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Overview

e Predictions of mass and spin of remnant after
binary black hole (BBH) merger

e Numerical relativity (NR) can do this, but slow
e Approximate fits: quicker, less computation
e Goal: improve fit accuracy
e more data
e new techniques
e Compare new fits with previous work

e Healy and Lousto (2016)
e Current formulas in LSC Algorithm Library (LAL)



Application

-

o Effective One Body (EOB) formalism

e Compute waveform during merger and ringdown
e LAL uses mass and spin fits for this



Data and fitting methods

e Data: SXS catalog of BBH simulations

e Public: ~ 300
e Not yet public: ~ 1100

e Generic regression techniques



Parametric vs Non-parametric Fit

e Parametric fits optimize function parameters
e (e.g. y=Acoskx + B)
e Polynomial expansions (previous fits)
e Non-parametric fits use training data itself to
make predictions

o Gaussian Process Regression (GPR)
e Decision Tree Regression



Gaussian Process Regression (GPR)

e Kernel: nonlinear data transformation
o RBF kernel

K(x,x') = exp (=[x — x||?) (1)

e Training = set kernel hyperparameters ()



Decision Tree Regression

e Predictions based on
successive decisions ‘

about input parameters . p
o 4

e Training = construction of
decision tree from data

e Ensemble = combine
multiple decision trees




Measuring error

e Training and Validation set partition
e Designate subset of data not used in training



Spinless (~ 50 simulations)

e Only one input parameter (mass ratio g = M)

M,
e Fit with GPR



Spinless: remnant mass plot
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Spinless: remnant mass residuals
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Spinless: remnant spin plot
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Spinless: remnant spin residuals
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Aligned (~ 200 simulations)
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e Three input parameters (q, S1, S,)
e GPR vs Healy and Lousto (2016) - RIT



Aligned mass
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