Advanced LIGO Calibration Uncertainty for Precision Astrophysics

Craig Cahillane July 10th, 2017

Table of Contents

- Motivation for Low Uncertainty
- What is Calibration?
- DARM Loop
 - Sensing Function C(f)
 - Actuation Function A(f)
- Markov Chain Monte Carlo (MCMC) over calibration parameters
- Gaussian Process Regression for unmodeled deviations
- Time-Dependent Parameter Corrections
- O1 + O2 Calibration Uncertainty Budgets
- Conclusions

O1 + O2 Calibration Uncertainty Budgets

- What is calibration?
 - Production of GW strain data from our detector data
- Why calibration uncertainty?
 - It's the project I was handed when I was a first year
 - No one cared until we made a detection
 - Now everyone cares
 - Imperative for precision astrophysics

Motivation for Low Calibration Uncertainty

- We don't want to just make detections, we want to do astrophysics with these detections
 - Source parameters
 - Black hole masses, spins, luminosity distance, inclination, sky location, etc.
 - Merger rates
 - Event rate, universal mass distribution, binary star formation
 - Tests of general relativity
 - Strong-field non-linear regime
 - Cosmology
 - Hubble constant measurements
- The accuracy and precision to which we know GW strain data affects all of the above
- Right now we aren't calibration uncertainty limited, we are SNR limited
 - This won't always be the case, when we start getting SNR ~ 700 detections in Advanced LIGO

Super

Impact of Cal Uncertainty on GW150914 Sky Location

GW150914 90% sky area with 10%, 10 degrees cal uncertainty = 231 square degrees

Plots from Chris Berry

Gravitational Waves and Interferometers

• When a GW hits test particles, it stretches and squeezes them in a quadrupolar way

Ring of test particles hit by plus polarized GW

- An interferometer's End Test Masses (ETMs) are like the above test particles
 - A GW changes the distances L_x and L_v
- When on resonance, or "locked", an interferometer is hyper-sensitive to differential arm motion
 - DARM = Differential Arm Motion
 - $L_{\text{DARM}} = L_{x} L_{y}$
- We control this motion with the DARM control loop

What is Calibration?

- Push on end mirrors by known amount with the photon calibrator laser (PCAL) [8]
 - This laser's power is extremely well known (~2 Watts)
 - Imposes a fundamental limit on our test mass motion uncertainty of ~0.8%
- When we push on one end test mass, it simulates a gravitational wave incident on our detector
 - Light in the cavity is phase shifted into the antisymmetric port onto our photodetector
- This photodetector readout gives us our calibration from meters of test mass motion to arbitrary counts

DARM Loop

DARM Response

• The inverse detector response function $R^{-1}(f)$ is the transfer function from GW strain to DARM_ERR counts:

 $h(f) = R^{-1}(f) d_{err}(f)$

• This means that uncertainty in strain is equivalent to uncertainty in the response:

$$\sigma_h(f) = \sigma_{R^{-1}}(f)$$

Sensing Function C(f) Model

- Through the work of Buonanno and Chen, Robert Ward, Evan Hall, and Kiwamu and myself, the calibration group has a physical model for our interferometer
 - Buonanno and Chen modeled a signal-recycled interferometer using quantum optics [2].
 - Robert Ward converted the above into dual-recycled Fabry-Perot interferometer model [3].
 - Evan Hall showed the above model described detuning of the interferometer [4].
 - Kiwamu and I simplified the model down to the simple pole and optical spring we have today.

Calibration Sensing Model C(f)

f^2	$\kappa_C(t)H_C$
$\overline{f^2 + f_S^2 - iff_S Q^{-1}}$	$\overline{1 + if/f_{CC}(t)}$

 $H_c = \text{Optical Gain}$ $\kappa_C(t) = \text{Gain Time-Dependent Scalar}$ $f_{cc}(t) = \text{Coupled Cavity Pole}$ $f_S = \text{Optical Spring Frequency}$

Q = Optical Spring Q

Meas Date: Jan 4, 2017

Meas Date: Nov 26, 2016

Actuation Function A(f) Model

- We also have a complete model of our suspensions.
 - This is important because we actuate on our suspensions to keep the interferometer locked
 - The photon calibrator (PCAL), actuates on end optics using radiation pressure
 - This laser is our fundamental limit on calibration uncertainty
- With the model of the suspensions and the ۲ model of the interferometer, we have a complete physical model of our detector DARM control loop.

Optical Sensor, Electromagnetic **Coil Actuators**

Drive

Meas Date: Jan 4, 2017

Meas Date: Nov 26, 2016

Sensing Model **Parameter Estimation**

- We have calibration parameters $\overline{\lambda}$ which describe the state of our detector.
 - **Optical** gain
 - Coupled cavity pole
 - Time delay
 - Optical spring frequency
 - Optical spring inverse Q
- We have a calibration model $\,M(ec{\lambda})\,$ and measurements d.
- We use a Markov Chain Monte Carlo (MCMC) method to find the most likely parameter values λ given our data d and model $M(ec{\lambda})$:

 $\log \mathcal{L}(\vec{d}|M,\vec{\lambda})$

 f_{CC} [Hz]

 $\delta \tau_C \ [\mu s]$

[Hz]

fs

LHO O2 Sensing Parameters Fit Measurement Date: Jan 04, 2017 000 69 6⁹. 0.045 0 0,030 0.015 030 0.045 Bo Co

 $H_C [mA/pm] f_{CC} [Hz]$ f_S [Hz] $\delta au_C \left[\mu \mathrm{s} \right]$

LHO

Actuation Model Parameter Estimation

- Just two parameters here: Gain and Delay
- Do this for all three stages of actuation: A_{UIM} , A_{PUM} , and A_{TST} .

18

Estimating Unmodeled Deviations from Measurement

- Want to find deviations from the calibration model for the sensing and actuation functions.
 - Known as systematic biases, or systematic errors
- Also need rigorous uncertainty estimation in this systematic bias
- Gaussian Process Regression
 - \circ Mean Function: $m(ec{x})$
 - \circ Covariance Kernel: $k(ec{x},ec{x}')$
- $f(\vec{x}) = \mathcal{GP}(m(\vec{x}), k(\vec{x}, \vec{x}'))$
- "A Gaussian Process is a collection of random variables, any finite number of which have a joint Gaussian distribution." [6]
- \circ Uses training data $ec{x}$ and covariance kernel $k(ec{x},ec{x}')$ to create a distribution over functions $f(ec{x})$
- With this function distribution, we may rigorously sample to get potential fits to our training data

Gaussian Process Regression

- Fit to residuals (meas/model) for our four functions C(f), A_U(f), A_P(f), A_T(f)
- Shown: LLO Sensing Gaussian Process Regression Results

- Assumptions
 - Functions are smooth
 - Can be described by simple lines
 - Uncertainty is gaussian
 - Time dependence of measurements is removed
 - Can stack measurements

Time Dependent Parameter Uncertainty

We track changes in the interferometer in real time using calibration lines.

- Optical Gain
- Coupled Cavity Pole
- Electrostatic Drive Strength
- Electromagnetic Coil Drive Strength

Using the coherence of our calibration lines, we can calculate uncertainty in the lines themselves, and propagate forward to the time-dependent detector parameters.

GW170104 Uncertainty Budgets

Extreme Uncertainties	Hanford	Livingston
1σ Magnitude [%]	-1.0 to +4.6	-3.7 to +3.7
1σ Phase [degrees]	-0.9 to +1.8	-1.5 to +1.9

Nov - Jun O2 Uncertainty Budget Percentiles

Nov - Jun O2 Uncertainty Budget Movie

Conclusion

- The uncertainty in gravitational wave strain data is improved from 10% and 10 degrees to ~ 7.4% and 3.4 degrees from 20 to 1024 Hz for both detectors.
- The uncertainty budget is frequency dependent and quantifies known systematic biases
- This information from the uncertainty pipeline is getting incorporated into astrophysical parameter estimation pipelines
- Future work to further push down calibration uncertainty is underway

Bibliography

[1] All O1 Detections paper, B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), <u>https://dcc.ligo.org/LIGO-P1600088/public</u>

[2] A. Buonanno and Y. Chen, *Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors,* <u>http://journals.aps.org/prd/abstract/10.1103/PhysRevD.65.042001</u>Phys. Rev. D \textbf{65}, 042001 (2002).

[3] Robert Ward, *Length Sensing and Control of a Prototype Advanced Interferometric Gravitational Wave Detector*, PhD Thesis. California Institute of Technology, 2010.

[4] Evan Hall, *Long-baseline laser interferometry for the detection of binary black-hole mergers*, PhD Thesis. California Institute of Technology, 2017.

[5] S. M. Aston et al. *Update on quadruple suspension design for Advanced LIGO,* Classical Quant. Grav. \textbf{29}, 235004 (2012).

[6] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning.

[7] Tara Chalermsongsak, *High Fidelity Probe and Mitigation of Mirror Thermal Fluctuations*, PhD Thesis. California Institute of Technology, 2014.

[8] Sudarshan Karki, et al. *The Advanced LIGO Photon Calibrators*, Review of Scientific Instruments **87**, 114503 (2016); doi: http://dx.doi.org/10.1063/1.4967303

26

[9] Darkhan Tuyenbayev, et al. *Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations*, CQG, Vol 34, Number 1

Bibliography

[10] M. Rakhmanov, J. D. Romano, J. T. Whelan. *High frequency corrections to the detector response and their effect on searches for gravitational waves*. CQG 25:184017, 2008

[11] R. Savage, M. Rakhmanov and H. Elliott. *LIGO high-frequency response to length- and GW-induced optical path length variations.* DCC: LIGO-G060667