SEARCH FOR HIGH-ENERGY NEUTRINOS FROM BINARY NEUTRON STAR MERGER GW170817 WITH ANTARES, ICECUBE, AND THE PIERRE AUGER OBSERVATORY

Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
Dept. of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
Dept. of Physics and Astronomy, University of California, Irvine, CA 92697, USA
Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
Dept. of Physics, University of California, Berkeley, CA 94720, USA
Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA
Dept. of Astronomy, Ohio State University, Columbus, OH 43210, USA
Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
Dept. of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
Dept. of Physics, University of Maryland, College Park, MD 20742, USA
Dept. of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany
Dept. of Physics, Sungkyunkwan University, Suwon 440-746, Korea
Dept. of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706, USA
Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
SNOLAB, 1039 Regional Road 24, Creighton Mine 9, Lively, ON, Canada P3Y 1N2
Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
Physik-department, Technische Universität München, D-85748 Garching, Germany
Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
Dept. of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA
Dept. of Astronomy, University of Wisconsin, Madison, WI 53706, USA
Eartquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
Dept. of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
CTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA
Dept. of Physics, University of Texas at Arlington, 502 Yates St., Science Hall Rm 108, Box 19039, Arlington, TX 76019, USA
Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
Université de Mons, 7000 Mons, Belgium
Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
Dept. of Physics, University of Wisconsin, River Falls, WI 54022, USA
Dept. of Physics, Yale University, New Haven, CT 06520, USA
School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA
Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
Dept. of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands
Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal
Osservatorio Astrofisico di Torino (INAF), Torino, Italy
INFN, Sezione di Torino, Torino, Italy
Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
University of Adelaide, Adelaide, S.A., Australia
Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Buenos Aires, Argentina
Universidad Nacional Autónoma de México, México, D.F., México
Universidad de Santiago de Compostela, Santiago de Compostela, Spain
Gran Sasso Science Institute (INFN), L’Aquila, Italy
INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy
Università di Pisa, I-56127 Pisa, Italy
INFN, Sezione di Pisa, I-56127 Pisa, Italy
QGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia
Laboratoire des Matériaux Avancés (LMA), CNRS/IN2P3, F-69622 Villeurbanne, France
SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91898 Orsay, France
California State University Fullerton, Fullerton, CA 92831, USA
European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
Chennai Mathematical Institute, Chennai 603103, India
Università di Roma Tor Vergata, I-00133 Roma, Italy
INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy
Università di Hamburg, D-22761 Hamburg, Germany
INFN, Sezione di Roma, I-00185 Roma, Italy
Cardiff University, Cardiff CF24 3AA, United Kingdom
Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam-Golm, Germany
APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France
Korea Institute of Science and Technology Information, Daejeon 34141, Korea
West Virginia University, Morgantown, WV 26506, USA
Università di Perugia, I-06123 Perugia, Italy
INFN, Sezione di Perugia, I-06123 Perugia, Italy
Syracuse University, Syracuse, NY 13244, USA
University of Minnesota, Minneapolis, MN 55455, USA
SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom
LIGO Hanford Observatory, Richland, WA 99352, USA
Caltech CaRT, Pasadena, CA 91125, USA
Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary
Columbia University, New York, NY 10027, USA
Stanford University, Stanford, CA 94305, USA
Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy
INFN, Sezione di Padova, I-35131 Padova, Italy
Institute of Physics, Eötvös University, Pázmány P. s. 1/A, Budapest 1117, Hungary
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland
Rochester Institute of Technology, Rochester, NY 14623, USA
University of Birmingham, Birmingham B15 2TT, United Kingdom
INFN, Sezione di Genova, I-16146 Genova, Italy
RRCAT, Indore MP 452013, India
Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
The Pennsylvania State University, University Park, PA 16802, USA
QGrav, University of Western Australia, Crawley, Western Australia 6009, Australia
Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
Artemis, Université Côte d’Azur, Observatoire Côte d’Azur, CNRS, CS 34229, F-06304 Nice Cedex 4, France
Institut FOTON, CNRS, Université de Rennes 1, F-35042 Rennes, France
Washington State University, Pullman, WA 99164, USA
University of Oregon, Eugene, OR 97403, USA
Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, F-75005 Paris, France
Carleton College, Northfield, MN 55057, USA
QGrav, University of Adelaide, Adelaide, South Australia 5005, Australia
Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland
VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
University of Maryland, College Park, MD 20742, USA
Submitted to ApJ

ABSTRACT

The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14-day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.

Keywords: neutrinos — gravitational waves — gamma-ray burst: individual

* Deceased, August 2016.
† Deceased, February 2017.
‡ Deceased, December 2016.
INTRODUCTION

The observation of binary neutron star mergers with multiple cosmic messengers is a unique opportunity that enables the detailed study of the merger process, and provides insight into astrophysical particle acceleration and high-energy emission (e.g., Faber & Rasio 2012; Berger 2014; Bartos et al. 2013; Abbott et al. 2017a). Binary neutron star mergers are prime sources of gravitational waves (GWs; e.g., Abadie et al. 2010), which provide information on the neutron star masses and spins (e.g., Veitch et al. 2015). Kilonova/macronova observations of the mergers provide further information on the mass ejected by the disruption of the neutron stars (e.g., Metzger 2017; Abbott et al. 2017b).

Particle acceleration and high-energy emission by compact objects are currently not well understood (e.g., Mészáros 2013; Kumar & Zhang 2015), and could be deciphered by combined information on the neutron star masses, ejecta mass, and gamma-ray burst (GRB) properties, as expected from multimessenger observations. In particular, the observation of high-energy neutrinos would reveal the hadronic content and dissipation mechanism in relativistic outflows (Waxman & Bahcall 1997). A quasi-diffuse flux of high-energy neutrinos of cosmic origin has been identified by the IceCube observatory (Aartsen et al. 2013). The source population producing these neutrinos is currently not known.

On August 17, 2017, the Advanced LIGO (Aasi et al. 2015) and Advanced Virgo (Acernese et al. 2015) observatories recorded a GW signal, GW170817, from a binary neutron star inspiral (Abbott et al. 2017c). Soon afterwards, Fermi-GBM and INTEGRAL detected a short GRB, GRB170817A, from a consistent location (Goldstein et al. 2017; Savchenko et al. 2017; Abbott et al. 2017a). Subsequently, ultra-violet, optical, and infrared emission was observed from the merger, consistent with kilonova/macronova emission. Optical observations allowed the precise localization of the merger in the galaxy NGC 4993, at equatorial coordinates $\alpha(J2000.0) = 13^h 09^m 48.085$, $\delta(J2000.0) = -23^\circ 22' 53.3' 343$ (Coulter et al. 2017b,a; Abbott et al. 2017d), and at a distance of ~ 40 Mpc. At later times, X-ray and radio emissions were also observed (Abbott et al. 2017d), consistent with the expected afterglow of a short GRB at high viewing angles (e.g., Abbott et al. 2017a).

High-energy neutrino observatories continuously monitor the whole sky or a large fraction of it, making them well suited to study emission from GW sources, even for unknown source locations or for emission prior to or after the GW detection (Adrián-Martínez et al. 2016a; Albert et al. 2017). It is also possible to rapidly analyze the recorded data and inform other observatories in case of a coincident detection, significantly reducing the source localization uncertainty compared to that provided by GW information alone.

In this Letter we present searches for high-energy neutrinos in coincidence with GW170817/GRB170817A by the three most sensitive high-energy neutrino observatories: (1) the ANTARES neutrino telescope (hereafter ANTARES; Ageron et al. 2011), a ten megaton-scale underwater Cherenkov neutrino detector located at a depth of 2500 m in the Mediterranean Sea; (2) the IceCube Neutrino Observatory (hereafter IceCube; Aartsen et al. 2017), a gigaton-scale neutrino detector installed 1500 m deep in the ice at the geographic South Pole, Antarctica; and (3) the Pierre Auger Observatory (hereafter Auger; Aab et al. 2015), a cosmic-ray air-shower detector consisting of 1600 water-Cherenkov stations spread over an area of ~ 3000 km2.

All three detectors joined the low-latency multimessenger follow-up effort of LIGO-Virgo starting with LIGO’s second observation run, O2.

Upon the identification of the GW signal GW170817, preliminary information on this event was rapidly shared with partner observatories (Abbott et al. 2017d). In response, IceCube (Bartos et al. 2017b,a,c), ANTARES (Ageron et al. 2017a,b), and Auger (Alvarez-Muniz et al. 2017) promptly searched for a neutrino counterpart, and shared their initial results with partner observatories. Subsequently, the three facilities carried out a more in-depth search for a neutrino counterpart using the precise localization of the source.

This Letter is organized as follows. In Section 2, we present the neutrino searches carried out by ANTARES, IceCube, and Auger, as well as the results obtained. In Section 3, we present constraints on processes in the merger that can lead to neutrino emission. We summarize our findings and conclude in Section 4.

SEARCHES AND RESULTS

Neutrino observatories detect secondary charged particles produced in neutrino interaction with matter. Surface detectors, such as Auger, use arrays of widely-spaced water Cherenkov detectors to observe the air-shower particles created by high-energy neutrinos. In detectors such as ANTARES and IceCube, three-dimensional arrays of optical modules deployed in water or ice detect the Cherenkov radiation from secondary charged particles that travel through the instrumented detector region. For these detectors, the secondary particles can create two main event classes: track-like events from charged-current interactions of muon neutrinos and from a minority of tau neutrino interactions; and shower-like events from all other interactions (neutral-current interactions and charged-current interactions of electron and tau neutrinos). While energy deposition in track-like events can happen over distances of O(km), shower-like events are confined to much smaller regions.

For all detectors, neutrino signals must be identified on top of a persistent background of charged particles produced by
the interaction of cosmic ray particles with the atmosphere above the detectors. This discrimination is done by considering the observed direction and energy of the charged particles. Surface detectors focus on high-energy ($\gtrsim 10^{17}$ eV) showers created close to the detector by neutrinos from near-horizontal directions. In-ice and in-water detectors can select well-reconstructed track events from the up-going direction where the Earth is used as a natural shield for the dominant background of penetrating muons from cosmic ray showers. By requiring the neutrino interaction vertex to be contained inside the instrumented volume, or requiring its energy to be sufficiently high to be incompatible with the down-going muon background, even neutrino events originating above the horizon are identifiable. Neutrinos originating from cosmic ray interactions in the atmosphere are also observed and constitute the primary background for up-going and vertex-contained event selections.

All three observatories, ANTARES, IceCube, and Auger, performed searches for neutrino signals in coincidence with the binary neutron star merger event GW170817, each using multiple event selections. Two different time windows were used for the searches. First, we used a ± 500 s time window around the merger to search for neutrinos associated with prompt and extended gamma-ray emission (Baret et al. 2011; Kimura et al. 2017). Second, we searched for neutrinos over a longer 14-day time window following the GW detection, to cover predictions of longer-lived emission processes (e.g., Gao et al. 2013; Fang & Metzger 2017).

2.1. ANTARES

The ANTARES neutrino telescope has been continuously operating since 2008. Located deep (2500 m) in the Mediterranean Sea, 40 km from Toulon (France), it is a 10 Mt-scale array of photosensors, detecting neutrinos with energies above $\mathcal{O}(100)$ GeV.

Based on the originally communicated locations of the GW signal and the GRB detection, high-energy neutrino candidates were initially searched for in the ANTARES online data stream, relying on a fast algorithm which selects only up-going neutrino track candidates (Adrián-Martínez et al. 2016b). No up-going muon neutrino candidate events were found in a ± 500 s time window centered on the GW event time – for an expected number of atmospheric background events of $\sim 10^{-2}$ during the coincident time window. An extended online search during ± 1 h also resulted in no up-going neutrino coincidences.

As it subsequently became clear, the precise direction of origin of GW170817 in NGC 4993 was above the ANTARES horizon at the detection time of the binary merger (see Fig. 1). Thus, a dedicated analysis looking for down-going muon neutrino candidates in the online ANTARES data stream was also performed. No neutrino counterparts were found in this analysis. The results of these low-latency searches were shared with follow-up partners within a few hours for the up-going search and a few days for the down-going search (Ageron et al. 2017a,b).

Here, ANTARES used an updated high-energy neutrino follow-up of GW170817 that includes the shower channel. It
was performed with the offline-reconstructed dataset, that incorporates dedicated calibration in terms of positioning, timing and efficiency (Adrián-Martínez et al. 2012; Aguilar et al. 2011; Aguilar et al. 2007). The analysis has been optimized to increase the sensitivity of the detector and extended to the longer time window of 14 days.

The search for down-going neutrino counterparts to GW170817 was made feasible as the large background affecting this dataset can be drastically suppressed by requiring a time and space coincidence with the GW signal. It was optimized, independently for tracks and showers, such that a directional coincidence with NGC 4993 within the search time window of ±500 s would have 3σ significance. Muon neutrino candidates were selected by applying cuts on the estimated angular error and the track quality reconstruction parameter. The energy range corresponding to the 5%–95% quantiles of the neutrino flux for a E^{-2} signal spectrum is equal to [32 TeV; 22 PeV], with a median angular error of 0.5°. Shower events were selected by applying a set of cuts primarily devoted to reducing the background rate (Albert et al. 2017). The energy range corresponding to the 5%–95% quantiles of the neutrino flux for a E^{-2} signal spectrum is equal to [23 TeV; 16 PeV], while the median angular error is 6° with this set of relaxed cuts.

No events temporally coincident with GW170817 were found. Five background track events (likely atmospheric muons), not compatible with the source position, were detected (see Fig. 1). We used this non-detection to constrain the neutrino fluence (see Fig. 2) which was computed as in Adrián-Martínez et al. (2016a).

The search over 14 days is restricted to up-going events, but includes all neutrino flavors (tracks and showers). We applied quality cuts optimized for point-source searches which give a median pointing accuracy of 0.4° and 3° respectively for track and shower events (Albert et al. 2017). No events spatially coincident with GRB170817A were found.

Compared to the upper limits obtained for the short time window of ±500 s, those limits are significantly less stringent above 1 PeV, where the absorption of neutrinos by the Earth becomes important for up-going events. Below 10 TeV, the constraints computed for the 14-day time window are stricter due to the better acceptance in this energy range for up-going neutrino candidates compared to down-going events (see Fig. 2).

2.2. IceCube

IceCube is a cubic-kilometer size neutrino detector (Aartsen et al. 2017) installed in the ice at the geographic South Pole in Antarctica between depths of 1450 m and 2450 m. Detector construction was completed in 2010, and the detector has operated with a ~99% duty cycle since. IceCube searched for neutrino signals from GW170817 using two different event selection techniques.

The first search used an online selection of through-going muons, which is used in IceCube’s online analyses (Kintscher & the IceCube Collaboration 2016; Aartsen et al. 2016) and follows an event selection similar to that of point source searches (Aartsen et al. 2014). This event selection picks out primarily cosmic-ray-induced background events, with an expectation of 4.0 events in the northern sky (predominantly generated by atmospheric neutrinos) and 2.7 events in the southern sky (predominantly muons generated by high energy cosmic rays interactions in the atmosphere above the detector) per 1000 seconds. For source locations in the southern sky, the sensitivity of the down-going event selection for neutrinos below 1 PeV weakens rapidly with energy due to the rapidly increasing atmospheric muon background at lower energies. Events found by this track selection in the ±500 s time window are shown in Fig. 1. No events were found to be spatially and temporally correlated with GW170817.

A second event selection, described in Wandkowski et al. (2017), was employed offline. This uses the outermost optical sensors of the instrumented volume to veto incoming muon tracks from atmospheric background events. Above 60 TeV, this event selection has the same performance as the high-energy starting event selection (Aartsen et al. 2014). Below this energy, additional veto cuts similar to those described in Aartsen et al. (2015) are applied, in order to maintain a low background level at energies down to a few TeV. Both track- and cascade-like events are retained. The event rate for this selection varies over the sky, but is overall much lower than for the online track selection described above. Between declinations -13° and -33°, the mean number of events in a two-week period is 0.4 for tracks and 2.5 for cascades. During the ±500 s time-window, no events passed this event selection from anywhere in the sky.

A combined analysis of the IceCube through-going track selection and the starting-event selection allows upper limits to be placed on the neutrino fluence from GW170817 between the energies of 1 TeV and 1 EeV, shown in Fig. 2. In the central range from 10 TeV to 100 PeV, the upper limit for an E^{-2} power-law spectral fluence is $F(E) = 0.19 \ (E/\text{GeV})^{-2} \ \text{GeV}^{-1} \ \text{cm}^{-2}$.

Both the through-going track selection and the starting event selection were applied to data collected in the 14-day period following the time of GW170817. Because of IceCube’s location at the South Pole and 99.88% on-time during the 14-day period, the exposure to the source location is continuous and unvaried. No spatially and temporally coincident events were seen in either selection during this follow-up period. The resulting upper limits are presented in Fig. 2. At most energies these are unchanged.
from the short time-window. At the lowest energies, where most background events occur, the analysis effectively requires stricter criteria for a coincident event than were required in the short time window; the limits are correspondingly higher. In the central range from 10 TeV to 100 PeV, the upper limit on an E^{-2} power-law spectral fluence is $F(E) = 0.23 \times (E/\text{GeV})^{-2} \text{GeV}^{-1} \text{cm}^{-2}$.

The IceCube detector is also sensitive to outbursts of MeV neutrinos via a simultaneous increase in all photomultiplier signal rates. A neutrino burst signal from a galactic core-collapse supernova would be detected with high precision (Abbasi et al. 2011). The detector global dark rate is monitored continuously, the influence of cosmic ray muons is removed and low-level triggers are formed when deviations from the nominal rate exceed pre-defined levels. No alert was triggered during the ± 500 second time-window around the GW candidate. This is consistent with our expectations for cosmic events such as core-collapse supernovae or compact binary mergers that are significantly farther away than Galactic distances.

2.3. Pierre Auger Observatory

With the surface detector (SD) of the Pierre Auger Observatory in Malargüe, Argentina (Aab et al. 2015), air showers induced by ultra-high energy (UHE) neutrinos can be identified for energies above $\sim 10^{17}$ eV in the more numerous background of UHE cosmic rays (Aab et al. 2015). The SD consists of 1660 water-Cherenkov stations spread over an area of $\sim 3000 \text{ km}^2$ following a triangular arrangement of 1.5 km grid spacing (Aab et al. 2015). The signals produced by the passage of shower particles through the SD detectors are recorded as time traces in 25 ns intervals.

Cosmic rays interact shortly after entering the atmosphere and induce extensive air showers. For highly inclined directions their electromagnetic component gets absorbed due to the large grammage of atmosphere from the first interaction point to the ground. As a consequence, the shower front at ground level is dominated by muons that induce sharp time traces in the water-Cherenkov stations. On the contrary, showers induced by downward-going neutrinos at large zenith angles can start their development deep in the atmosphere producing traces that spread over longer times. These showers have a considerable fraction of electrons and photons which undergo more interactions than muons in the atmosphere, spreading more in time as they pass through the detector. This is also the case for Earth-skimming showers, mainly induced by tau neutrinos (ν_τ) that traverse horizontally below the Earth’s crust, and interact near the exit point inducing a tau lepton that escapes the Earth and decays in flight in the atmosphere above the SD.

Dedicated and efficient selection criteria based on the different time profiles of the signals detected in showers created by hadronic and neutrino primaries, enable the search for Earth-skimming as well as downward-going neutrino-induced showers (Aab et al. 2015). Deeply-starting downward-going showers initiated by neutrinos of any flavor can be efficiently identified for zenith angles of $60^\circ < \theta < 90^\circ$ (Aab et al. 2015). For the Earth-skimming channel typically only ν_τ-induced showers with zenith angles $90^\circ < \theta < 95^\circ$ can trigger the SD. This is the most sensitive channel to UHE neutrinos, mainly due to the larger grammage and higher density of the target (the Earth) where neutrinos are converted and where tau leptons can travel tens of kilometers (Aab et al. 2015). The angular resolution of the Auger SD for inclined showers is better than 2.5°, improving significantly as the number of triggered stations increases (Bonifazi & Pierre Auger Collaboration 2009).

Auger performed a search for UHE neutrinos with its SD in a time window of ± 500 s centered at the merger time of GW170817 (Abbott et al. 2017d), as well as in a 14-day period after it (Gao et al. 2013; Fang & Metzger 2017).

The sensitivity to UHE neutrinos in Auger is limited to large zenith angles, so that at each instant they can be efficiently detected only from a specific fraction of the sky (Abreu et al. 2012; Aab et al. 2016). Remarkably, the position of the optical counterpart in NGC 4993 (Coulter et al. 2017b,a; Abbott et al. 2017d) is visible from Auger in the field of view of the Earth-skimming channel during the whole ± 500 s window as shown in Fig. 1. In this time period the source of GW170817 transits from $\theta \sim 93.3^\circ$ to $\theta \sim 90.4^\circ$ as seen from the center of the array. The performance of the Auger SD array (regularly monitored every minute) is very stable in the ± 500 s window around GW170817, with an average number of active stations amounting to $\sim 95.8 \pm 0.1$ % of the 1660 stations of the SD array.

No inclined showers passing the Earth-skimming selection (neutrino candidates) were found in the time window of ± 500 s around the trigger time of GW170817. The estimated number of background events from cosmic rays in a 1000 s period is $\sim 6.3 \times 10^{-7}$ for the cuts applied in the Earth-skimming analysis (Aab et al. 2015).

The absence of candidates in the ± 500 s window allows us to constrain the fluence in UHE neutrinos from GW170817, assuming they are emitted steadily in this interval and with an E^{-2} spectrum (Aab et al. 2016). Single-flavor differential limits to the spectral fluence are shown in Fig. 2, in bins of one decade in energy. The sensitivity of the observatory is largest in the energy bin around 10^{18} eV. The single-flavor upper limit to the spectral fluence is $F(E) = 0.77 (E/\text{GeV})^{-2} \text{GeV}^{-1} \text{cm}^{-2}$ over the energy range from 10^{17} eV to 2.5×10^{18} eV.

In the 14-day search period, as the Earth rotates, the position of NGC 4993 transits through the field of view of the Earth-skimming and downward-going channels. As seen
from the Pierre Auger Observatory, the zenith angle of the optical counterpart oscillates daily between \(\theta \sim 11^\circ \) and \(\theta \sim 121^\circ \). The source is visible in the Earth-skimming channel for \(\sim 4\% \) of the day, and in the downward-going channel for \(\sim 10.5\% \) (\(\sim 11.1\% \)) in the zenith angle range \(60^\circ < \theta < 75^\circ \) (\(75^\circ < \theta < 90^\circ \)). No neutrino candidates were identified in the two-week search period. Single-flavor differential limits to the spectral fluence are shown in Fig. 2. The corresponding upper limit to the spectral fluence is \(F(E) = 25 \frac{(E/\text{GeV})^{-2} \text{GeV}^{-1} \text{cm}^{-2}}{\delta} \) over the same energy interval as for the \(\pm500 \text{s} \) time window, where the difference is due to the relatively long periods of time when the source of GW170817 is not visible in the inclined directions.

3. DISCUSSION

We compared the expected spectral fluence for the emission processes to our observational upper limits to probe the properties of the merger and its aftermath. The merger occurred at a distance of \(\sim 40 \text{ Mpc} \), which is the distance of its host galaxy NGC 4993, identified through electromagnetic observations (Coulter et al. 2017b,a; Abbott et al. 2017d). The prompt gamma-ray emission from the source, GRB170817A, had an observed isotropic-equivalent energy of \(E_{\text{iso}} \approx 4 \times 10^{46} \text{erg} \), as recorded by Fermi-GBM (Abbott et al. 2017a). Fermi-GBM did not detect a temporally extended emission following GRB170817A, placing a constraint of \(\sim 2 \times 10^{46} \text{erg s}^{-1} \) for a 10 s long emission period over 1 keV–10 MeV (Abbott et al. 2017a), significantly below typical luminosities observed for extended emission.

GW data combined with the measured redshift of the host galaxy provide constraints on the viewing angle \(\theta \) of the binary orbit, defined as the angle between the binary orbital axis and the line of sight (LIGO Scientific and Virgo Collaborations et al. 2017). High-energy emission is expected to be beamed with a typical opening angle of \(3^\circ \sim 10^\circ \) around \(\Theta = 0 \) (Berger 2014). Adopting the Hubble constant from cosmic microwave background measurements by the Planck satellite (Ad et al. 2016), these data are consistent with \(\Theta = 0 \), but also allow for a misalignment of \(\Theta \leq 28^\circ \) at 90% credible level. Adopting the Hubble constant from Type Ia supernova measurements (Riess et al. 2016) gives a similar result with maximum misalignment of \(\Theta \leq 36^\circ \) at 90% credible level (LIGO Scientific and Virgo Collaborations et al. 2017).

The isotropic-equivalent energy of prompt gamma-ray emission (hereafter prompt emission) of GRB170817A is \(\sim 5 \) orders of magnitude below typical observed short-GRB energies (Berger 2014; Abbott et al. 2017a). This is consistent with a typical short GRB viewed off-axis (e.g., Ioka & Nakamura 2001). High-energy neutrino luminosity is typically considered to be proportional to gamma-ray luminosity assuming hadronic gamma-ray production (e.g., Murase et al. 2013), making the expected number of detected neutrinos from this event \(\ll 1 \). In Fig. 2, we show the expected neutrino spectral fluence from the prompt emission of a typical on-axis short GRB at 40 Mpc, in comparison to observational constraints for GW170817. It can be seen that even in this case, emission from a single merger event is unlikely to produce a detected neutrino for the considered observatories.

Prompt gamma-ray emission in at least some short GRBs is followed by a weaker, extended emission that can last for hundreds of seconds (Norris & Bonnell 2006; Kimura et al. 2017). Neutrinos associated with the extended emission expected from short GRBs may be the most promising signal for high-energy neutrino detections, due to the relatively low Lorentz factor resulting in high meson production efficiency (Kimura et al. 2017).

In Fig. 2 we compare our neutrino fluence constraints with expected neutrino emission from several models for typical GRB parameters (Kimura et al. 2017; Fang & Metzger 2017). For the most promising models from extended emission, we also show the effect of observing the source at different viewing angles, which is accounted for as a Doppler shift for the source flux (e.g., Yamazaki et al. 2003).1

GRB170817A’s observed prompt gamma-ray emission, as well as Fermi-GBM’s luminosity constraints for extended gamma-ray emission, are significantly below typical values for observed short GRBs. One possible explanation for this is the off-axis observation of the GRB.

Another possible explanation for faint gamma-ray emission is a sufficiently dense ejecta material that is present around the merger, which can attenuate gamma-rays. If a rapidly rotating neutron star forms in the merger and does not immediately collapse into a black hole, it can power a relativistic wind with its rotational energy, which may be responsible for the sometimes observed extended emission (Metzger et al. 2008). Optically thick ejecta from the merger can attenuate the gamma-ray flux, while allowing the escape of high-energy neutrinos. Additionally, it may trap some of the wind energy until it expands and becomes transparent. This process can convert some of the wind energy to high-energy particles, producing a long-term neutrino radiation that can last for days (Gao et al. 2013; Fang & Metzger 2017). The properties of ejecta material around the merger can be characterized from its kilonova/macronova emission.

Considering the possibility that the relative weakness of gamma-ray emission from GRB170817A may be partly due

\[F_{\text{off}}(E) = \frac{\eta F_{\text{on}}(E/\eta)}{\delta (\Theta)} \]

(Granot et al. 1999).

1 The off-axis emission of these models is approximated under the assumption that the jet opening angle is small compared to the jet viewing angle \(\Theta \). In this case we can use the relation \(F_{\text{off}}(E) = \frac{\eta F_{\text{on}}(E/\eta)}{\delta (\Theta)} \) with scaling factor \(\eta = \delta (\Theta) / \delta (0) \) accounting for different Doppler factors \(\delta (\Theta) = (\Gamma (1 - \beta \cos \Theta))^{-1} \) (Granot et al. 1999).
to attenuation by the ejecta, we compare our neutrino constraints to neutrino emission expected for typical GRB parameters. For the prompt and extended emissions, we use the results of Kimura et al. (2017) and compare these to our constraints for the relevant ±500 s time window. For extended emission we consider source parameters corresponding to both optimistic and moderate scenarios in Table 1 of Kimura et al. (2017). For emission on even longer timescales, we compare our constraints for the 14-day time window with the relevant results of Fang & Metzger (2017), namely emission from approximately 0.3 to 3 days and from 3 to 30 days following the merger. Predictions based on fiducial emission models and neutrino constraints are shown in Fig. 2. We find that our limits would constrain the optimistic extended-emission scenario for a typical GRB at ∼40 Mpc, viewed at zero viewing angle.

4. CONCLUSION

We searched for high-energy neutrinos from the first binary neutron star merger detected through GWs, GW170817, in the energy band of [∼10^{11} eV, ∼10^{20} eV] using the ANTARES, IceCube, and Pierre Auger Observatories, as well as for MeV neutrinos with IceCube. This marks an unprecedented joint effort of experiments sensitive to high-energy neutrinos. We have observed no significant neutrino counterpart within a ±500 s window, nor in the subsequent 14 days. The three detectors complement each other in the energy bands in which they are most sensitive (see Fig. 2).

This non-detection is consistent with our expectations from a typical GRB observed off-axis, or with a low-luminosity GRB. Possible gamma-ray attenuation in the ejecta from the merger remnant could also account for the low gamma-ray luminosity, which could mean stronger neutrino emission. Optimistic scenarios for such on-axis gamma-attenuated emission are constrained by the present non-detection.

While the location of this source was nearly ideal for Auger, it was well above the horizon for IceCube and ANTARES for prompt observations. This limited the sensitivity of the latter two detectors, particularly below ∼100 TeV. For source locations near, or below the horizon, a factor of ∼10 increase in fluence sensitivity to prompt emission from an E^{-2} neutrino spectrum is expected.

With the discovery of a nearby binary neutron star merger, the ongoing enhancement of detector sensitivity (Abbott et al. 2016) and the growing network of GW detectors (Aso et al. 2013; Iyer et al. 2011), we can expect that several binary neutron star mergers will be observed in the near future. Not only will this allow stacking analyses of neutrino emission, but it will also bring about sources with favorable orientation and direction.

The ANTARES, IceCube, and Pierre Auger Collaborations are planning to continue the rapid search for neutrino candidates from identified GW sources. A coincident neutrino, with a typical position uncertainty of ∼1 deg^2 could significantly improve the fast localization of joint events compared to the GW-only case. In addition, the first joint GW and high-energy neutrino discovery might thereby be known to the wider astronomy community within minutes after the event, opening a rich field of multimessenger astronomy with particle, electromagnetic, and gravitational waves combined.

ACKNOWLEDGMENTS

Figure 2. Upper limits (at 90 % confidence level) on the neutrino spectral fluence from GW170817 during a ±500 s window centered on the GW trigger time (top panel), and a 14-day window following the GW trigger (bottom panel). For each experiment, limits are calculated separately for each energy decade, assuming a spectral fluence $F(E) = F_{up} \times [E/\text{GeV}]^{-2}$ in that decade only. Also shown are predictions by neutrino emission models. In the upper plot, models from Kimura et al. (2017) for both extended emission (EE) and prompt emission are scaled to a distance of 40 Mpc, and shown for the case of on-axis viewing angle (0°) and selected off-axis angles to indicate the dependence on this parameter. GW data and the redshift of the host-galaxy constrain the viewing angle to $\Theta \in [0^\circ, 36^\circ]$ (see Section 3). In the lower plot, models from Fang & Metzger (2017) are scaled to a distance of 40 Mpc. All fluences are shown as the per flavor sum of neutrino and anti-neutrino fluence, assuming equal fluence in all flavors, as expected for standard neutrino oscillation parameters.
(ANTARES) The ANTARES authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat à l’énergie atomique et aux énergies alternatives (CEA), Commission Européenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and University of the Mediterranean (Marseille), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), région Île-de-France (DIM-ACA V), région Alsace (contrat CPER), région Provence-Alpes-Côte d’Azur, Département du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium für Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; National Authority for Scientific Research (ANCS), Romania; Ministerio de Economía y Competitividad (MINECO): Plan Estatal de Investigación (refs. FPA2015-65150-C3-1-P, -2-P and -3-P, (MINECO/FEDER)), Severo Ochoa Centre of Excellence and MultiDark Consolider (MINECO), and Prometeo and Grisolia programs (Generalitat Valenciana), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.

(IceCube) The IceCube collaboration acknowledges the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWV), Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Villum Fonden, Danish National Research Foundation (DNRF), Denmark.

(Auger) The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support:

Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Brazil – Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ); São Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3; Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC); Czech Republic – Grant No. MSMT CR LG15014, LO1305, LM2015038 and CZ.02.1.01/0.0/0.0/16_013/0001402; France – Centre de Calcul IN2P3/CNRS; Centre National de la Recherche Scientifique (CNRS); Conseil Régional Ile-de-France; Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS); Département Sciences de l’Univers (SDU-INSU/CNRS); Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63 within the Investments d’Avenir Programme Grant No. ANR-11-IDEX-0004-02; Germany – Bundesministerium für Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Württemberg; Helmholtz Alliance for Astroparticle Physics (HAP); Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen; Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg; Italy – Istituto Nazionale di Fisica Nucleare (INFN); Istituto Nazionale di Astrofisica (INAF); Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR); CETEMPS Center of Excellence; Ministero degli Affari Esteri (MAE); Mexico – Consejo Nacional de Ciencia y Tecnología (CONACYT) No. 167733; Universidad Nacional Autónoma de México (UNAM); PAPIIT DGAPA-UNAM; The Netherlands – Ministerie van Onderwijs, Cultuur en Wetenschap; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Stichting voor Fundamenteel Onderzoek der Materie (FOM);
Poland – National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11; National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5–2013/10/M/ST9/00062, UMO-2016/22/M/ST9/00198; Portugal – Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia (COMPETE); Romania – Romanian Authority for Scientific Research ANCS; CNDI-UEFISCDI partnership projects Grants No. 20/2012 and No. 194/2012 and PN 16 42 01 02; Slovenia – Slovenian Research Agency; Spain – Comunidad de Madrid; Fondo Europeo de Desarrollo Regional (FEDER) funds; Ministerio de Economía y Competitividad; Xunta de Galicia; European Community 7th Framework Program Grant No. FP7-PEOPLE-2012-IEF-328826; USA – Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689; National Science Foundation, Grant No. 0450696; The Grainger Foundation; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; European Union’s Horizon 2020 research and innovation programme (Grant No. 646623); and UNESCO.

LIGO and Virgo The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agency Estatal de Investigación, the Vicepresidência i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research, Development and Innovation Office Hungary (NKFI), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources.

REFERENCES

—. 2017, JINST, 12, P03012
Aasi, J., et al. 2015, Class. Quantum Grav., 32, 074001
Abadie, J., et al. 2010, Class. Quantum Grav., 27, 173001
—. 2017b, in prep.
—. 2017c, Phys. Rev. Lett., 119, 161101
Acernese, F., et al. 2015, Class. Quantum Grav., 32, 024001