Machine Learning and Controls in GW detectors

1and1.com

Image cred

Gabriele Vajente LIGO Laboratory Caltech GWADW 18 13th May 2018 Girdwood, Alaska

LIGO-G1800874-v2

What is machine learning?

In computer science Artificial Intelligence research is defined as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of success to achieve some goal.

[Poole, Mackworth & Goebel 1998]

Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed.

[supposedly Arthur Samuel, A.I. pioneer 1959]

Linear regression is the simplest example of machine learning: the parameters of a model can be obtained based on data, without explicitly setting their value

Machine learning applications

Machine Learning in LIGO

• Many successful applications to data analysis and detector characterization

LIGO

https://wiki.ligo.org/MLA/ML_at_LIGO_and_VIRGO

How about control problems?

Deep Learning

LIGO

and an awful lot of data and computational power...

Artificial neural networks

- Neurons can be organized into layers
- There are always an input and an output layer

Hidden

- Intermediate layers are called hidden •
- "Many" hidden layers = • deep neural network (DNN)

LIGO

https://en.wikipedia.org/wiki/Artificial_neural_network

Input

$$y_i = f\left(\sum_j W_{ij}x_j + b_i\right)$$

 $Y = f\left(W^{(O)}f\left(W^{(H)}f\left(W^{(I)}X + b^{(I)}\right) + b^{(H)}\right) + b^{(O)}\right)$

Output

including non-

function

Deep Learning in Controls

Reinforcement learning: not ready yet to get out of research and into real world applications

LIGO Applications of Deep Learning in GW detectors

Non-linear estimator of longitudinal degrees of freedom to aid lock acquisition Camera image processing to extract beam spot position Discovery of non-linear noise couplings and subtraction

IMAGE PROCESSING FOR BEAM CENTERING

Beam spot centering

• If the beam is miscentered on the test masses, angular noise couples to h(t): bad!

LIGO

• Beam centering / actuator balance / angle to length tuning: all different ways to look at the same problem

Simulation

- Random seismic angular motion of both test masses
- Compute the cavity axis and the beam spot position
- Simulate a scatter points on the mirrors: uniform spatial distribution, Gaussian distribution of scatter intensity

LIGO

- Shine the beam on the mirror and simulate a camera image with some angle of view and some background noise
- Input: a series of image pairs (ITM and ETM) for each time,
 with the beam moving as dictated by the mirror angular motions

Simulated ITM camera image

Simulation results

13

But how to train it for the real system?

- Image depends on (unknown!) scatter distribution and camera angle / magnification
- We need to train on real images
- Create a training set

- We can modulate pitch and yaw of all test masses in a known way
- Use high frequency high amplitude angular dither lines, demodulate to measure beam spot position (similar to current A2L procedure)
- Collect some tens of minutes of data at ~10-30 fps
- Train on images and measured beam spot
- The trained network can continuously reconstruct the beam spot positions (mirror angles) without need for angular lines

Michael Coughlin, Rich Ormistom, Gabriele Vajente, Rana Adhikari

NON-LINEAR NOISE COUPLINGS

- Can a neural network learn non-linear and non-stationary couplings in Advanced LIGO noise?
- Start simple by using simulated data with only one noise coupling at a time
 - Modulated jitter noise
 - SRCL-like sensing noise with double modulation
- Rest of the talk:

- Examples of generated data
- Network architecture
- Results on simulated data
- Some trial with real data

Simulated data

- Two noise coupling paths, modulated by different seismic motion
- Witness: sensing noise, seismic motions
- The network discovers a non trivial transfer function modulation, training on a few tens of minutes of data

Real Data – LHO during O2

H1:PSL-DIAG BULLSEYE YAW OUT DQ H1:PSL-DIAG BULLSEYE WID OUT DQ H1: IMC-WFS A DC PIT OUT DQ H1:IMC-WFS B DC PIT OUT DQ H1: IMC-WFS A DC YAW OUT DQ H1: IMC-WFS B DC YAW OUT DQ H1:ASC-DHARD P OUT DQ H1:ASC-DHARD Y OUT DQ H1:ASC-CHARD P OUT DQ H1:ASC-CHARD Y OUT DQ H1:LSC-CAL LINE SUM DQ H1:LSC-SRCL IN1 DQ H1:LSC-MICH IN1 DQ H1:LSC-PRCL IN1 DQ H1: PEM-EY MAINSMON EBAY 1 DQ H1: PEM-EY MAINSMON EBAY 2 DQ H1: PEM-EY MAINSMON EBAY 3 DO H1:CAL-CS_LINE_SUM_DQ H1:CAL-PCALY TX PD OUT DQ H1:CAL-PCALY EXC SUM DQ H1:SUS-ETMY L3 CAL LINE OUT DQ

- The network is able to discover the beam jitter coupling and subtract
- Some improvement at low frequency too
- We did not expect much non-linearity or non-stationarity in LHO/O2

Real data with known non-stationarity

 Back to (the future) 2015, non-stationary coupling of SRCL to DARM elogs 17912, 18026

LIGO

 Dataset available for experiments (contact me)

DARM during a quiet period: non stationary noise at low frequencies

SRC alignment fluctuations

19

Results

DARM signal [uncalibrated] Original noisy data 10³ 10-2 Noisy data With noise injection Network output Frequency [Hz] Denoised data 10-3 10² [ZHJ] I)-5 I0-5 10¹ · Ó 20 40 100 120 140 160 60 80 180 Network output 10³ 10^{-6} Frequency [Hz] 10^{-7} 100 101 10² 10² Frequency [Hz] 10^{-7} Without noise injection Noisy data Network output 10¹ Denoised data ò 20 40 60 80 100 120 140 160 180 10-8 De-noised data 10³ PSD [1/rHz] Frequency [Hz] 10⁻⁹ 10^{-10} 10¹ 20 60 120 140 100 160 180 0 40 80 10-11 Time [s] 100 101 10² 20 Frequency [Hz]

Jamie Rollins, Gabriele Vajente, Gautam Venugopalan

STATE ESTIMATOR

Interferometers are highly non-linear *when they're not locked

• Highly non linear problem

LIGO

- Alternative view: good linearized error signals exist in a small fraction of phase space
- Let's focus on PRMI for this talk (easy to represent in 2D plots, enough complexity to make it interesting)

DRMI: Dual Recycled Michelson Interferometer PRMI: Power Recycled Michelson Interferometer

If we knew the mirror position at all times...

Versus

All plots are SIMULATIONS

- Inputs: optical error signals (POP_DC, REFL_DC, POP_1F_I/Q, etc...)
- Outputs: MICH, PRCL, etc.. positions

We are dealing with time series of signals: the instantaneous values are not enough to predict the MICH/PRCL positions. We need to feed the network some past history of optical error signals: **Recurrent Neural Networks (RNN) maintain an internal memory** 2

Train in simulation, deploy to real world

- Deep Neural Network learning needs a lot of training examples (10⁵ - 10⁶)
- Not practical to do it online (and we don't have the targets in the real system!!)
- Use a simulation of the system as accurate as possible (including uncertainties)
- Train on the simulated data
- Deploy on the real system and test the performance
- Fine tune if needed

Results

Real data / Simulation

SIMULATION

Conclusions

 Machine learning techniques especially Deep Learning, look very promising

LIGO

- Our problems and applications are quite different from main stream Deep Learning
- Nowadays it's easy to implement them (lots of ready to use libraries

www.mrmoneymustache.

000

 But Deep Learning or Machine Learning are not always the best tool for the job

References

Deep Learning introductions:

- <u>www.deeplearningbook.org</u>
- <u>www.deeplearning.ai</u>
- <u>course.fast.ai</u>

LIGO

- MIT course on AI 6.034 (online)
- Stanford Machine Learning Course CS229 (online)
- A. Geron 'Hands-on Machine Learning with Scikit-Learn and TensorFlow" O'Reilly 2017
- TensorFlow: <u>www.tensorflow.org</u>
- PyTorch: <u>www.pytorch.org</u>

Deep Learning for Lock Acquisition:

- G1701455 Talk at CSWG call 08/02/17
- G1701589 Talk at LVC meeting 08/28/17
- G1702072 Talk at CSWG call 10/19/17
- G1702213 Talk at MLA call 11/08/2017
- T1700466 Technical note "Deep Learning for Lock Acquisition"
- <u>https://git.ligo.org/gabriele-vajente/</u> <u>machine-learning-lock-acquisition</u> the actual code

Noise subtraction:

- G1800334 talk at LVC meeting
- G1800589 talk at LVC meeting
- <u>https://git.ligo.org/gabriele-vajente/dn2</u>
 [dn]² code
- https://git.ligo.org/rich.ormiston/DeepClean
 DeepClean code

Beam spot position:

- G1800359 Talk at LVC meeting
- https://git.ligo.org/gabriele-vajente/beamspot-centering
 The actual simulation and network code

The actual simulation and network code

