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Some cool things about General
Relativity

Solutions to equations predict orbital motion, bending of
light, weird time effects, black holes, etc.

Spacetime is dynamical: gravitational waves

Credit: ligo.caltech.edu
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Stellar evolution
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HR diagram
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p-p chain fusion (low mass stars)
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CNO cycle fusion (higher mass stars)
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Just examples, many other nuclear pathways...
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Life of a star goes on

Late stages of a high mass star

Triple-alpha process
(near end of low mass star)
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End of life
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Tale of a massive star end of life

Exact physics of collapse/SN is very complicated!
“Useless” iron core of star

Hydrostatic equilibrium fails and star collapses
Inverse beta decay as core collapses p+e™ = n+ v,
Shock wave results in supernova explosion

Collapsing core may halt because of neutron
degeneracy pressure — neutron star 100, < M < 30M,

Collapse may continue - black hole M > 300



Neutron stars
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Known neutron stars (pulsars)

First pulsar discovered in 1967 in Jocelyn Bell and Antony Hewish
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ATNF catalog: 2636 pulsars (July 2018) and counting!
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Observing pulsars (EM)
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Fascination with neutron stars

Matter under extreme conditions
Probe fundamental physics
Structure of neutron star
Equation of state

— Pressure vs density
— Mass vs radius



Equation of state
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August 17, 2017, 5:41 am PDT
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Equation of state measured in GWs
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Tidal deformations impact GW

waveform
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Black holes

Understood early on from mathematics of GR

Completely described by 3 physical values:
— Mass, angular momentum, electric charge

At first, the idea seemed crazy: singularities?!
Does nature really create such objects?



First evidence: Cygnus X-1

e X-ray source discovered
in 1964

* Few years later found to
be in a binary

* Rapid x-ray variability
(few times per second)

e Implies small size (light
crossing time)

* Because M ~ 14Mg
the object has to be a BH

Cyg X-1 was the subject of the infamous Hawking-Thorne bet; Hawking conceded the b&t ©



Supermassive black holes
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Direct evidence: GW150914
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Colliding neutron stars and black holes
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Compact binary coalescence GW
waveform

Rich, detailed information carried in the
inspiral, merger, and ringdown

Inspiral:

— Distance to source, spin of components,
precession, masses, tidal distortion

Merger:

— Total mass, tidal distortion, progenitor of remnant
Ringdown:

— Final mass, remnant formation



Stellar remnants and mergers

Masses in the Stellar Graveyard

in Solar Masses

EM Neutron Stars
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Open questions

Narrowing in on NS equation of state - more
observations will help; continuous GWSs?

Merging NSs can provide an alternative
measurement of the Hubble constant; will it
resolve the tension from current EM

measurements?

How do supermassive BHs form? Are there
intermediate mass BHs?

Can GWs help answer fundamental questions
about the nature of BHs?



Other really cool things about GR

* Physicists are using the accurate pulse arrival
times of several pulsars to create a galactic-
scale GW detector (Pulsar Timing Array)

e Black holes obey the laws of thermodynamics
and can “evaporate” (Hawking radiation)

* When compact objects merge, a DC shift in
gravitational potential may be observed

(gravitational memory)



Volunteer computing: Einstein@home

Einstein@Home

International Year of Astronomy 2009

Arecibo Power Spectrum
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Summary

Death of a massive star is not the end of
scientific study

Neutron stars and black holes provide rich
environment of studying extremes physics not
achievable in the lab

GW:s provide unique insight and complement
EM observations

Era of multi-messenger astronomy is here and
you can get involved!



Thank you!




