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O1 + O2 Calibration
Uncertainty Budgets

e \What is calibration?
o Production of GW strain data from our detector data
e Why calibration uncertainty?
o It's the project | was handed when | was a first year
o No one cared until we made a detection
o Now everyone cares
o Imperative for precision astrophysics

Models
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Impact of Cal Uncertainty on GW150914 Sky Location

GW150914 90% sky area with 10%, 10 degrees cal uncertainty = 231 square degrees

GW150914 90% sky area with NO cal uncertainty = 153 square degrees
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Gravitational Waves and Interferometers

When a GW hits test particles, it stretches and squeezes
them in a quadrupolar way

Ring of test particles hit by
plus polarized GW
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An interferometer’'s End Test Masses (ETMs) are like the | LX
above test particles Powmes Reevola ; ETM,
o A GW changes the distances L and Ly

age Arm Cavity
When on resonance, or “locked”, an interferometer is &

hyper-sensitive to differential arm motion o il Recycling
Mirror
o DARM = Differential Arm Motion .
O LDARM = LX = Ly Photodetection

We control this motion with the DARM control loop



What is Calibration?

Push on end mirrors by known amount with the * MEADEEl
photon calibrator laser (PCAL) [8]
o This laser’s power is extremely well known
(~2 Watts)
o Imposes a fundamental limit on our test mass
motion uncertainty of ~0.8%
When we push on one end test mass, it simulates a
gravitational wave incident on our detector
o Lightin the cavity is phase shifted into the Powmes Reevola
antisymmetric port onto our photodetector
This photodetector readout gives us our calibration ;
from meters of test mass motion to arbitrary counts S Signal Recycling

Mirror
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DARM Loop

X_PCAL
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DARM Response

e The inverse detector response function R'(f) is the transfer function from GW strain to DARM_ERR counts:

h(f) = R (f) derr(f)

e This means that uncertainty in strain is equivalent to uncertainty in the response:

on(f) = or-1(f)

h(f) R(f) DARM_ERR(Y)
Strain Detector Response counts

R cos()
Inverse Detector Response Model




Sensing Function C(f) Model

e Through the work of Buonanno and Chen, Robert Ward, Evan Hall, and Kiwamu and myself, the
calibration group has a physical model for our interferometer
o Buonanno and Chen modeled a signal-recycled interferometer using quantum optics [2].
o Robert Ward converted the above into dual-recycled Fabry-Perot interferometer model [3].
o Evan Hall showed the above model described detuning of the interferometer [4].
o Kiwamu and | simplified the model down to the simple pole and optical spring we have today.

Calibration Sensing Model C(f)

f* ke(t)He

P+ fe—iffsQ11+if/foc(t)

H. = Optical Gain
kc(t) = Gain Time-Dependent Scalar
fee(t) = Coupled Cavity Pole
fs = Optical Spring Frequency
) = Optical Spring Q
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Actuation Function A(f) Model

e \We also have a complete model of our
suspensions. Optical Sensor,
o This is important because we actuate Electromagnetic
: Coil Actuators
on our suspensions to keep the
interferometer locked
o The photon calibrator (PCAL),
actuates on end optics using
radiation pressure
m This laser is our fundamental
limit on calibration uncertainty
e With the model of the suspensions and the
model of the interferometer, we have a
complete physical model of our detector
DARM control loop.

Electrostatic
Drive

From [5]




. Em . . . ‘ | ® g ° i |
UIM Model §  UIM Meas | T*deply
PUM Model PUM Meas
TST Model TST Meas |

| o |

100 200 500 1000 2000

Meas Date:
Jan 4, 2017

=IO [ Y] A LI e
50 100 200 500 1000 2000 5000
Frequency [Hz]




®-9 I
R | > .. I
| | | i Ay ‘i. o

UIM Model ®  UIM Meas

PUM Model A  PUM Meas

TST Model ¢ TST Meas

\

| | | |
10 20 50 100 200 500 1000 2000  500(

P S B S R ) o T TR |
oy I
BAMMA -4, | n Meas Date:

i [\ Nov 26, 2016

AA

50 100 200 500 1000 2000 5000
Frequency [Hz]




LHO O2 Sensing Parameters Fit
Measurement Date: Jan 04, 2017

Sensing Model
Parameter Estimation

e We have calibration parameters A which
describe the state of our detector.

fco [Hz)

o Optical gain
Coupled cavity pole
Time delay
Optical spring frequency

d1c [ps]

Optical spring inverse Q

—

We have a calibration model M()\) and
measurements ¢ .

fs [Hz]

We use a Markov Chain Monte Carlo
(MCMC) method to find the most likely 7
parameter values A\ given our data d and Q’Q-_r
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Actuation Model Parameter Estimation

Just two parameters here: Gain and Delay
Do this for all three stages of actuation: A ;,,;, Ay @Nd Ao
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Estimating Unmodeled Deviations from Measurement

e Want to find deviations from the calibration model for the sensing and actuation functions.

(@)

Known as systematic biases, or systematic errors

e Also need rigorous uncertainty estimation in this systematic bias

e Gaussian Process Regression f(f) — gp(m(f)a k(fa f’))

o

o

(@)

Mean Function: m(Z)

Covariance Kernel:  k(&, %)

“A Gaussian Process is a collection of random variables, any finite number of which have a joint
Gaussian distribution.” [6]

Uses training data ¢ and covariance kernel k(&, ') to create a distribution over functions f(Z)
With this function distribution, we may rigorously sample to get potential fits to our training data
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Gaussian Process Regression

Fit to residuals (meas/model) for our
four functions C(f), A (f), A(f), A(f)
Shown: LLO Sensing Gaussian
Process Regression Results

Assumptions

o Functions are smooth

m Can be described by
simple lines
o Uncertainty is gaussian
o Time dependence of
measurements is removed

m Can stack measurements
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Time Dependent
Parameter Uncertainty

We track changes in the interferometer in
real time using calibration lines.

e Optical Gain

e Coupled Cavity Pole

e Electrostatic Drive Strength

e Electromagnetic Coil Drive Strength

Measured k¢ (t)

Using the coherence of our calibration
lines, we can calculate uncertainty in the
lines themselves, and propagate forward
to the time-dependent detector

1 9OF =0

parameters. <2100 075 050 025 0.00 025 0.5
Time Around GW170104 [Hours]

= Reference foc Measured foo(t)
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GW170104 Uncertainty Budgets

Extreme Uncertainties Hanford Livingston
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Nov - Jun O2 Uncertainty Budget Percentiles
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Magnitude ‘Rmeas /Rmodel‘ [%]

Phase Z(Rmeas/Rmodel) [dEg]

LHO O2 Total Uncertainty Budget - GPSTime = 1164668096
Extreme Mag Uncs - 20-1024 Hz = (-1.75, 3.59), 1024-5000 Hz = (-3.33, 5.19)
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Conclusion

The uncertainty in gravitational wave strain data is improved from 10% and 10 degrees to
~ 7.4% and 3.4 degrees from 20 to 1024 Hz for both detectors.

The uncertainty budget is frequency dependent and quantifies known systematic biases
This information from the uncertalnty plpellne is gettlng mcorporated into’ astrophysmal
parameter estimation pipelines AN /% IS

Future work to further push down calrbratlon uncertalnty is underway
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