LIGO General Relativity The Basics

Credit: SXS Lensing; http://www.black-holes.org/

The Laser Interferometer Gravitational-wave Observatory: a Caltech/MIT collaboration supported by the National Science Foundation

Gregory Mendell, LIGO Hanford Observatory

LIGO-G1801389

Einstein Wondered:

Photo: Albert Einstein at the first Solvay Conference, 1911; Public Domain

$$\Delta T^2 = \Delta t^2 - \Delta x^2$$

(Usually known as the spacetime interval)

Example

Einstein's Happiest Thought

Gravity disappears when you free fall!

Photo: NASA

http://en.wikipedia.org/wiki/ Leaning Tower of Pisa

Warning: thought experiment only; do not try this at home.

Einstein's General Theory of Relativity

 $\Delta \rightarrow d = infinitesimal$ change

$$dT^2 = g_{tt}dt^2 + g_{xx}dx^2$$

$$dT^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

In GR the components of a 4x4 symmetric matrix called the metric tensor define the curvature of spacetime.

$$\begin{split} G_{\mu\nu} &= \frac{8\pi G}{c^4} T_{\mu\nu} \\ G_{\mu\nu} &= R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \\ R_{\mu\nu} &= R^{\alpha}{}_{\mu\alpha\nu}; R = g^{\mu\nu} R_{\mu\nu} \\ R^{\alpha}{}_{\mu\beta\nu} &= \partial_{\beta} \Gamma^{\alpha}{}_{\mu\nu} - \partial_{\nu} \Gamma^{\alpha}{}_{\mu\beta} + \Gamma^{\alpha}{}_{\beta\gamma} \Gamma^{\gamma}{}_{\mu\nu} - \Gamma^{\alpha}{}_{\gamma\nu} \Gamma^{\gamma}{}_{\mu\beta} \\ \Gamma^{\alpha}{}_{\mu\nu} &= \frac{1}{2} g^{\alpha\beta} (\partial_{\nu} g_{\mu\beta} + \partial_{\mu} g_{\beta\nu} - \partial_{\beta} g_{\mu\nu}) \end{split}$$

Einstein's Field Equations

$$\frac{dx^{\alpha}}{dT} = U^{\alpha}; \quad U_{\alpha} = g_{\alpha\beta}U^{\beta} \quad U = 4\text{-Vel.}; \text{ T} = \text{Proper Time}$$
$$\frac{dU_{\alpha}}{dT} = \frac{1}{2}\partial_{\alpha}g_{\beta\gamma}U^{\beta}U^{\gamma} \qquad \text{Geodesic Equation}$$

Credit: Alain Riazuelo, IAP/UPMC/CNRS

Another Universe?

1. Black

Escape Velocity = Speed of Light

3. Space & Time Warps

Space

 \odot

Schwarzschild 1916; Einstein & Rosen 1935; many others in the 1960s

Schwarzschild Black Hole

$$c^{2}dT^{2} = \left(1 - \frac{2GM}{rc^{2}}\right)c^{2}dt^{2} - \frac{1}{\left(1 - \frac{2GM}{rc^{2}}\right)}dr^{2} - r^{2}d\theta^{2} - r^{2}\sin^{2}\theta d\phi^{2}$$
$$c^{2}dT^{2} = \left(1 - \frac{v_{esc}^{2}}{c^{2}}\right)c^{2}dt^{2} - \frac{1}{\left(1 - \frac{v_{esc}^{2}}{c^{2}}\right)}dr^{2} - r^{2}d\theta^{2} - r^{2}\sin^{2}\theta d\phi^{2}$$

	2GM •
$V_{esc} = $	r
$_{D}$ 2GM	
$\Lambda_s = -$	$\overline{c^2}$ I

- Escape Velocity
- Schwarzschild Radius

<u>Object</u>	Schwarzschild Radius
You	1 thousand, million, million, millionth the thickness of a human hair
Earth	1 cm (size of marble)
Sun	3 km (2 miles)

Gravitational Time Dilation

Photo:http://en.wikipedia.org/wiki/ Leaning_Tower_of_Pisa Clock_Photos:http://en.wikipedia.org/ viki/Cuckoo_clock

Black Hole Embedding Diagram

Schwarzschild solution to General Relativity for t = constant, $\theta = \pi /2$:

$$ds^{2} = \frac{1}{\left(1 - \frac{2GM}{rc^{2}}\right)}dr^{2} + r^{2}d\varphi^{2}$$

The Schwarzschild Wormhole or Einstein-Rosen Bridge (Flamm 1916, *Physikalische Zeitschrift. XVII: 448*; Einstein & Rosen 1935, *Phys. Rev. 48 73;* Misner & Wheeler 1957, *Ann. Phys. 2: 525*)

Non-traversable Wormhole

Our Universe

TIME INSIDE = 0.0 sec. ROCKET TIME = 0.0 sec. TIME OUTSIDE = 100.3 sec.

Another Universe

Gravitational Waves

Gravitational waves are ripples in the fabric of spacetime, stirred up by the changing motions of matter and energy.

LIGO

Binary Black Hole Merger Simulation

Credit: SXS Collaboration/Canadian Institute for Theoretical Astrophysics/SciNet; http://www.black-holes.org/

LIGO-G1600258

Gravitational Waves

The LIGO Detectors

The End

Detector Response

 $g_{\mu\nu}dx^{\mu}dx^{\nu} = 0$ (Light Travels On Null Geodesics)

$$c^{2}dt^{2} - (dx \quad 0 \quad 0) \begin{pmatrix} 1+h_{xx} & h_{xy} & h_{xz} \\ h_{yx} & 1+h_{yy} & h_{yz} \\ h_{zx} & h_{zy} & 1+h_{zz} \end{pmatrix} \begin{pmatrix} dx \\ 0 \\ 0 \\ \end{pmatrix} = 0$$
$$c^{2}dt^{2} = (1+h_{xx})dx^{2}$$

$$c\int_{0}^{\Delta t} dt = \int_{0}^{L} \sqrt{1 + h_{xx}} dx \cong \int_{0}^{L} \left(1 + \frac{1}{2}h_{xx}\right) dx$$

$$c\Delta t = L_x = L + \frac{L}{2}h_{xx}$$

$$\frac{\Delta L}{L} = \frac{1}{2} (h_{xx} - h_{yy}) = F_{+}(\theta, \phi, \psi) h_{+}(t) + F_{\times}(\theta, \phi, \psi) h_{\times}(t)$$

Summary

- Special Relativity, 1905: nothing can faster than light and the faster you go the slower time goes. Space and time become spacetime!
- Einstein's happiest thought, 1907: gravity disappears when you free fall.
- General Relativity, 1915: gravity is a warping of space and time.
- The Schwarzschild Solution, 1916: Black Holes!
- Gravitational Waves, 1916: the changing motion of matter and energy can produce ripples in the fabric of spacetime.

Photo: Albert Einstein at the first Solvay Conference, 1911; Public Domain

Would you believe you could fall into hole in completely empty space, a hole from which nothing can escape, not even light?

Gravitational Waves

Gravitational waves carry information about the spacetime around black holes & other sources.

$$dT^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu}$$
$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$
$$\left(\nabla^{2} - \frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\right)\overline{h}^{\mu\nu} = 0$$
$$h_{\hat{\theta}\hat{\theta}}^{TT}(\theta = \pi/2) \propto \frac{1}{r}\cos[2\pi f(t - r/c) + 2\phi]$$

$$h_{\mu\nu}^{TT} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} e^{2\pi i f(t-z/c)}$$

Gravitational Waves

Gravitational waves are ripples in the fabric of spacetime, stirred up by the changing motions of matter and energy.

The waves are extremely weak by the times they reach Earth.

