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What	is	machine	learning?

Machine	learning is	a	field	of computer	science that	
gives computers the	ability	to learnwithout	being	
explicitly	programmed.

[supposedly	Arthur	Samuel,	A.I.	pioneer	1959]

In computer	science Artificial	Intelligence	research	is	
defined	as	the	study	of	"intelligent	agents":	any	device	
that	perceives	its	environment	and	takes	actions	that	
maximize	its	chance	of	success	to	achieve	some	goal.

[Poole,	Mackworth	&	Goebel	1998]

Images	credit:	wikipedia

Linear	regression	is	the	simplest	example	
of	machine	learning:	the	parameters	of	a	
model	can	be	obtained	based	on	data,	
without	explicitly	setting	their	value
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Machine	learning	applications
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Machine	Learning	in	LIGO

• Many	successful	applications	to	data	analysis	and	detector	
characterization

https://wiki.ligo.org/MLA/ML_at_LIGO_and_VIRGO 4



How	about	control	problems?

By	R.	Routledge	- Image	from	"Discoveries	&	Inventions	of	the	Nineteenth	Century"	by	R.	Routledge,	
13th	edition,	published	1900.,	Public	Domain,	https://commons.wikimedia.org/w/index.php?curid=231047

System	parameter	
identification	and	

modeling

Optimal	control	
Kalman filter

Adaptive	control
Genetic	

programming

Anomaly	detection

Reinforcement	
learning

Time	series	
forecasting

Robotics

Self	driving	
vehicles

Video	games

Dynamical	systems	
numerical	integration
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Deep	Learning

Deep	
Learning

Linear	
regression

A	pinch	of	
non-linearity

N

and	an	awful	lot	of	data	and	computational	power…
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Artificial	neural	networks

• Neurons	can	be	organized	into	layers
• There	are	always	an	input	and	an

output	layer
• Intermediate	layers	are	called	hidden
• “Many”	hidden	layers	=	

deep	neural	network	(DNN)
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linear	activation	
function

7



Deep	Learning	in	Controls

Reinforcement	learning:	not	ready	yet	to	get	out	of	research	
and	into	real	world	applications
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Applications	of	Deep	Learning	in	GW	detectors

Non-linear	estimator	of	
longitudinal	degrees	of	
freedom	to	aid	lock	acquisition
Camera	image	processing	to	
extract	beam	spot	position
Discovery	of	non-linear	noise	
couplings	and	subtraction
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Huffington	Post
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IMAGE	PROCESSING	FOR	BEAM	
CENTERING
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Beam	spot	centering

• If	the	beam	is	miscentered on	the	test	masses,	angular	noise	couples	to	h(t):	bad!
• Beam	centering	/	actuator	balance	/	angle	to	length	tuning:	all	different	ways	to	

look	at	the	same	problem

LLO elog 33552
(May 2017)
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Simulation

• Random	seismic	angular	motion	of	both	test	masses
• Compute	the	cavity	axis	and	the	beam	spot	position
• Simulate	a	scatter	points	on	the

mirrors:	uniform	spatial
distribution,	Gaussian	
distribution	of	scatter	intensity

• Shine	the	beam	on	the	mirror
and	simulate	a	camera	image
with	some	angle	of	view	and
some	background	noise

• Input:	a	series	of	image	pairs	
(ITM	and	ETM)	for	each	time,	
with	the	beam	moving	as
dictated	by	the	mirror	angular	motions

Simulated	ITM	camera	image
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Simulation	results

Trained	on	1000	images
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But	how	to	train	it	for	the	real	system?

• Image	depends	on	(unknown!)	scatter	
distribution	and	camera	angle	/	magnification

• We	need	to	train	on	real	images
• Create	a	training	set
• We	can	modulate	pitch	and	yaw	of	

all	test	masses	in	a	known	way
• Use	high	frequency	high	amplitude	

angular	dither	lines,	demodulate	to	
measure	beam	spot	position	
(similar	to	current	A2L	procedure)

• Collect	some	tens	of	minutes	of	
data	at	~10-30	fps

• Train	on	images	and	measured	beam	spot
• The	trained	network	can	continuously	reconstruct	the	beam	

spot	positions	(mirror	angles)	without	need	for	angular	lines

yaw

roll
pitch

In-lock	A2L	
continuous	

measurement

Train	CNN	
offline
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NON-LINEAR	NOISE	COUPLINGS
Michael	Coughlin,	Rich	Ormistom,	Gabriele	Vajente,	Rana	Adhikari
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Neural	networks	as	function	approximators

• Can	a	neural	network	learn	non-linear	and	
non-stationary	couplings	in	Advanced	LIGO	noise?

• Start	simple	by	using	simulated	data	with	only	
one	noise	coupling	at	a	time
– Modulated	jitter	noise
– SRCL-like	sensing	noise	

with	double	modulation

• Rest	of	the	talk:
– Examples	of	generated	data
– Network	architecture
– Results	on	simulated	data
– Some	trial	with	real	data

Simulated	non	stationary	noise	coupling
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Simulated	data

• Two	noise	coupling	paths,	
modulated	by	different	seismic	
motion

• Witness:	sensing	noise,	
seismic	motions

• The	network	discovers	a	non	
trivial	transfer	function	
modulation,	training	on	a	few	
tens	of	minutes	of	data
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Real	Data	– LHO	during	O2

• The	network	is	able	to	discover	the	beam	
jitter	coupling	and	subtract

• Some	improvement	at	low	frequency	too
• We	did	not	expect	much	non-linearity	or	

non-stationarity	in	LHO/O2

H1:GDS-CALIB_STRAIN 
H1:PSL-DIAG_BULLSEYE_PIT_OUT_DQ 
H1:PSL-DIAG_BULLSEYE_YAW_OUT_DQ 
H1:PSL-DIAG_BULLSEYE_WID_OUT_DQ 
H1:IMC-WFS_A_DC_PIT_OUT_DQ 
H1:IMC-WFS_B_DC_PIT_OUT_DQ 
H1:IMC-WFS_A_DC_YAW_OUT_DQ 
H1:IMC-WFS_B_DC_YAW_OUT_DQ 
H1:ASC-DHARD_P_OUT_DQ 
H1:ASC-DHARD_Y_OUT_DQ 
H1:ASC-CHARD_P_OUT_DQ 
H1:ASC-CHARD_Y_OUT_DQ 
H1:LSC-CAL_LINE_SUM_DQ 
H1:LSC-SRCL_IN1_DQ 
H1:LSC-MICH_IN1_DQ 
H1:LSC-PRCL_IN1_DQ 
H1:PEM-EY_MAINSMON_EBAY_1_DQ 
H1:PEM-EY_MAINSMON_EBAY_2_DQ 
H1:PEM-EY_MAINSMON_EBAY_3_DQ 
H1:CAL-CS_LINE_SUM_DQ 
H1:CAL-PCALY_TX_PD_OUT_DQ 
H1:CAL-PCALY_EXC_SUM_DQ 
H1:SUS-ETMY_L3_CAL_LINE_OUT_DQ 18



Real	data	with	known	non-stationarity

• Back	to	(the	future)	2015,	
non-stationary	coupling	
of	SRCL	to	DARM
elogs 17912,	18026

• Dataset	available	for	
experiments	(contact	me)

DARM	during	a	SRCL	(stationary)	noise	
injection:	coupling	was	modulated	by	
SRC	alignment	fluctuations

DARM	during	a	quiet	period:	non	
stationary	noise	at	low	frequencies	
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Results

DARM	signal	[uncalibrated]

With	noise	injection

Without	noise	injection
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STATE	ESTIMATOR
Jamie	Rollins,	Gabriele	Vajente,	GautamVenugopalan
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Interferometers	are	highly	non-linear*
*when	they’re	not	 locked

• Highly	non	linear	problem
• Alternative	view:	good	linearized	error	signals	exist	in	

a	small	fraction	of	phase	space
• Let’s	focus	on	PRMI	for	this	talk	(easy	to	represent	in	

2D	plots,	enough	complexity	to	make	it	interesting)

Simulation

DRMI:	 Dual	Recycled	
Michelson	
Interferometer

PRMI:	 Power	Recycled	
Michelson	
Interferometer
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If	we	knew	the	mirror	position	at	all	times…

Lock	active	from	t=10s

All	plots	are	SIMULATIONS
23

Standard	lock	acquisition
based	on	power	triggering

What	we	could	do	with	a
continuous	 state	estimator

Lock	active	from	t=10s

versus



Use	a	Deep	Recurrent	Neural	Network

• Inputs:	optical	error	signals	(POP_DC,	REFL_DC,	POP_1F_I/Q,	etc…)
• Outputs:	MICH,	PRCL,	etc..	positions

24

We	are	dealing	with	time	series	of	 signals:	the	instantaneous	values	are	
not	enough	 to	predict	the	MICH/PRCL	positions.
We	need	 to	feed	the	network	some	past	history	of	optical	error	 signals:	
Recurrent	Neural	Networks	(RNN)	maintain	an	internal	memory



Train	in	simulation,	deploy	to	real	world

• Deep	Neural	Network	
learning	needs	a	lot	of	
training	examples	(105 - 106)

• Not	practical	to	do	it	online	
(and	we	don’t	have	the	
targets	in	the	real	system!!)

• Use	a	simulation of	the	
system	as	accurate	as	possible	
(including	uncertainties)	

• Train	on	the	simulated	data
• Deploy	on	the	real	system	and	

test	the	performance
• Fine	tune	if	needed
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Results
swinging	condition
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Real	data	/	Simulation
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Conclusions

• Machine	learning	techniques		
especially	Deep	Learning,	look	
very	promising

• Our	problems	and	applications	
are	quite	different	from	main	
stream	Deep	Learning

• Nowadays	it’s	easy	to	
implement	them	(lots	of	
ready	to	use	libraries

• But	Deep	Learning	or	Machine	Learning	are	not	always	the	
best	tool	for	the	job
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References

• G1701455	Talk	at	CSWG	call	08/02/17
• G1701589	Talk	at	LVC	meeting	08/28/17
• G1702072	Talk	at	CSWG	call	10/19/17
• G1702213	Talk	at	MLA	call	11/08/2017
• T1700466	Technical	note	”Deep	Learning	for	Lock	

Acquisition”
• https://git.ligo.org/gabriele-vajente/

machine-learning-lock-acquisition the	
actual	code

Deep	Learning	for	Lock	Acquisition:

Deep	Learning	introductions:

• www.deeplearningbook.org
• www.deeplearning.ai
• course.fast.ai
• MIT	course	on	AI	6.034	(online)
• Stanford	Machine	Learning	Course	CS229	(online)
• A.	Geron ‘Hands-on	 Machine	Learning	with	

Scikit-Learn	and	TensorFlow”	O’Reilly	 2017
• TensorFlow:	www.tensorflow.org
• PyTorch:	www.pytorch.org

Noise	subtraction:

• G1800334	talk at	LVC	meeting
• G1800589	talk	at	LVC	meeting
• https://git.ligo.org/gabriele-vajente/dn2

[dn]2 code
• https://git.ligo.org/rich.ormiston/DeepClean

DeepClean code

Beam	spot	position:

• G1800359	Talk at	LVC	meeting
• https://git.ligo.org/gabriele-vajente/beam-

spot-centering
The actual simulation and	network code

Joe	Leavenworth	- NYT 29


