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1 Introduction and Background

Achieving more efficient detection of gravitational radiation is a goal of contemporary exper-
imental physics, as it will enable novel tests of general relativity and provide information on
astronomical bodies that are difficult to observe through the electromagnetic spectrum. The
gravitational waves (GWs) that encompass this radiation are described by oscillatory pertur-
bations to a background spacetime metric. These waves manifest themselves physically by
altering displacements in spacetime, such as spatial distances and time durations. Current
GW observatories, such as LIGO, use high precision laser interferometry to detect miniscule
changes in the length of interferometer arms, indicating the passage of a GW. Since typical
changes in the LIGO arm lengths induced by GWs are of the order of 10−18 m, incredibly
precise measurements must be conducted to observe a GW. In particular, LIGO uses a large
Michelson interferometer furnished with Fabry-Perot cavities and power recycling mirrors to
optimize its sensitivity and ability to detect GWs.

Despite their intricate designs, interferometric GW detectors are subject to various
sources of noise that limit their resolution. Some of this noise arises from external sources,
like human activity and weather patterns. The resulting noise can be combated by numerous
techniques, such as performing interferometry in vacuum chambers and employing vibration
isolation systems. Furthermore, on atomic and subatomic scales, new sources of intrinsic
noise arise as the laws of quantum mechanics take precedence over those of classical physics.
For instance, in quantum electrodynamics (QED), the quantized electromagnetic field reveals
the discrete photon nature of light. This phenomenon introduces shot noise and radiation
pressure noise into the interferometer due to the fact that the electromagnetic field of a
beam of light is not smooth and continuous, but rather is composed of individual photons.
Noise that arises from quantum mechanical processes is known as quantum noise and owes
its existence to the Heisenberg uncertainty principle and quantum fluctuations. Because of
these immutable laws, sources of quantum noise dictate that the sensitivity of classical GW
interferometers is bounded below by the Standard Quantum Limit (SQL). For example, in
a GW interferometer with arm lengths L, test masses of mass m, and detecting a GW of
frequency Ω, the noise spectral density of the GW strain, h, is bounded below by [5]

SSQL
h (Ω) =

2~
mΩ2L2

. (1)

In general, the SQL will differ depending on the precise interferometric setup, but the limi-
tations it conveys remain the same.

However, it turns out that the SQL only applies to interferometers when the sources
of noise are uncorrelated, as they are classically. In fact, despite its counterintuitive name,
the SQL can be surpassed by cleverly constructed interferometers that take into account
quantum mechanics and correlated noise. One such method of beating the SQL involves
squeezed light and balanced homodyne detection, incorporating various aspects of quantum
mechanics and QED. In QED, the electric field of a beam of light can be described by
amplitude and phase quadrature operators, X̂1 and X̂2, respectively. Explicitly, the electric
field of freely propagating monochromatic light with amplitude E0, angular frequency ω, and
polarization p(r, t), can be expressed as [10]

Ê(r, t) = E0(X̂1 cos(ωt)− X̂2 sin(ωt))p(r, t). (2)
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By the canonical commutation relations of QED, the quadrature operators do not com-
mute: [X̂1, X̂2] 6= 0. Hence, they obey an uncertainty principle, wherein the product of their
standard deviations, or uncertainties, cannot decrease below 1. Since the quantum state of
a beam of light can be expressed in terms of these operators, as in Eq. (2), this necessarily
introduces uncertainty into the electromagnetic field. In order to visualize the quantum state
of the light and its associated uncertainties, one can use the “ball on the stick” picture. In
this picture, the quantum state of the optical field is represented by an arrow pointing from
the origin to a location in a 2-dimensional plane where the x and y axes correspond to the
amplitude and phase quadratures, respectively. The uncertainties in the quadrature opera-
tors is depicted by a ball of uncertainty around the arrowhead. As an illustrative example,
the left image in Figure 1 displays a ball on the stick plot for a coherent state of light, which
is the most classical quantum state of light and corresponds to the light produced by an
ideal laser.

Figure 1: “Ball on the stick” plots for coherent light and phase squeezed light, obtained from
[10].

Figure 2: Electric fields and ball on the stick plots for coherent light, amplitude squeezed
light, and phase squeezed light, all obtained from [5].
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The finite uncertainty of the quadrature operators severely limits the ability to use
classical light to discern subatomic length scales. This arises from the fact that one cannot
perform accurate optical measurements when the electric field of the light is not known
precisely. To counter this effect, one can use squeezed light instead of classical light in an
interferometer setup. In squeezed states of light, the uncertainty of one quadrature operator
is decreased while that of the other quadrature operator is simultaneously increased, such
that the uncertainty principle is still satisfied. Squeezed light is known as phased squeezed
or amplitude squeezed depending on whether the uncertainty of the amplitude quadrature
or phase quadrature is decreased below its classical value. A ball on the stick plot of phase
squeezed light is depicted in the right image of Figure 1. Although preparing squeezed
light is a nontrivial process, it can be carried out using an optical parametric oscillator or
other nonlinear optical devices. Distinct quantum states of light produce electric fields with
different behaviors. Examples for three types of light are depicted graphically in Figure
2. From these images, it is evident that the uncertainty of the electric field of squeezed
light does not behave like the corresponding uncertainty in coherent light, which is roughly
classical light. In fact, at certain instants, the uncertainty of the electric field of the squeezed
light decreases below that of coherent light. Thus, measurements using squeezed light that
are performed at times when this uncertainty is lower than the classical value will be very
accurate. These measurements are conducted using phase sensitive detection and provide a
viable route to exceeding the SQL.

An optical technique, known as balanced homodyne detection, can be used to perform
phase sensitive detection with squeezed light. A balanced homodyne detector (BHD) is
composed of two photodiodes, a 50/50 beam splitter, and two sources of light: the signal
and the local oscillator. An image of a BHD setup is displayed in Figure 3. The signal is the
light that contains the desired information; for instance, it could be the light coming from
the main interferometer that encodes the structure of a passing GW. On the other hand,
the local oscillator is a stabilized source of light with its carrier frequency equal to that of
the signal. In an interferometer, the local oscillator light can be obtained from the incident
laser light before it reaches the main interferometer. In balanced homodyne detection, these
two sources of light are first mixed by being sent through the beam splitter. Next, the two
photodiodes measure the photocurrents induced by the two outgoing beams from the beam
splitter. One can then measure and analyze these photocurrents, from which information
about the quadratures can be extracted.

Figure 3: A standard BHD setup, obtained from [12].
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Following the analysis presented in [12], we can describe this procedure mathematically.
Let the electric fields of the signal and local oscillator light have quadratures Sc,s(t) and
Lc,s(t), respectively, and carrier frequency ω:

S(t) = Sc(t) cos(ωt) + Ss(t) sin(ωt), L(t) = Lc(t) cos(ωt) + Ls(t) sin(ωt). (3)

Due to inevitable quantum noise, the quadratures will contain terms due to noise. Denoting
these by nc,s(t) and lc,s(t), respectively, the quadratures can be decomposed as

Sc,s(t) = signal + quantum noise = Gc,s(t) + nc,s(t)

Lc,s(t) = classical field + laser noise = L(0)
c,s (t) + lc,s(t).

(4)

Since the local oscillator is under the experimentalist’s control, we will impose on it a phase
shift, φLO, known as the homodyne angle: L

(0)
c (t) = L0 cos(φLO), L

(0)
s (t) = L0 sin(φLO).

Such an alteration could be realized by changing the path length of the local oscillator.
Additionally, we will assume that the local oscillator’s amplitude is much greater than the
other amplitudes in this scenario: L0 � Gc,s, nc,s, lc,s. Under these assumptions, one can
calculate the ideal photocurrents induced at the two photodiodes, which we denote by i1 and
i2. In balanced homodyne readout, one chooses not to measure these currents, but instead
measures the difference between them: ihom = i1 − i2. To first order in Gc,s, nc,s, and lc,s,
this is given by [12]

ihom ∝ L0((Gc + nc) cos(φLO) + (Gs + ns) sin(φLO)). (5)

Evidently, this expression is independent of lc,s, so the noise from the local oscillator does
not factor into measurements of ihom. In addition, Eq. (5) indicates that, by varying φLO

and measuring ihom, one can measure the signal’s quadratures and linear combinations of
them, with a precision limited only by the quantum noise of the signal.

In an interferometric GW detector, acquisition of the quadratures provides accurate
information about the passing gravitational radiation. Thus, a properly constructed BHD
presents the opportunity to probe exceptionally small length scales and improve GW detec-
tion. However, the real world is not so ideal. In the construction of a physical BHD, other
sources of optical and electronic noise exist within the interferometer. The optical noise
arises from noise present in the signal, and the electronic noise emerges from noise induced
in the detector. For instance, an imperfect beam splitter will create an imbalance in the light
beams emerging from it and introduce local oscillator noise into ihom. In addition, this setup
is susceptible to noise in its electronic circuits, such as thermal noise in the resistors and
intrinsic 1/f noise. In order to analyze the noises within the electronic circuits, one must
calculate the noise spectral density of each circuit element. Let the noise spectral density
of the jth circuit element be denoted by en0j. The exact form of en0j will differ for distinct
circuit elements since their noise contributions will not be the same. Then, the noise voltage
due to this element, denoted by En0j, is obtained via

E2
n0j =

∫ ∞
0

df |en0j|2. (6)

Generally, this integral will be limited by the finite bandwidth over which the circuit operates.
Finally, the total noise voltage due to all the circuit elements, denoted by En0, can be

page 4



LIGO-T1800296–v1

obtained from an RMS summation:

E2
n0 =

∑
j

E2
n0j. (7)

Proper analyses of all of these noises must be incorporated in order to correctly interpret
the data from a BHD.

Current gravitational wave observatories do not exploit balanced homodyne detection
of this sort. Instead, these experiments primarily use DC readout [11], in which a single
photodetector measures the light output from the main interferometer’s beam splitter. As
shown in [12], DC readout schemes are affected by the noise in the local oscillator, unlike
ideal balanced homodyne readout. In addition, DC readout schemes are not as effective as
balanced homodyne readout at measuring arbitrary quadratures of light in an interferome-
ter. This is best done by using squeezed light and a BHD with a variable homodyne angle,
which enables one to take advantage of the reduced quadrature uncertainties of the squeezed
light. Therefore, it is believed that balanced homodyne detection will provide more precise
interferometric measurements in GW detectors than the current DC readout schemes do.
We hope that further research into this technology will lead to the implementation of bal-
anced homodyne detectors in GW interferometers and improved detection of gravitational
radiation.

2 Objective

The goal of this project will be to construct a balanced homodyne detector. Once completed,
we will then analyze the electronic and optical noise that exists within the BHD.

3 Approach

The BHD will be constructed from standard optical devices used in interferometry, including
a laser, beam splitters, and photodiode detectors. More specifically, we will use InGaAs pho-
todiodes. These are optimal for this setup because they have a high quantum efficiency and
convert incident light into photocurrent very effectively. To amplify the interferometric signal
and convert it from a current signal to a voltage signal, we will implement transimpedance
amplifiers with low current noise. The specific transimpedance amplifiers to be used are
homemade ones from the Adhikari lab, and it is desired that they contribute a minimal level
of electronic noise. An image of a sample transimpedance amplifier circuit, which will be
used as a guide in the BHD construction, is displayed in Figure 4.

Moreover, in order to analyze the optical and electronic noise in these devices, we will
utilize two programs known as LISO and Finesse. LISO will be used to optimize electronic
noise, and Finesse will be used to simulate the noise in the interferometer. Proper appli-
cation of both programs is central to gauging the success of the final homodyne detector.
Lastly, when a mathematical analysis of the noise in the BHD is required, Python Jupyter
notebooks will be used to carry out analytic calculations and plot results.
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Figure 4: A basic transimpedance amplifier circuit, obtained from [4]. This circuit contains
a photodiode (D), a resistor (R), and an operational amplifier (OP). U bias and U denote
the bias and output voltages, respectively.

4 Timeline

Given the period of 10 weeks to achieve these goals, my tentative work plan is as follows:

Work Plan
Week(s) Tasks

1
Become acquainted with important software,
equipment, and laboratory protocol.

2-9
Construct the BHD and analyze its noise
(will be done simultaneously).

9-10 Prepare final report and presentation.

Finally, I will also take into consideration the various SURF requirements and their deadlines,
which include two interim reports, an abstract, a final report, and a final presentation.
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