NEUTRON STAR RADIUS FROM GRAVITATIONALWAVE OBSERVATIONS

B.S. Sathyaprakash

Bert Elsbach Professor of Physics, Penn State University, USA and Professor of Physics, Cardiff University, UK DAWN III Workshop, Syracuse, July 6-7, 2017

Measuring Neutron Star Equation of State

Demorest+, Nature 2010

LIGO SENSITIVITY DURING FIRST OBSERVING RUN (O1)

EXPECTED NS-NS MERGER RATES
-f. observed short GRB rate ~ 0.1 to $10 \mathrm{yr}^{-1} \mathrm{Gpc}^{-3}$
-f. we won't observe all GRBs because
-f. most GRB satellites are not sensitive to the whole sky and gamma emission is not expected to be isotropic
-f. comoving volume rate depends on the beaming angle
-§. smaller the beaming angle, less likely we will observe them and so greater the intrinsic rate
-f. half beaming angle of $\left[5^{\circ}, 90^{\circ}\right]$ gives a comoving volume rate of $[0.1,1,000] \mathrm{yr}^{-1} \mathrm{Gpc}^{-3}$
-§. implies a detection rate of $\sim 0.03-30 \mathrm{yr}^{-1}$ at LIGOVirgo design sensitivity

BINARY NEUTRON STAR MERGER

Takami+ 2014

* binary neutron star mergers are multimessenger sources
* afterglows are largely driven by production of heavy elements by neutron capture (rprocess) and their nuclear decay

Jet-ISM shock (afterglow)

SPECTRUM OF NEUTRON-STAR BINARIES VIS-A-VIS BLACK HOLE-NEUTRON STAR OR BLACK-HOLE BINARIES

[Bartos, Brady, Marka, CQG 30, 123001 (2013)]

BINARY NEUTRON STARS: POST-MERGER WAVEFORMS

Takami, Rezzolla, Baiotti, 2014

BINARY NEUTRON STARS: POST-MERGER SPECTRUM

Takami, Rezzolla, Baiotti, 2014

ANATOMY OF A BINARY NEUTRON STAR COALESCENCE WAVEFORM

early inspiral modeled by post-Newtonian theory - $(\mathrm{v} / \mathrm{c})^{n}$
late inspiral modeled by effective one- merger and post-merger oscillations body
approximation
using numerical simulations

PHYSICAL EFFECTS IN BINARY NEUTRON STAR COALESCENCE WAVEFORMS

dominated by gravitational radiation back reaction - masses and spins
tidal effects appear at high
PN order, dynamical tides might be imoortant
complex physics of the merger remnant, multi-messenger source, signature of neutron star EoS

Image: Bernuzzi

SIGNATURE OF EOS IN BNS WAVEFORMS

- Tidal tensors $\varepsilon_{i j}$ of one of the component of the binary induces quadrupole moment $Q_{i j}$ in the other
- variation in the quadrupole moment causes GW emission
- in the adiabatic approximation

$$
Q_{i j}=-\lambda(m) \mathcal{E}_{i j}, \quad \lambda(m)=(2 / 3) k_{2}(m) R^{5}(m)
$$

- where $\lambda(\mathrm{m})$ is EoS dependent tidal deformability, $k_{2}(\mathrm{~m})$ is the Love number and R is the NS radius
- Just from the scaling this is a 5-PN effect $(\mathrm{v} / \mathrm{c})^{10}$

$$
\lambda=\frac{Q}{\mathcal{E}}=\frac{\text { size of quadrupole deformation }}{\text { strength of external tidal field }}
$$

Love number k_{2}

$$
\lambda=\frac{2}{3} k_{2} R^{5} \quad(G=c=1)^{\Lambda \equiv G \lambda\left(G m_{\mathrm{NS}} / c^{2}\right)^{-5}} \begin{array}{|c|c|c|}
\Lambda 00]
\end{array}
$$

image: J. Read

TIDAL TERMS IN THE INSPIRAL REGIME

$$
\begin{aligned}
\Psi(v)= & \Psi_{\mathrm{PP}}(v)+\Psi_{\text {tidal }}(v), \\
\Psi_{\text {tidal }}(v) & =\frac{3}{128 \eta} v^{-5} \sum_{A=1}^{2} \frac{\lambda_{A}}{M^{5} X_{A}}\left[-24\left(12-11 X_{A}\right) v^{10}\right. \\
& +\frac{5}{28}\left(3179-919 X_{A}-2286 X_{A}^{2}+260 X_{A}^{3}\right) v^{12} \\
& +24 \pi\left(12-11 X_{A}\right) v^{13} \\
& -24\left(\frac{39927845}{508032}-\frac{480043345}{9144576} X_{A}+\frac{9860575}{127008} X_{A}^{2}\right. \\
& \left.-\frac{421821905}{2286144} X_{A}^{3}+\frac{4359700}{35721} X_{A}^{4}-\frac{10578445}{285768} X_{A}^{5}\right) v^{14} \\
& \left.+\frac{\pi}{28}\left(27719-22127 X_{A}+7022 X_{A}^{2}-10232 X_{A}^{3}\right) v^{15}\right] \\
X_{A}= & m_{A} / M, A=1,2, \text { and } \lambda_{A}=\lambda\left(m_{A}\right)
\end{aligned}
$$

plus the quadrupole-monopole interaction

QUADRUPOLE-MONOPOLE TERM

- Spin-induced deformation leads to quadrupole that depends as spin-square

$$
\begin{gathered}
\Psi_{\mathrm{QM}}(v)=-\frac{30}{128 \eta} \sigma_{\mathrm{QM}} v^{-1} \\
\sigma_{\mathrm{QM}}=-\frac{5}{2} \sum_{A=1,2} q_{A}\left(\frac{m_{A}}{M}\right)^{2}\left[3\left(\hat{\chi}_{A} \cdot \hat{L}\right)^{2}-1\right] \\
\simeq \frac{5}{2} \sum_{A=1,2} a\left(m_{A}\right)\left(\frac{m_{A}}{M}\right)^{2}\left[3\left(\hat{\chi}_{A} \cdot \hat{L}\right)^{2}-1\right] \chi_{A}^{2} \\
q \simeq-a \chi^{2} \\
\mathcal{C}=0.371-3.91 \times 10^{-2} \ln \frac{\lambda}{m^{5}}+1.056 \times 10^{-3}\left(\ln \frac{\lambda}{m^{5}}\right)^{2}
\end{gathered}
$$

Agathos+, 2015

ACCURATE WAVEFORM MODELS IS KEY TO GW MEASUREMENT OF NS RADIUS

[Bernuzzi+, PRL 115, 091101 (2015)]

[Hinderer+, PRL 116, 181101 (2016)]

EOS USED IN AGATHOS + PAPER

The tidal deformability parameter $\lambda(m)$ as a function of neutron star mass for three different EOS: a soft one (SQM3), a moderate one (H4), and a stiff one (MS1). Adapted from [18]. Curves are fitted quartic polynomials, whose residuals are shown in the lower subplot. Only masses within the unshaded region [1, 2]M \odot will be considered in our analyses.

STATISTICAL AND SYSTEMATIC ERRORS ON CO

NS EQUATION OF STATE including the post-merger phase

MODELING BNS WAVEFORM BEYOND INSPIRAL

- Develop analytical time-domain fits of post-merger waveforms and combine them with those of pre-merger waveforms.
- Use these waveforms to estimate errors in BNS parameters, including NS EOS parameters.

BINARY NEUTRON STAR WAVEFORMS

$$
\begin{aligned}
& h(t)=\alpha \exp \left(-t / \tau_{1}\right)\left[\sin \left(2 \pi f_{1} t\right)+\sin \left(2 \pi\left(f_{1}-f_{1 \epsilon}\right) t\right)+\right. \\
& \left.\sin \left(2 \pi\left(f_{1}+f_{1 \epsilon}\right) t\right)\right]+\exp \left(-t / \tau_{2}\right) \sin \left(2 \pi f_{2} t+2 \pi \gamma_{2} t^{2}+\pi \beta_{2}\right) .
\end{aligned}
$$

Bose+, 2017

Bose+, 2017

SCALING RELATIONS: POST MERGER

$f_{1} \approx a_{0}+a_{1} \mathcal{C}+a_{2} \mathcal{C}^{2}+a_{3} \mathcal{C}^{3} \mathrm{kHz}$,
$f_{2} \approx b_{0}+b_{1} \mathcal{C}+b_{2} \mathcal{C}^{2} \mathrm{kHz}$,

Bose+, 2017

SCALING RELATIONS: POST MERGER

$f_{1} \approx c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3} \mathrm{kHz}$

$$
x=\left(\kappa_{2}^{T}\right)^{1 / 5}
$$

$f_{2} \approx 5.832-1.118 x \mathrm{kHz}$

Bose+, 2017

SCALING RELATIONS

$$
\log _{10}\left(\kappa_{2}^{T}\right) \simeq d_{0}+d_{1} \mathcal{C}+d_{2} \mathcal{C}^{2}+d_{3} \mathcal{C}^{3}
$$

MEASUREMENT
 ACCURACY OF COMPACTNESS

binary	f_{1}	τ_{1}	f_{2}	τ_{2}	γ_{2}	ξ_{2}	α	Δf_{1}	Δf_{2}	$\Delta \mathcal{C} / \mathcal{C}$	$\Delta f_{2}^{\mathrm{MC}}$	$[\Delta R / R]^{\mathrm{MC}}$
	$[\mathrm{kHz}]$	$[\mathrm{ms}][\mathrm{kHz}]$	$[\mathrm{ms}]$	$\left[\mathrm{Hz}^{2}\right]$	$\left[\mathrm{Hz}^{3}\right]$		$[\mathrm{Hz}]$	$[\mathrm{Hz}]$	$[\%]$	$[\mathrm{Hz}]$	$[\%]$	
GNH3-1250	1.60	2	2.30	23.45	38	$-9 . \mathrm{e} 2$	0.46	371	29	1.0	14.3	1.8
H4-1250	1.65	5	2.22	20.45	-677	0.0	0.55	151	43	1.2	50	2.7
ALF2-1250	1.85	15	2.42	10.37	-3467	$2 . \mathrm{e} 4$	0.55	66	133	3.4	62.5	3.0
SLy-1250	2.30	1	3.00	13.59	0	0.0	0.50	1683	82	2.2	52.0	2.4
GNH3-1325	1.70	2	2.45	23.45	342	$5 . \mathrm{e} 4$	0.35	371	40	1.0	100	4.5
H4-1325	1.75	5	2.47	20.45	-1077	4.5 e 3	0.30	177	27	1.0	50	2.7
ALF2-1325	2.05	15	2.64	10.37	-863	2.5 e 4	0.50	79	60	1.6	97	4.0
SLy-1325	2.30	1	3.22	13.59	-617	5.5 e 4	0.50	1137	74	2.0	312	9.8

- Above: Statistical error estimates of f_2, and the compactness C deduced from it, for 100 post-merger systems distributed uniformly in aLIGO volume, with an average distance of 200 Mpc and SNR of 8.
- If component masses can be determined to an accuracy of 10-20\% from the inspiral phase, then the above compactness errors imply that the radius will be measured to an accuracy of $\sim 10-20 \%$. (But this is a loose statement since masses and radii will vary among the 100 sources.)
- CAVEAT: At the moment systematic errors between post-merger waveforms from different NR groups can be as high as $\sim 10 \%$ in estimating the compactness. (Compare this to a few percent statistical error listed in the table above, arising from detector noise.)

SUMMARY

- binary neutron star signals are to GW observations as atomic spectra are to EM observations
- signature of nuclear equation of state is imprinted in the inspiral and post-merger signal
- GW amplitude gives us distance and spectra could give us redshift
- measuring the NS-EoS and radius via GW observations will take sometime
- lack of accurate waveform models and systematic biases
- unknown distribution of neutron star masses and spins
- insufficient sensitivity at frequencies beyond $\sim 500 \mathrm{~Hz}$
- difficulties with calibration of phase and amplitude of the data
- third generation detectors, and probably new ideas, are needed to impact microphysics from GW observations

