NEUTRON STAR RADIUS FROM GRAVITATIONAL-WAVE OBSERVATIONS

B.S. Sathyaprakash

Bert Elsbach Professor of Physics, Penn State University, USA and Professor of Physics, Cardiff University, UK DAWN III Workshop, Syracuse, July 6-7, 2017

FR€€

QUARKS

LIGO SENSITIVITY DURING FIRST OBSERVING RUN (O1)

EXPECTED NS-NS MERGER RATES

- ⋅ we won't observe all GRBs because
 - most GRB satellites are not sensitive to the whole sky and gamma emission is not expected to be isotropic
- comoving volume rate depends on the beaming angle
 - smaller the beaming angle, less likely we will observe them and so greater the intrinsic rate
- half beaming angle of [5°, 90°] gives a comoving volume rate of [0.1, 1,000] yr⁻¹ Gpc⁻³
 - implies a detection rate of ~ 0.03-30 yr⁻¹ at LIGO Virgo design sensitivity

BINARY NEUTRON STAR MERGER

Takami+ 2014

- binary neutron star mergers are multimessenger sources
- afterglows are largely driven by production of heavy elements by neutron capture (rprocess) and their nuclear decay

SPECTRUM OF NEUTRON-STAR BINARIES VIS-A-VIS BLACK HOLE-NEUTRON STAR OR BLACK-HOLE BINARIES

BINARY NEUTRON STARS: POST-MERGER WAVEFORMS

BINARY NEUTRON STARS: POST-MERGER SPECTRUM

Takami, Rezzolla, Baiotti, 2014

ANATOMY OF A BINARY NEUTRON STAR COALESCENCE WAVEFORM

Image: Bernuzzi

PHYSICAL EFFECTS IN BINARY NEUTRON STAR COALESCENCE WAVEFORMS

dominated by gravitational radiation back reaction - masses and spins

tidal effects appear at high PN order, dynamical tides might be important

complex physics of the merger remnant, multi-messenger source, signature of neutron star EoS

Image: Bernuzzi

SIGNATURE OF EOS IN BNS WAVEFORMS

- Tidal tensors \mathcal{E}_{ij} of one of the component of the binary induces quadrupole moment Q_{ij} in the other
- variation in the quadrupole moment causes GW emission
- in the adiabatic approximation

$$\begin{array}{l} \lambda = \displaystyle \frac{Q}{\mathcal{E}} = \displaystyle \frac{\text{size of quadrupole deformation}}{\text{strength of external tidal field}} & \text{Tidal deformability} \\ \text{Love number } k_2 & \lambda = \displaystyle \frac{2}{3}k_2R^5 & (G=c=1) \displaystyle \frac{\Lambda \equiv G\lambda(Gm_{\rm NS}/c^2)^{-5}}{\Lambda \in [300, 600]} \end{array}$$

image: J. Read

TIDAL TERMS IN THE INSPIRAL REGIME

$$\begin{split} \Psi(v) &= \Psi_{\rm PP}(v) + \Psi_{\rm tidal}(v), \\ \Psi_{\rm tidal}(v) &= \frac{3}{128\eta} v^{-5} \sum_{A=1}^{2} \frac{\lambda_A}{M^5 X_A} \left[-24 \left(12 - 11 X_A \right) v^{10} \right. \\ &\quad + \frac{5}{28} \left(3179 - 919 X_A - 2286 X_A^2 + 260 X_A^3 \right) v^{12} \\ &\quad + 24\pi (12 - 11 X_A) v^{13} \\ &\quad - 24 \left(\frac{39927845}{508032} - \frac{480043345}{9144576} X_A + \frac{9860575}{127008} X_A^2 \right. \\ &\quad - \frac{421821905}{2286144} X_A^3 + \frac{4359700}{35721} X_A^4 - \frac{10578445}{285768} X_A^5 \right) v^{14} \\ &\quad + \frac{\pi}{28} \left(27719 - 22127 X_A + 7022 X_A^2 - 10232 X_A^3 \right) v^{15} \right] \\ X_A &= m_A/M, \ A = 1, 2, \ \text{and} \ \lambda_A &= \lambda(m_A) \end{split}$$

plus the quadrupole-monopole interaction

QUADRUPOLE-MONOPOLE TERM

Spin-induced deformation leads to quadrupole that depends as spin-square

ACCURATE WAVEFORM MODELS IS KEY TO GW MEASUREMENT OF NS RADIUS

[Bernuzzi+, PRL 115, 091101 (2015)]

EOS USED IN AGATHOS+ PAPER

The tidal deformability parameter λ (m) as a function of neutron star mass for three different EOS: a soft one (SQM3), a moderate one (H4), and a stiff one (MS1). Adapted from [18]. Curves are fitted quartic polynomials, whose residuals are shown in the lower subplot. Only masses within the unshaded region [1, 2]M \odot will be considered in our analyses.

STATISTICAL AND SYSTEMATIC ERRORS ON C0

Agathos+, 2015

NS EQUATION OF STATE INCLUDING THE POST-MERGER PHASE

MODELING BNS WAVEFORM BEYOND INSPIRAL

- Develop analytical time-domain fits of post-merger waveforms and combine them with those of pre-merger waveforms.
- Use these waveforms to estimate errors in BNS parameters, including NS EOS parameters.

Bose+, 2017

Bose+, 2017

SCALING RELATIONS: POST MERGER $f_1 \approx a_0 + a_1 C + a_2 C^2 + a_3 C^3 \text{ kHz},$ $f_2 \approx b_0 + b_1 C + b_2 C^2 \text{ kHz},$

SCALING RELATIONS $\log_{10}(\kappa_2^T) \simeq d_0 + d_1 \mathcal{C} + d_2 \mathcal{C}^2 + d_3 \mathcal{C}^3,$

29

	binary	f_1	$ au_1$	f_2	$ au_2$	γ_2	ξ_2	α	Δf_1	Δf_2	$\Delta C/C$	Δf_2^{MC}	$[\Delta R/R]^{\mathrm{MC}}$
		[kHz]	[ms]	[kHz]	[ms]	$[Hz^2]$	$[Hz^3]$		[Hz]	[Hz]	[%]	[Hz]	[%]
MEASUREMENT	GNH3-1250	1.60	2	2.30	23.45	38	-9.e2	0.46	371	29	1.0	14.3	1.8
	H4-1250	1.65	5	2.22	20.45	-677	0.0	0.55	151	43	1.2	50	2.7
ACCURACY OF	ALF2-1250	1.85	15	2.42	10.37	-3467	2.e4	0.55	66	133	3.4	62.5	3.0
	SLy-1250	2.30	1	3.00	13.59	0	0.0	0.50	1683	82	2.2	52.0	2.4
COMPACTNESS	GNH3-1325	1.70	2	2.45	23.45	342	5.e4	0.35	371	40	1.0	100	4.5
	H4-1325	1.75	5	2.47	20.45	-1077	4.5e3	0.30	177	27	1.0	50	2.7
	ALF2-1325	2.05	15	2.64	10.37	-863	2.5e4	0.50	79	60	1.6	97	4.0
	SLv-1325	2.30	1	3.22	13.59	-617	5.5e4	0.50	1137	74	2.0	312	9.8

- Above: Statistical error estimates of f_2, and the compactness C deduced from it, for 100 post-merger systems distributed uniformly in aLIGO volume, with an average distance of 200 Mpc and SNR of 8.
- If component masses can be determined to an accuracy of 10 20% from the inspiral phase, then the above compactness errors imply that the radius will be measured to an accuracy of ~10-20%. (But this is a loose statement since masses and radii will vary among the 100 sources.)
- CAVEAT: At the moment systematic errors between post-merger waveforms from different NR groups can be as high as ~10% in estimating the compactness. (Compare this to a few percent statistical error listed in the table above, arising from detector noise.)

SUMMARY

- binary neutron star signals are to GW observations as atomic spectra are to EM observations
 - signature of nuclear equation of state is imprinted in the inspiral and post-merger signal
 - GW amplitude gives us distance and spectra could give us redshift
- measuring the NS-EoS and radius via GW observations will take sometime
 - lack of accurate waveform models and systematic biases
 - unknown distribution of neutron star masses and spins
 - insufficient sensitivity at frequencies beyond ~ 500 Hz
 - difficulties with calibration of phase and amplitude of the data
- third generation detectors, and probably new ideas, are needed to impact microphysics from GW observations