
Advanced LIGO Calibration Uncertainty for 
Precision Astrophysics

Craig Cahillane
July 10th, 2017



Table of Contents
● Motivation for Low Uncertainty
● What is Calibration?
● DARM Loop

○ Sensing Function C(f)
○ Actuation Function A(f)

● Markov Chain Monte Carlo (MCMC) over calibration parameters
● Gaussian Process Regression for unmodeled deviations
● Time-Dependent Parameter Corrections
● O1 + O2 Calibration Uncertainty Budgets
● Conclusions

2



● What is calibration?
○ Production of GW strain data from our detector data

● Why calibration uncertainty?
○ It’s the project I was handed when I was a first year 
○ No one cared until we made a detection
○ Now everyone cares
○ Imperative for precision astrophysics
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Motivation for Low Calibration Uncertainty

● We don’t want to just make detections, we want to do astrophysics with these detections
○ Source parameters 

■ Black hole masses, spins, luminosity distance, inclination, sky location, etc
○ Merger rates

■ Event rate, universal mass distribution, binary star formation
○ Tests of general relativity

■ Strong-field non-linear regime
○ Cosmology

■ Hubble constant measurements
● The accuracy and precision to which we know GW strain data affects all of the above
● Right now we aren’t calibration uncertainty limited, we are SNR limited

○ This won’t always be the case, when we start getting SNR ~ 700 detections in                 Super 
Advanced LIGO
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Impact of Cal Uncertainty on GW150914 Sky Location

GW150914 90% sky area with 10%, 10 degrees cal uncertainty = 231 square degrees

GW150914 90% sky area with NO cal uncertainty = 153 square degrees
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Gravitational Waves and Interferometers

● When a GW hits test particles, it stretches and squeezes 
them in a quadrupolar way

● An interferometer’s End Test Masses (ETMs) are like the 
above test particles

○ A GW changes the distances Lx and Ly
● When on resonance, or “locked”, an interferometer is 

hyper-sensitive to differential arm motion
○ DARM = Differential Arm Motion
○ LDARM = Lx - Ly

● We control this motion with the DARM control loop

Ly
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What is Calibration?
● Push on end mirrors by known amount with the 

photon calibrator laser (PCAL) [8]
○ This laser’s power is extremely well known     

(~2 Watts)
○ Imposes a fundamental limit on our test mass 

motion uncertainty of ~0.8%
● When we push on one end test mass, it simulates a 

gravitational wave incident on our detector
○ Light in the cavity is phase shifted into the 

antisymmetric port onto our photodetector
● This photodetector readout gives us our calibration 

from meters of test mass motion to arbitrary counts
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DARM Loop
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DARM Response
● The inverse detector response function R-1(f) is the transfer function from GW strain to DARM_ERR counts:

● This means that uncertainty in strain is equivalent to uncertainty in the response:
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Sensing Function C(f) Model

● Through the work of Buonanno and Chen, Robert Ward, Evan Hall, and Kiwamu and myself, the 
calibration group has a physical model for our interferometer

○ Buonanno and Chen modeled a signal-recycled interferometer using quantum optics [2].
○ Robert Ward converted the above into dual-recycled Fabry-Perot interferometer model [3].
○ Evan Hall showed the above model described detuning of the interferometer [4].
○ Kiwamu and I simplified the model down to the simple pole and optical spring we have today.
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Actuation Function A(f) Model

● We also have a complete model of our 
suspensions.

○ This is important because we actuate 
on our suspensions to keep the 
interferometer locked

○ The photon calibrator (PCAL), 
actuates on end optics using 
radiation pressure

■ This laser is our fundamental 
limit on calibration uncertainty

● With the model of the suspensions and the 
model of the interferometer, we have a 
complete physical model of our detector 
DARM control loop.
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Sensing Model 
Parameter Estimation

● We have calibration parameters      which 
describe the state of our detector.

○ Optical gain
○ Coupled cavity pole
○ Time delay
○ Optical spring frequency
○ Optical spring inverse Q

● We have a calibration model                and 
measurements     .

● We use a Markov Chain Monte Carlo 
(MCMC) method to find the most likely 
parameter values     given our data      and 
model              :
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Actuation Model Parameter Estimation
● Just two parameters here: Gain and Delay
● Do this for all three stages of actuation: AUIM, APUM, and ATST.
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Estimating Unmodeled Deviations from Measurement

● Want to find deviations from the calibration model for the sensing and actuation functions.
○ Known as systematic biases, or systematic errors

● Also need rigorous uncertainty estimation in this systematic bias

● Gaussian Process Regression
○ Mean Function:
○ Covariance Kernel:  
○ “A Gaussian Process is a collection of random variables, any finite number of which have a joint 

Gaussian distribution.” [6]
○ Uses training data      and covariance kernel               to create a distribution over functions
○ With this function distribution, we may rigorously sample to get potential fits to our training data 
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● Fit to residuals (meas/model) for our 
four functions C(f), AU(f), AP(f), AT(f)

● Shown: LLO Sensing Gaussian 
Process Regression Results

● Assumptions
○ Functions are smooth 

■ Can be described by 
simple lines

○ Uncertainty is gaussian
○ Time dependence of 

measurements is removed 
■ Can stack measurements

Gaussian Process Regression
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Time Dependent 
Parameter Uncertainty

We track changes in the interferometer in 
real time using calibration lines.

● Optical Gain
● Coupled Cavity Pole
● Electrostatic Drive Strength
● Electromagnetic Coil Drive Strength

Using the coherence of our calibration 
lines, we can calculate uncertainty in the 
lines themselves, and propagate forward 
to the time-dependent detector 
parameters.
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GW170104 Uncertainty Budgets
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Extreme Uncertainties Hanford Livingston

1σ Magnitude [%] -1.0 to +4.6 -3.7 to +3.7

1σ Phase [degrees] -0.9 to +1.8 -1.5 to +1.9



Nov - Jun O2 Uncertainty Budget Percentiles
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Nov - Jun O2 Uncertainty Budget Movie



Conclusion
● The uncertainty in gravitational wave strain data is improved from 10% and 10 degrees to 

~ 7.4% and 3.4 degrees from 20 to 1024 Hz for both detectors.
● The uncertainty budget is frequency dependent and quantifies known systematic biases
● This information from the uncertainty pipeline is getting incorporated into astrophysical 

parameter estimation pipelines
● Future work to further push down calibration uncertainty is underway
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