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LIGO What is machine learning?

In computer science Artificial Intelligence researchis
defined as the study of "intelligent agents":any device
that perceivesits environment and takes actions that
maximize its chance of success to achieve some goal.
[Poole, Mackworth & Goebel 1998]

Machine learningis a field of computerscience that
gives computersthe ability to learn without being
explicitly programmed.

[supposedly Arthur Samuel, A.l. pioneer 1959]

15

Linear regression is the simplest example
of machine learning: the parameters of a
model can be obtained based on data,

/ Tl ., ) without explicitly setting their value
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o Machine learning applications
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LIGO How about control problems?

Optimal control

4 Kalman filter _
System parameter Genetlc.
identification and Adaptive control programming

modeling ( Reinforcement

N~ learning

Time series
forecasting

[ Anomaly detection

[ Robotics ] [ Video games ]
Self driving ,
ve th |es FIG. 4.-—Governor and Throttle-Valve. Dyna mica I Syste ms
numerical integration
By R. Routledge - Image from "Discoveries & Inventions of the Nineteenth Century" by R. Routledge, 5

13th edition, published 1900., Public Domain, https://commons.wikimedia.org/w/index.php?curid=231047



LIGO Deep Learning

4 N\ (‘ . \ N
Deep Linear o A pinch of
_Learning regression non-linearity

\- y,

Il

and an awful lot of data and computational power...



LIGO Artificial neural networks

Neurons can be organizedinto layers _ S
There arealwaysan inputandan vi=1 Z Wija; + b,
output layer J

Intermediate layers are called hidden

“Many” hidden layers =
deep neural network (DNN) X
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including non-
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LIGO Deep Learning in Controls

Reinforcement learning: notready yet to get out of research
and intoreal world applications

It might
look goofy ...

Google DeepMind



LIGO Applications of Deep Learning in GW detectors

N , i ' QUIET
- NO N .Ilne.ar estimator of —_— e
longitudinal degrees of HAMMER

freedom to aid lock acquisition NO!

=== Camera image processing to \
extract beam spot position N,

Discovery of non-linear noise
couplingsand subtraction

Huffington Post
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IMAGE PROCESSING FOR BEAM
CENTERING



LIGO Beam spot centering

* |Ifthe beam is miscentered on the test masses, angular noise couples to h(t): bad!

* Beam centering / actuator balance / angle to length tuning: all different ways to
look at the same problem
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LIGO Simulation

 Random seismic angular motion of both test masses

 Compute the cavity axis and the beam spot position

e Simulate a scatter pointson the
mirrors: uniform spatial
distribution, Gaussian
distribution of scatter intensity

* Shinethe beam onthe mirror
and simulate a camera image
with some angle of view and
some background noise

* Input: a series of image pairs
(ITM and ETM) for each time,
with the beam moving as

Simulated ITM camera image
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Simulation results

“ueo

ITM yaw

Trained on 1000 images

2 4 6 8
ETM yaw
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—— CNN reconstruction
—— Actual motion
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LIGO But how to train it for the real system?

yaw
* Image dependson (unknown!) scatter
distribution and camera angle / magnification

. . itch
* We need to train on real images o

* Create a training set | |
e \We can modulate pitch and yaw of 4 ok mol ) e
all test masses in a known way continuous
e Use high frequency high amplitude measurement
: : - Y,
angular ditherlines, demodulateto |
measure beam spot position l
(similar to current A2L procedure)
 Collect some tens of minutes of [ Trz:,_?“?:N ]

data at ~10-30 fps
* Train on images and measured beam spot

 The trained network can continuously reconstruct the beam
spot positions (mirror angles) without need for angular lines
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NON-LINEAR NOISE COUPLINGS



Ueo Neural networks as function approximators

 Can a neural network learn non-linear and
non-stationary couplings in Advanced LIGO noise? ]

e Start simple by using simulated data with only

— Modulated jitter noise

one noise couplingat a time ///\-

— SRCL-like sensing noise
with double modulation 102

e Rest of the talk:

— Examplesof generated data

Original noisy data

Frequency [Hz]
(=
5

— Network architecture o i
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— Results on simulated data

Simulated non stationary noise coupling

— Some trial with real data
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LIGO Simulated data
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 Two noise couplingpaths,
modulated by different seismic
motion

* Witness: sensingnoise,
seismic motions

* Thenetworkdiscoversanon
trivial transfer function
modulation, trainingon a few
tens of minutes of data
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PSD [1/rHz]
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The network is able to discover the beam
jitter couplingand subtract

Some improvementat low frequency too

We did not expect much non-linearity or
non-stationarity in LHO/02
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Real data with known non-stationarity

e Back to (the future) 2015,
non-stationary coupling
of SRCL to DARM
elogs 17912, 18026

 Dataset available for
experiments (contact me)

Quiet data
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DARM during a SRCL (stationary) noise
injection: coupling was modulated by
SRC alignment fluctuations o



PSD [1/rHz]

PSD [1/rHz]

LIGO

Results

DARM signal [uncalibrated]
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Jamie Rollins, Gabriele Vajente, Gautam Venugopalan

STATE ESTIMATOR
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LIGO

Interferometers are highly non-linear’

*when they’re not locked

* Highlynonlinearproblem DRMI:
e Alternativeview: good linearized errorsignals existin
a small fraction of phase space PRMI:
* Let’sfocuson PRMI for thistalk (easy to representin
2D plots, enough complexity to make it interesting)
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LIGO

If we knew the mirror position at all times...

Standard
based on

lock acquisition
power triggering

m.1| |
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%/{AO Use a Deep Recurrent Neural Network

—
* Inputs: optical error signals (POP_DC, REFL_DC, POP_1F 1/Q, etc...)
* OQOutputs: MICH, PRCL, etc.. positions

300
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100

0

MICH [nm]

PRCL circulating power [W]

-100

—200 | mmmmm Actual motion
=== RNN reconstruction

-300
10.0 12.5 15.0 17.5 20.0

Time [s]

30.0

300

200

100

22.5 25.0 27.5
= Actual motion
=== RNN reconstruction

22.5 25.0 2

We are dealing with time series of signals: the instantaneous values are
not enough to predict the MICH/PRCL positions.

We need to feed the network some past history of optical error signals:
Recurrent Neural Networks (RNN) maintain an internal memory 24
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LIGO Train in simulation, deploy to real world

simulated simulated
state M output
odel P
A “the direct problem”

Machine learning
»i

algorithm <
“solving the inverse problem”

Step 1: train on modelled system

estimate of
unknown observable
state . output
—A > Physical system —>

Machine learning

algorithm
“solving the inverse problem”

A

Step 2: deploy the trained algorithm
in the real world

Deep Neural Network
learning needs a lot of
training examples (10° - 10°)
Not practical to do it online
(and we don’t have the
targets in the real system!!)

Use a simulation of the
system as accurate as possible
(including uncertainties)

Train on the simulated data

Deploy on the real system and
test the performance

Fine tune if needed

25
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LIGO

Real data / Simulation
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LIGO Conclusions

 Machine learning techniques |
) ] - N R L
especially Deep Learning, look B
very promising

W O WY e

e Our problemsand applications
are quite different from main
stream Deep Learning

 Nowadays it’s easy to
implement them (lots of
ready to use libraries

* But Deep Learning or Machine Learning are not always the
best tool for the job
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LIGO References

Deep Learning introductions: Noise subtraction:

* www.deeplearningbook.org * G1800334 talk at LVC meeting
* www.deeplearning.ai G1800589 talk at LVC meeting
e course.fast.ai https://git.ligo.org/gabriele-vajente/dn2

«  MIT course on Al 6.034 (online) [dn]? code . .
+  Stanford Machine Learning Course 5229 (online) https://git.ligo.org/rich.ormiston/DeepClean

« A. Geron ‘Hands-on Machine Learning with DeepClean code
Scikit-Learn and TensorFlow” O’Reilly 2017

* TensorFlow: www.tensorflow.org Beam spot position:

*  PyTorch: www.pytorch.org

* G1800359 Talk at LVC meeting
* https://git.ligo.org/gabriele-vajente/beam-

Deep Learning for Lock Acquisition: :
spot-centering

The actual simulation and network code

*  G1701455 Talk at CSWG call 08/02/17

*  G1701589 Talk at LVC meeting 08/28/17
* (1702072 Talk at CSWG call 10/19/17

* G1702213 Talk at MLA call 11/08/2017

* T1700466 Technical note "Deep Learning for Lock
Acquisition”
https://git.ligo.org/gabriele-vajente/

machine-learning-lock-acquisition the
actual code




