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The	integration	of	squeezed	light	in	GEO 600	



Gravitational	waves	from	a	binary	neutron	star	inspiral
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Abbott	et	al.	(2017)	APJL	848(2),	L12.Abbott	et	al.	(2017)	PhysRevLet 119(16),	161101.
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Gravitational	waves	in	an	interferometer
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Michelson	interferometer



Sensitivity	of	GW	detectors
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Aasi et	al.	(2015)	CQG	32(7),	74001.

Advanced	LIGO	design	noise	budget:



Quantum	noise
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Advanced	LIGO	design	noise	budget:



coherent 	state : squeezed	state :
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Quantum	phasor	diagram

Heisenberg	uncertainty	relation:
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Quantum	noise	in	a	
Michelson	interferometer
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(not	to	scale!)

bright	coherent	
input	state

IFO	tuned	to	destructive	
interference	with	small	
DC	offset

vacuum	
fluctuations

● quantum	noise	in	IFO	explained:
Caves	(1980)	PRL 45(2),	75–79.



Squeezing	in	a	
Michelson	interferometer

● quantum	noise	in	IFO	explained:
Caves	(1980)	PRL 45(2),	75–79.

● suggested	squeezing:
Caves	(1981)	PhysRev D 28(8).
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squeezed
vacuum	state

(not	to	scale!)



Squeezing	in	GEO 600
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Outline

1. Long-term	operation	of	the	GEO 600	squeezed-light	source

2. Influence	of	imperfections

3. Practical	squeezing	injection	at	GEO 600
– phase	control
– alignment	control
– loss	mitigation
– dark	noise
– backscattering
– a	new	Faraday	design

4. Squeezing	results

5. Outlook
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The	GEO 600	squeezed-light	source

● build	and	characterized	at	the	AEI
● installed	at	GEO 600	in	2010

➔ 7+	years	of	24/7	operation
11
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Long-term	operation	and	degradation

● routine	maintenance:

– temperature	setpoint tuning

– occasional	alignment	tuning

● observed	power	degradation	in	green	path

● dirt	accumulating	on	optics	with	high	
impinging	green	power

➔ “laser-induced	contamination”

● mitigated	by	using	replacement	parts	
avoiding	all	suspected	contaminants
(glue,	thermal	paste,	vacuum	grease)
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Automation

● fully	automated	locking	of	all	squeezer	
subsystems

● implemented	in	digital	real-time	system	(CDS)

● relock	time	optimized	to	< 3 s

● mechanical	shutter	automatically	disconnects	
squeezer	from	IFO	in	case	of	error

● reaction	time	< 50 ms
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all PLLs locked

no excess noise

all squeezer 
subsystems locked

automation running

light on main PD
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shutter control delays mechanical
shutter

manual
override



Duty	cycle

14

total	
time
1949 d

science
time
1306 d

(full	data	recorded	since	2012)

squeezing	active
88 %	(1144 d)

squeezer	locked	but	
shutter	closed
6 %	(74 d)

external	problems
4 %	(54 d)

internal	problems
3 %	(33 d)

squeezing	active
70 %	(1367 d)

squeezer	locked	but	
shutter	closed
19 %	(361 d)

external	problems
7 %	(146 d)

internal	problems
4 %	(75 d)



Four	limiting	factors

15

Optical	losses Phase	noise Dark	noise Backscattering



Optical	losses
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Rl
� = (1� l)R� + l

● losses	mix	squeezed	state	with	unsqueezed vacuum

● effective	losses	are	caused	by:

– misalignment,	mode	mismatch,	polarization	mismatch

– non-perfect	escape	efficiency	of	OPA

– non-perfect	quantum	efficiency	of	detection	PD



Phase	noise
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R✓̃rms
� ⇡ R� cos2 ✓̃rms +R+ sin2 ✓̃rms

● phase	noise	couples	noise	from	the	antisqueezed
quadrature	to	the	squeezed	quadrature

● limits	the	amount	of	usable	nonlinear	gain



Dark	noise
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● electronic	dark	noise	is	the	second	highest	
contribution	at	high	frequencies	after	shot	noise



Backscattering
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Maximum	reachable	squeezing
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achieved	
at	GEO

best	tabletop
experiment
(Vahlbruch et	al.	(2016)	
PRL	117(11),	110801.)

long-term	
goal



Squeezing	injection	
at	GEO 600
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Squeezing	injection	
at	GEO 600
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Phase	control:	Coherent	control	scheme
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OMC	refl.
CCSBs	vs.	MISBs

OMC	trans.
CCSBs	vs.	IFO	carrier

pick	off
CCSBs	vs.	IFO	carrier old

new



Phase	control:	Performance

24

time	series	of	shot-noise	level spectrum	of	shot	noise	level	fluctuations

➔ published:
K.	Dooley,	E.	Schreiber,	H.	Vahlbruch et	al.	(2015)
“Phase	control	of	squeezed	vacuum	states	of	light	in
gravitational	wave	detectors.”	Optics	Express,	23(7),	8235.



Misalignment
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Alignment	control	with	DWS*
*differential	wavefront sensing
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Alignment	sensing	telescope
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OMC
reflection

scanner
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scanner

QPD2
single-element

PD QPD1

● 2	QPDs	with	90° Gouy-phase	offset

● mean	spot	position	centred on	QPD	
with	scanners



Automatic	alignment	in	action

● squeezing	not	yet	limited	by	fast	alignment	fluctuations

● will	get	more	important	with	lower	losses

● automatic	alignment	already	helps	a	lot	as	drift	control

● effectiveness	can	be	demonstrated	by	artificial	excitation:
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excitation

error-point	spectra time	series	of	shot-noise	level

➔ published:
E.	Schreiber,	K.	Dooley,	H.	Vahlbruch et	al.	(2016)
“Alignment	sensing	and	control	for	squeezed	vacuum
states	of	light.”	Optics	Express,	24(1),	146.	

(1	out	of	4	DOFs	shown)



Injection	path	losses
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non-perfect	OPA	
escape	efficiency:

7%

in-air	path
9%

in-vacuum	path
11%

OMC	and	detection	
losses:
10%

reflection	off	IFO:
1%

total	effective	loss:
32%

(improved	from	55% in	2012)



Loss	mitigation

● simplified	injection	path	to	reduce	
number	of	optical	components

● installed	super-polished	lenses	and	
waveplates

● in-situ	mode	matching	of	IFO	and	
squeezer	to	OMC

● polarization	tuning	with	remote-
controlled	waveplates

30

remote	controlled	
mode-matching	lens

remote	controlled	
waveplates



Reducing	dark	noise
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IFO	noise	w/o	squeezing
IFO	noise	w/	squeezing

old	dark	noise

new	dark	noise
simulation

● new	electronics	with	frequency-dependent	transimpendance amplifier	

● reduced	high-frequency	dark	noise	by	more	than	a	factor	of	four

● 0.2 dB	more	observed	squeezing	at	the	time

➔ published:
H.	Grote,	M.	Weinert et	al.	(2016).
“High	power	and	ultra-low-noise
photodetector	for	squeezed-light	enhanced	
gravitational	wave	detectors.”
Optics	Express,	24(18),	20107.



Backscattering

● noticed	occasional	excess	noise	that	got	
worse	when	increasing	the	input	squeezing

● explained	by	linear	coupling	of	squeezer	
phase	fluctuations	in	the	presence	of	
backscattering

● becomes	limiting	when	phase	noise	is	high	
or	when	isolation	is	compromised

● isolation	is	highly	sensitive	to
polarizer	rotation	and	angle	of
incidence

32



Improved	Faraday	setup

● assembly	on	breadboard	to	allow	
characterization	in	lab

● adjustable	angle	of	incidence	for	PBS	
cubes

● QPDs	at	all	rejection	ports	to	help	during	
alignment	and	polarization	tuning

➔ characterization	in	lab:

– 0.6 % single-pass	loss		(from	3–5 %)

– 44 dB	isolation		(from	~32dB)
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Squeezing	results
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-4.4 dB



Calculating	squeezing	level	from	two	reference	times

● algorithm:

1. get	PSD	of	h for	reference	times

2. estimate	noise	floor

3. calculate	spectral	ratio	of	noise	floors

4. average	over	band	of	interest

5. convert	to	decibel

➔ gives	highly	repeatable	squeezing	value
for	judging	even	small	changes
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Online	estimation	of	squeezing	level

36

● real-time	calculation	of	band-limited	RMS	of	detector	output

● normalized	to	account	for	changing	DC	power	on	PD

● can	be	calibrated	automatically	by	forcing	output	to	0 dB	with	shutter	closed



Squeezing	over	the	years
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Where	to	go	from	here?
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Thanks	
for	
listening!



Bonus	slides

credit:	Julian	Stratenschulte



Wigner	function	of	a	squeezed	state
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Phasor	diagrams
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Shot	noise	in	a	Michelson	interferometer
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beamsplitter
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Readout	schemes
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Hild	et	al.	(2009).	„DC-readout of a	signal-recycled
gravitational wave detector.“	CQG 26(5),	55012.



Standard	quantum	limit
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Standard	quantum	limit	with	squeezing
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● in	all	simple	dual-recycling	configurations:
limit	on	sensitivity-bandwidth	product

● more	precisely:

(depends	only	on	power	in	arms	and	arm	length)

Mizuno	limit
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varying	SRM	
reflectivity

H.	Miao,	G1500730



Backscatter	noise
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OPA

interferometer

isolatorinjection 
Faraday

backscatter path
stray	light	phase

squeezing	phase



Scattering	“shoulder”
(upconversion of	slow	large-amplitude	phase	fluctuations)
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GEO 600
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● British-German	GW	observatory

● 17 km	south	of	Hannover

● part	of	the	LIGO	Scientific	Collaboration

● the	GEO	on-site	team	consists	of:

– 3	operators,	1	technician

– 5	postdocs

– 2	PhD	students



Optical	layout
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Credit:	Roland	Schilling



GEO	noise	budget



Auxiliary	lasers

PLL

PLL

PLL

80 MHz

20 MHz ~1 GHz

15.2 MHz

80 MHz

master laser

from GEO 
main laser

coherent-control laser

p-pol. laser
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SHG*
*second	harmonic	generator
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Green	light	path

Mach–
Zehnder

SHG

to OPA

modecleaner

power 
monitor

manual 
power 
control

slow 
phase 
shifter

fast 
phase 
shifter

master 
laser
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OPA*
*optical	parametric	amplifier

2 · fCC

to GEO

coherent-control laser

alignment
beam

p-pol. laser

OPA

pump beam
coherent-control sidebands
p-polarized beam
squeezed vacuum
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PLL

PLL

2×

φ

BLRMS

OMC

RF

LF GW signal

IFO

AOM

GEO main laser

CC laser OPA

SHG

pump-phase control

sqz. phase control

noiselock

master laser

15.2 MHz
11.6 Hz

analogue path

digital path

80 MHz

80 MHz + δf

Full	phase	control	scheme
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Digital	control	of	the	squeezer	subsystems
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Digital	alignment	control	(CDS)	
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Tuning	the	alignment	setpoints:

59

● error	signals	are	not	zero
for	optimal	alignment

● optimal	error-point	offsets
change	slightly	over
periods	of	days

● possible	culprits:

– electronic	offsets

– first-order	coupling	of	spot	positions



OMC	modescan
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Loss	measurements
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Improving	residual	phase	noise
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● fighting	phase	noise	sources	at	the	
source

● important	contributor	is	optical	fibre
for	phase	lock	to	GEO	laser



PBS	characterization
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Dark	noise	caused	by	thermal	resistor	noise
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Grote	et	al.,	DCC	P1500203

● shot	noise	of	photo	current	(lower	with	squeezing):

● thermal	noise	(Johnson	noise):

● we	want	shot	noise	to	be	dominating:

● possible	solutions:

– cryogenic	electronics

– high	voltage

– frequency	dependent	impedance



● low	frequencies	see	low	impedance
➔ DC	current	does	not	cause	high	DV	voltage

● audio	frequencies	see	high	impedance
➔ strong	signal,	well	above	dark	noise

● needs	very	high	impedance	(~ 2H)
to	achieve	low	corner	frequency

● Barkhausen noise	(flipping	of	magnetic
domains	in	core	material)	was	initially
a	problem,

● solved	by	high-quality	inductor	with	stacked
mu-metal	core

Inductor	as	frequency	dependent	impedance
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Grote	et	al.,	DCC	P1500203



Squeezer	characterization
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during	backscatter	problems

good	performance



Varying	pump	power
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Polarization	tuning	1
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Polarization	tuning	2
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pros:
● very	simple	and	can	be	done	live
● all	known	noise	terms	can	be	included
cons:
● depends	a	lot	on	the	correctness	of	the	noise	model
● many	parameters	need	to	be	determined

Noise	subtraction
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pros:
● needs	no	assumptions	on	shape	and	level	of	shot	noise

cons:

● still	needs	squeezing	factor	as	input	parameter	which	is	hard	to	measure	
independently	with	high	accuracy

Finding	“unsqueezable”	noise
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pros:

● cancels	shot	noise	(and	other	uncorrelated	noises)	without	any	assumptions

cons:

● currently	not	implemented	(but	we	are	thinking	about	changing	that)

Cross	correlation	between	two	PDs
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|S cross |T = S 2
corr + 2

∆ T
T

S 2
shot

from IFO

OMC

50:50

strain signal

cross correlation



Separation	of	alignment	actuators
Setup

● ‘natural’	basis: ● rotated	basis:

assume	0 ≤ 𝜑 ≤ 90° (otherwise	flip	sign	of	one	actuator)
73
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Separation	of	alignment	actuators
Effect	on	dynamic	range
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(This	does	not	yet	consider	that	the	effect	of	the	individual	actuators	
also	depends	on	their	position	along	the	beam.)

0 10 20 30 40 50 60 70 80 90
actuator separation (degrees)

10-2

10-1

100
re

la
tiv

e 
ch

an
ge

 o
f d

yn
am

ic
 ra

ng
e

"strong" DOF
"weak" DOF

F
5

�⃗�>

−�⃗�5

‘weak’	DOF

‘strong’	DOF



Separation	of	alignment	actuators
Effect	on	cross-coupling	in	the	presence
of	parameter	uncertainties
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Masses	of	known	neutron	stars	and	black	holes

77Credit:	LIGO-Virgo/Frank	Elavsky/Northwestern University



Frequency-dependent	squeezing	with	EPR	entanglement
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Brown	et	al.	(2017)	PhysRev D,	96(6),	62003.


