation and sky position, obtained from Monte-Carlo simulations are listed in
the last two columns, respectively.
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S U M M A R Y
• binary neutron star signals are to GW observations as atomic spectra 

are to EM observations 
• signature of nuclear equation of state is imprinted in the inspiral 

and post-merger signal  
• GW amplitude gives us distance and spectra could give us redshift  

• measuring the NS-EoS and radius via GW observations will take  
sometime 
• lack of accurate waveform models and systematic biases 
• unknown distribution of neutron star masses and spins 
• insufficient sensitivity at frequencies beyond ~ 500 Hz 
• difficulties with calibration of phase and amplitude of the data 

• third generation detectors, and probably new ideas, are needed to 
impact microphysics from GW observations 

32


