

Ground-based Gravitational-wave detectors: Plans for the coming decade (and a bit beyond)

HEAD 2020 Chicago 20 March 2018

David Shoemaker
For the LIGO and Virgo Scientific Collaborations

Ground based detectors

- Initial observatories, and instruments, constructed starting in mid-90's
 - » NSF Physics for LIGO; Virgo's support from CNRS and INFN
- Observed, setting upper limits until 2011
- Both Virgo and LIGO undertook a complete rework of the instruments
- Advanced LIGO came on line in 2015 First discovery 15 Sept 2015
- Advanced Virgo came on line in 2017 First signal 14 August 2017

....then, on 17 August 2018....

Multimessenger Observations

Approximate timeline:

GW170817 - August 17, 2017 12:41:04 UTC = $\mathbf{t_0}$

GRB 170817A t₀ + 2 sec

LIGO signal found t₀ +6 minutes

LIGO-Virgo GCN reporting BNS signal associated with the time of the GRB t₀ +41 minutes

SkyMap from LIGO-Virgo $t_0 + 4$ hours

Optical counterpart found $t_0 + 11$ hours

- The localisation region became observable to telescopes in Chile 10 hours after the event time (wait for nightfall!)
- Approximately 70 ground- and space- based observatories followed-up on this event

Visual summary of signals to date

Near Future: 2019-20

- O2 The Second Advanced detector Observing Run was undertaken at 1/3-1/2 of the design sensitivity of the LIGO and Virgo instruments
- Currently both LIGO and Virgo improving sensitivity of instruments:
 - » Introduction of higher laser power and use of 'squeezed light' (better high frequency performance)
 - » Changes in Virgo Suspension (better low-frequency performance)
 - » Better baffling/scattered light handling (better stationarity)
 - » (for Advanced LIGO, these are undertaken with LIGO Lab Operating funds, and anticipated as part of the commissioning)
- Next: ~1 year long O3 run
 - » Start in Winter (late 2018/early 2019)
 - » LIGO with a NS-NS 'reach' of ~120 Mpc, Virgo ~65 Mpc
- What can we expect from O3? Best guesses:
 - » BBH: Several per month to several per week
 - » BNS: 1 to 10 in the year-long run
 - » NSBH: N=0 not ruled out in any scenario, most give ~50% N>0

6

5-year plan

LIGO-G1800450-v2

7

The advanced GW detector network

2025 Sensitivity/configuration:

5 detectors (add India and Japan) far improved source localization

~60% in 10 sq deg

Next LIGO Improvement: A+, ~2024

A+ 'elevator pitch'

- An incremental upgrade to aLIGO that leverages existing technology and infrastructure, with minimal new investment and moderate risk
 - » Target: factor of 1.7 increase in range over aLIGO
 - About a factor of 5 greater event rate (goes as the cube of sensitivity)
 - "Scientific breakeven" within 1/2 year of operation
- Could be observing within 6-7 years
- Incremental cost: a small fraction of aLIGO -- NSF Mid-Scale Project
- Requires some technical progress on
 - » High laser power handling
 - » Low optical losses
 - » Lower-mechanical loss optical coatings
 - (our principal thermal noise source)
- Sensitivity offers e.g., NSNS rates of 20-200 in a year observation
- Proposal in preparation to NSF Physics and the UK STFC

LIGO-G1800450-v2

11

Evolution of detectors

- aLIGO, AdV commission to full sensitivity by early 2020's
- A+, AdV+ add squeezing,
 lower thermal noise coatings;
 ~2024
- Voyager cryogenics to reduce thermal noise; ~2028
- ..at that point there is no choice but to seek longer arms
- → Einstein Telescope
- → Cosmic Explorer

LIGO-G1800450-v2

Not just about rates: With sensitivity comes new physics

Not just about rates: With sensitivity comes new physics

Not just about rates: With sensitivity comes new physics

Another Concept: Make Advanced LIGO 10x longer, 10x more sensitive

Signal grows with length – **not** most noise sources

- Thermal noise, radiation pressure, seismic, Newtonian unchanged
- Coating thermal noise improves faster than linearly with length
- 40km surface Observatory 'toy' baseline
 - can still find sites, earthmoving feasible; costs another limit...
- Concept offers sensitivity without new measurement challenges; could start at room temperature, modest laser power, etc.

3rd Generation

- When could this new wave of ground instruments come into play?
- Appears 15 years from t=0 is a feasible baseline
 - » Initial LIGO: 1989 proposal, and at design sensitivity 2005
 - » Advanced LIGO: 1999 White Paper, GW150914 in 2015
- Modulo funding, could envision 2030's
- Should hope and strive and plan to have great instruments ready to 'catch' the end phase of binaries seen in LISA (ref. Sesana)
- Worldwide community working together on concepts and the best observatory configuration for the science targets
- Crucial for all these endeavors: to expand the scientific community planning on exploiting these instruments far beyond the GR/GW enclave
 - » Costs are like TMT/GMT/ELT needs a comparable audience
 - » Events like GW170817 help!

LIGO-G1800450-v2

Summary on Future planning

- All ground-based interferometric detectors planning on working together LIGO, LIGO-India, Virgo, KAGRA
 - » Sharing data, analysis development and execution
 - » Sharing instrument science technology development
 - » Coordinating on observing and upgrade schedules
- Will share events via public alerts (GCN) with low latency to enable effective followup by EM/neutrino observers, Maximizing the joint MMA science
- Incremental funding enables incremental improvements for the next decade
- GWIC the Gravitational Wave International Committee coordinating development of '3rd Generation' instrument concepts and approaches
 - » Explicitly global to ensure the best science, and best use of resources
 - » Refinement of the science case currently underway
 - » Governance models being explored
 - » Will look for support from the EM/neutrino Observers when seeking funding for major new infrastructures and instruments

Expect the GW Field to be a growing and reliable partner for EM and neutrino observatories and observers

Just the beginning of a new field – new instruments, new discoveries, new synergies

