Sensor Correction Update to the ISI models
Implement a Fader and Allow Common mode control

Brian Lantz
T1800414-v3, Oct 2018

1 Summary

This document describes the installation, function, and use of the ISI Sensor Correction block
for correction from the ground sensors to stage 1 (for the BSC-ISI) or ground sensors to the
platform (for the HAM-ISI). The general ECR for all of the Common-mode earthquake control is
ECR E1800268 and FRS ticket 11553 The common-mode earthquake control also involves changes
to how the ground motion signals are processed and distributed. Those changes are discussed in
T1800420.

2 Major Changes

2.1 Channel Fading

The Channel Fader is a new tool for smoothly changing between channels. It is similar to the
blend-switching, except that now each possible filter is run all the time, and the Fader simply
ramps from one running filter to the next. This means the switching is faster because, unlike the
blend-switcher, there is no start-up transient associated with selecting a new filter, and you only
have to transition 1 time per fade (the blend-switcher had to switch back to the CUR filter). This
requires more computing time per cycle and more memory, but the ISI models still complete with
plenty of time. This also means that each sensor correction filter can use an entire filter bank,
rather than just a single module.

For the Sensor Correction, this should be a big improvement, because one be able to choose
between running correction filters, rather than having to turn one off and turn another one on to
change the correction filter.

2.2 Ground motion calculation

The ground motion signals are no longer calculated by each model. Going forward, each ISI and
HPI model will have the calibrated ground motion signals as inputs. These signals are calculated
by the SEI-PROC model in the corner station, and the top-level ISI-ETMX and ISI-ETMY models
in the end stations. These signals all need to be calculated and distributed before this
model update is implemented.

https://dcc.ligo.org/T180414
https://dcc.ligo.org/E1800268
https://services.ligo-la.caltech.edu/FRS/show_bug.cgi?id=11553
https://dcc.ligo.org/T1800420

The new inputs to the ISI models are:

inputs 1-3 Normal ground motion channels. These are the X, Y, and Z channels used to monitor
the ground motion during normal operation for the building. The BRS-corrected channels
are used if they exist. For LHO End-X, these would be SUPER-X, STS-Y, and STS-Z.

inputs 4-6 Common-mode motion for X, Y, and Z. These are calculated by the SEI-PROC model
in the corner station.

inputs 7 & 8 These are the uncorrected ground motion signals for X and Y. If the BRS is used,
these channels will be different than those for 1-2. If there is not a tilt-corrected channel,
then these will be the same as those used for 1-2. These back-up channels are available for
use if the BRS is not working correctly. For LHO End-X, these would be STS-X and STS-Y.

input 9 Spare. Left for future use. Having nine inputs keeps the input numbering the same.

2.3 STS outputs from master model have been removed

Since the ground motion signals are no longer calibrated within isi2stagemaster.mdl, the outputs
of that have been removed. This will require re-wiring the outputs at the top level of the BSC
models.

2.4 Weiner Filtering

The Weiner filters still exist, and have been extended slightly. For X, Y, and Z there are now filters
for the Normal ground signal, the Uncorrected ground signal, and the local mode motion.

2.5 RX, RY, and RZ

No changes have been made to the sensor correction for the rotational degrees of freedom. There
seemed to be little motivation at the time of the writing, so Brian Lantz and Jim Warner decided
to leave this unchanged for now.

3 Installation

3.1 Overview
Here is a summary of the installation steps:

1. Before you begin, make sure that the calibrated ground motion signals and common-mode
signals are being calculated by the End Station IST models (T1800420) or by the SEI-PROC
model.

2. The isi/common part of the userapps svn needs to be updated.

3. In each chamber model, the new ground motion signals need to be connected, and the master
library part, isi2stagemaster.mdl will be replaced with the new part isi2stagemaster_SC_2018.mdl.
The wiring to the new part does change, but not much.

4. The framewriter needs to be restarted because the filter list is different. The DQ channels do
not change.

5. The location of the Sensor Correction filters gets changed; the filters are the same but they
need to be installed into the new locations.

https://dcc.ligo.org/T1800420

6. Once the filters have been installed, set them up in the plethora of new medm screens.
7. There are a few epics channels which need to be updated and saved in SDF.

8. Finally, the guardian control for the Sensor correction needs to be changed.

3.2 SVN updates

There are several files in various folders of the seismic userapps which have been updated for the
BSC-ISI. You need to SVN up the following files:

code update is in rev 18007
{userapps}/release/isi/common/src/
CHANNEL_FADER.c / this code has been updated

medm screens appear in rev 18034

{userapps}/release/isi/common/medm/bscisi/
ISI_CUST_CHAMBER_GND_BRS.adl / added new block to calibrate the STS
ISI_CUST_CHAMBER_OVERVIEW.adl / new link to the sensor correction controls
ISI_CUST_CHAMBER_ST1_SENSCOR_MATCH_ALL_2018.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_MATCH_ALL_OLD.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_OVERVIEW_2018.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_OVERVIEW_OLD.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_SELECT_XYZ.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_WNR_OVERVIEW.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_WNR_X.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_WNR_Y.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_WNR_Z.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_X_EQ_ALL.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_X_NORM_ALL.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_Y_EQ_ALL.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_Y_NORM_ALL.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_Z_EQ_ALL.adl
ISI_CUST_CHAMBER_ST1_SENSCOR_Z_NORM_ALL.adl

models appear in rev 18036

{userapps}/release/isi/common/models/
isi2stagemaster_SC_2018.mdl / new library part for the BSC-ISI
blend_switch_library.mdl / new library part for the sensor correction.

The models and 2 corresponding medm screens were updated in rev 18066.

There are several more files for the HAM-ISI update. These were committed on (not yet). The
HAM-ISI updates are in rev- (not yet). The HAM and the BSC source the same fader c-code and
library parts, but the HAM-ISI master model has been updated to a new master part.

{userapps}/release/isi/common/medm/
(not yet)

{userapps}/release/isi/common/models/
(not yet)

3.3 Model updates

The inputs to the ground motion channels need to be updated, and the models have new master
library parts to minimize confusion and prevent accidental updates.

3.3.1 BSC-ISI model update

The master library part for the ISI needs to be replaced.

1. Commit the working chamber model to the SVN.

2. Leave all the inputs to the master part unchanged. The number and order of the inputs to
the new part are the same, although the 9 GND inputs get different signals.

3. Delete the output for the 9 STS_{A/B/C}_{X/Y/Z} signals from the master part. These
outputs have been removed from the new part. These signals are now all calculated elsewhere.

4. Delete the master isi2stagemaster part.

5. Bring in the new block from the isi2stagemaster_.SC_2018.mdl. Rename the block per the
chamber.

6. Connect all the inputs and the outputs in the same order as the previous version (except the
outputs removed earlier). The outputs are all now connected correctly.

7. Fix the GND inputs. The 9 old STS inputs have been replaced by 9 new GND inputs. For
the End Station models, connect these as shown in figure [I} For the other models, these get
connected to signals from the SEI-PROC model.

8. save, commit, pray, compile.

i EndY_STS A_X
gnd_X_norm
i STS A Y
: i::::i gnd_Y_super| Cota
Goto [ETEAm>——+f—+sTs B Y F-_
From » STS B Z gnd_Z_norm o
s >
STS ADC sigs P STS C Y g wnsoe Fromd]
»STS C Z 1
BRS_AX_in e ¥ o Gotod -

ﬂ Gotol
Fram1
BRS ADC sigs
Gotos From5
This is installed only in BSC- Usually these come
ISI models at ETMX and ETMY from SEI-PROC
Goto2 see T1800420

From2

|

Groundt

com_link1

> ——]

Fromé com_link2

—]

com_link3
These are sent to the Carner station for CM cales From ISI2Sta

Figure 1: New ground inputs for the isi2stagemaster SC_2018 library part.

3.3.2 HAM-ISI model update

TBD

3.3.3 HPI model update

also TBD

3.4 Framewriter restart

Oddly, the DQ channel list has not changed. The sensor correction signals which are saved are all
saved from the SCSUM block, and this block has not been touched. However, the list of filters has
been changed pretty dramatically, so the PAR and INI files are quite different, and the framewriter
will need to be restarted.

3.5 MEDM updates

There are several new MEDM screens. The overview screen is the same except that there is a
new block called ‘Gnd -> St1 SENSCOR’, as shown in figure 2] The new screens are described in
section [l

GHD STS ~ Blank w/ new model ZERS FF |

A R L l

5T] H Gnd
SEMSCOR 5
.Dld cuntmll new control

Figure 2: Change to the BSC-ISI overview screen. There is a new GND -> St1 SENSCOR part,
which is linked to the new sensor correction screens. The ground STS calibrations are all gone, as
is the Ground STS selection matrix, so these displays are all white.

3.6 Filter arrangement
3.6.1 Foton filters

Several Foton filters need to be installed for each chamber. First, the filter which is most com-
monly used for sensor correction, e.g. CML_BB_SC should be installed in the first filter bank for
the Normal ground signals, and also in the first filter bank for the uncorrected ground filters. Open
the foton file for the chamber, and copy the filter into the first module for:
$(CHAMBER)_ST1_SENSCOR_{X, Y, and Z} NORM_FILT1, and
$(CHAMBER)_ST1_SENSCOR_{X, Y, and Z} . UNCOR_FILT1

If there is a second Sensor correction filter which is currently used, that should be installed into
$(CHAMBER)_ST1 SENSCOR_{X, Y, and Z} NORM _FILT?2.

There is (soon to be) a new sensor correction filter for use during earthquakes called EQ_triall.
That filter will be in the seismic userapps as soon as I make it. When it is, install EQ_triall into
the first module of the 3 filters
$(CHAMBER)_ST1_SENSCOR_{X, Y, and Z} EQ_FILT1

3.6.2 Epics Parameters

We'll talk about setting up the various epics variables shortly. Remember to put the filter settings,
and the new epics vars for ramp time and initial sensor correction filter under SDF control.
There are 9 new filters for each of X, Y and Z. These are
...ST1_ SENSCOR {X, Y, and Z} NORM _FILT1 to NORM _FILT4,
..ST1_.SENSCOR_{X, Y, and Z}_ EQ_FILT1 to EQ_FILT3, and
...ST1_SENSCOR_{X, Y, and Z} UNCOR_FILT1 and UNCOR_FILT2.
The new ramp time is ...ST1.SENSCOR_{X, Y, and Z} . TRAMP.
The Initial Filter is selected by ...ST1_.SENSCOR_{X, Y, and Z}_INIT_CHAN.

3.7 Guardian Changes

To select a new sensor correction filter, update the value of the ...ST1_SENSCOR_{X, Y, Z} NEXT_CHAN
epics variable. The ramp starts automatically when this value changes. The front-end prevents
changes to this variable during a ramp. The values 1-9 select the 9 possible filter banks.

1-4 select NORM _FILT1-4,

5-7 select EQ_FILT1-3, and

8 & 9 select UNCOR_FILT1 and 2.

Setting NEXT_CHAN to 0 ramps the sensor correction output to 0.

The NEXT_CHAN epics variable is a bit special. It gets set to the value of INI'T_CHAN when
the code starts (cycle 2) and it can not be changed while the filter is transitioning. You also can
not set it outside the range of 0-9. I've attached the code to achieve this later in the document.

Please add docs for the guardian control here.

4 Using the new Sensor Correction

4.1 Setting up the Sensor Correction

When the foton file is ready, install it and then set up the Sensor Correction filters. From the
overview screen, press the new GND -> St1 SENSCOR module. This opens the new screen.
Figure [3] shows the new sensor correction overview screen. Each DOF has 9 filter banks: 4 for
normal operation, 3 for common-mode control during earthquakes, and 2 additional backup filters
which can be used if the BRS is not working correctly. These have descriptive names, but are just
numbered 1-9 for switching. To setup

4.2 Fade Time

I suggest starting with a fade time of 30 seconds. I've tried 30 seconds for blend time on long
duration filters, and the simulations look fine, see SEI log 890, Brian Lantz, from Dec. 7, 2015.
This is also comparable with the characteristic period of the surface waves. Feel free to try shorter
transitions, and let us know how it goes.

https://alog.ligo-la.caltech.edu/SEI/index.php?callRep=890

ISI_CUST_CHAMBER_ST1_SENSCOR_OVERVIEW

Figure 3: Updated Sensor Correction overview screen. The numbers on the ‘Filter Selection’ block
refer to the channel which is in use. 0 means it is off.

ISI_CUST_CHAMBER_ST1_SENSCOR_SELECT_XYZ.adl

S1:I5I-HAST

;Fade in progress i H-Dverview

Ground-> Stage 1 Senzor Correction Filter Selectaor

512 ISI-MAST

Local
Difference

{rmésec)

Local, no ERS

(nnsec)

EQ_FILTZ useis_notch Filter Dut
[[el T

MORF_FILT4 Filter Qut
engage

Earthquake Contraollers

e EQ trialvt | Filter Out
——

EQ_FILT3

[" engage I'

Use these if the BRS is down
Backup Controllers

UNCOR_FILTL CHL_EE_SC Filter Qut
| ensege | LT

UNCOR_FILTZ

[" engage I'

Filter Dut

Filter Out

" WORM_FILT4 Filter Out
Engage

Local
Difference

npss

Earthquake Contraollers
badis ek

E0_trialvd || Filter Out

C T 1

Press this to
start fader

EO_FILTZ

[engage

Click in here to

Filter Out
“engage] p—
Filter Out

-
open related display Er_ | |

Use these if the BRS is down
Backup Controllers

Local, no ERE

(rn/sec)

UNCOR_FILTL CHL_BB_S0 Filter Out
[enemse T T

UNCOR_FILTZ

Filter Out

[engage

Y-Overview Zis Off wiew
——
' disengage ¥ | || IMite Ehan:ﬁ disengage 7| || Inite Eha”:F disengage 2
: o Ting left: Fatler Dttt Ranpt.ine: [£0 Time left: Fader Mutputs Ranptine: Time lefts [0.0] ader Dutput:
. Junp2End | s (Ui Junp2End | e Junp2End |
Mext Chang F Normal Controllers s e ﬁ Hormal Controllers e Ehan:! Hormal Controllers
Local Gnd Yel, L BLSE Fade complete BT Local Gnd Yel, | NORM_FILTL Filter Dut
o engage [N [T engage |
{nn/sec) {rn/'sec) {nnsec)
HORM_FILT2 Filter Dut HORM_FILT2 Filter Out HORM_FILT2 Filter Dut
Canmon mode ™ engage || Common mode =T engage [(|| Common mode =T engage 1
HORK_FILTZ Filter Out WORK_FILTZ Filter Out HORK_FILTZ Filter Qut
| engage [| engage [| engage [

Local
Difference

MORF_FILT4 Filter Qut
engage

Earthquake Caontrallers

{rmésec)

Local, no ERS

(nnsec)

EQ_FILTZ Filter Qut
| engage

EO_FILTL Filter Dut
ehgage

EQ_FILTZ Filter Qut
T engage

Use these if the BRS is down
Backup Controllers

UNCOR_FILTL Filter Qut
T engage

UNCOR_FILTZ Filter Dut
[engage

Figure 4: Selection Screen for the Sensor correction. The filters for each DOF are selected by
pressing the ‘engage’ button. You can also select a new filter by typing a number in the ‘Next
Chan’ variable. The filters are numbered 1-9 where 1= NORM_FILT1 and 9 = UNCOR_FILT?2.
Here, the X DOF has channel 1, NORM_FILT1, selected, but is part way through a transition from
1 to 5 (EQ-FILT1). Y running happily on channel 1, and Z is off. At the top of each bank, you
need to set the initial channel to use. 0 is fine, it means the sensor correction starts OFF. Also set
the ramp times. 30 seconds is fine.

5 Additional MEDM screens

There are a few other medm screens which have been created.

e ISI_CUST_CHAMBER_ST1_SENSCOR_X_NORM_ALL.adl

Thu 0
initial chamnel (1-9):
F CUR CHAM HON 1,000 RAP STATE HOM 0,000 Fade Dut + Une Out = SensCor Out
next channel (1—9):|[[MEXT CHAM MOM 1,000 # OF CHAMMELS 9,000
Rarp Tine (sec):w.o - TIME LEFT 0,000 STATUS 1,000

EXCHON
RH_FILTL CLEAR HISTORY LOAD COEFFICIENTS

C
OFFSET Wi _| | I8
———
DUTHON

RH_F’ CLEAR HISTORY LOAD COEFFICIENTS HOLD OUTPUT

! e OUTHON

EXCHON —
1 CLEAR HISTORY LOAD COEFFICIENTS HOLD OUTPUT
IECTHATIO
Fiil Fiiz f

! e OUTHON

EXCHON
L] 5T_5T1 ORM_FILT4 CLEFR HISTORY LOAD COEFFICIENTS HOLD OUTRUT
y ..wﬂ ——
+ OFFSET i | | I f

Figure 5: New screen showing additional info on the fader status and the full filter set for the
Normal filters.

Ramp Tim

ORH_F

Ramp Tim

OUTHON

e ISI_CUST_CHAMBER_ST1_SENSCOR_X_EQ_ALL.adl

S1:IST
EXCHON

LOAD COEFFICIENTS
ouT DECIHATION
THHON f

! | Fanp Tin DUTHIN

EXCHON
LOAD COEFFICIENTS HOLD DUTPUTI
DECIHATIO

IHHON

! | i DUTHAN

LOAD COEFFICIENTS HOLD UUTPUTI
DECIMATIO

EXCHON

Ramp Tim

EXCHON

OUTHOM

LOAD COEFFICIENTS HOLD DUTPUTI
DECIHATIO

OUTHON

Figure 6: New screen showing full filter set for the Earthquake and the Uncorrected (backup) filters.

10

e ISI_CUST_CHAMBER_ST1_SENSCOR_WNR_OVERVIEW.adl

Lacal Gnd Yel,

Common mode

Local
Difference

Local, no BRS

{nm/zec)

Lacal Gnd Vel,

Common mode

Local
Difference

Local, no BRS

(nm/zec)

Local Gnd Wel,

Common mode

Local
Difference

Local, no BRS

(nmizec)

Figure 7: New Weiner Filter Sensor Correction overview screen

11

6 Simulink diagrams

[Falslisimast b [Pa]MAST P [P2]ST1 b [Pa|SENSCOR b [Ba|X »

this pravents requests during a ramp.
. These recests.are alsa ignorad by the fade code

d but ignorad|

au
ramp_state: 0= holding, 1 =ramping

The low tit input is for the superX, il iexists, for Z,
and for X in the LHO comer statiors.
Thisis the input you expect 10 usa mast of the time.

2.

cdsEpicsOutput oty

Test Point
LOCAL DIFF

comman_mods_input

GRERE
cdsFilt
Z

s <GFCORT]
Gow2
The uncomected input is the calbraled STS input, without he BRS.

For Z, this is the same as the low i input
This gets used when the BRS is not available.

inline FADE_P5 $1S|_SRC/CHANNEL_FADER ¢

Test Paint
WNR_OUT

odsEpicsOuput

Test Point
FADE_OUT

edsEpicsOutput
T
UniDatay Goa

ramp: state
ow_chan
next_chan

SENSCOR MO
cdsEpicsOutpul

Test Paint

Figure 8: New Sensor Correction diagram (for x). Channel selection is on the top left in the blue,
note that the NEXT block has some funky stuff going on. The 9 signals to select between come in

on the left. The new weiner filters are top right. The FADE block (bottom right) contains several
status monitors for the CHANNEL _FADER code (center). This part is the X_SENSCOR part from

the new blend_switch_library.mdl

12

Funky bit of code to limit the user input to be between (min_value) and (max_value)
It ALSO prevents changes when the ramp is gaing.
BTL Sept 2018

cdsEpicsOutput
CHAN_MON

gt} — (D)
1
[— = an

if (max_value) <= Delay_time, output always gets the limited value
then pass (max_value), else pass delay_time

if the value is different than the limited value. min value
then update the value next cycle

ramp_state

if (min_value) >= Delay_time,
then pass (min_value), else pass delay_time

CHAN
cdsEpicsInCirl

1

init_val
(1] 11z NOT f
Constant LogicalOperator
cycle 1isa 0, allows safe.snap fo load.

cycle 2is a 1, which loads the init_val z
cycle 3 and after are 0, ignoring this input

The 3 OR inputs give contral to FE for 3 cases: The use of 2 cdsEpicsinCirl block here
1: don't allow value changes during a ramp. enforces max/ min value of DELAY_TIME when
2. Make the value of CHAN equal to init_val on code start MASK is 1.

3. Limit user input to be in range 0 - Max_chan.

Figure 9: Code for the NEXT block. This is based on the epics with limiter, T1800278, and also
includes a 2 cycle thing to set the initial value to match the INIT_CHAN. This needs to be 2 cycles,
because the safe.snap value will be loaded at some point. This code allows it to be loaded on cycle
1, then replaced on cycle 2. When the c-code is ramping, this epics part also just gets the value
from last cycle. These things are done to keep the NEXT_CHAN epics variable in sync with the
c-code. The code switches when the NEXT_CHAN value updates, so the sync is important.

[%a]sLisimast b [Pa| MAST » [B2[ST1 b [Pa|SENSCOR b [Pa]X b [Pa|FADE

These channels are the output monitors for the c-code

Aat
s SR (1) ramp_state: 0= holding, 1 = ramping

cdafplcsOutput (2) current_channel_num: channel in use, or in use at ramp start (1-N)
.2 > (3) next_channel: channel being switched to (1-N). -1 if not ramping
&D, (4) time_left: seconds until end of ramp
CTEEE CUR_CHAN_MON (5) status_code: 1 if OK, 2 if bad channel selected.
odsPpicsOutput (6) NUM_INPUT_CHANS: how many input channels are there? (1-N)
Go—
next_chan NEXT_CHAN_MON
cdsEpicsOutput
time_left TIME_LEFT_MON
dsEpicsOutput
Gor—
slatus STATUS_MON
dsEpicsOutput
D ——
num_inguts NiM INPUT_GHANS_MON
dsEpicsOutput

Figure 10: These are the epics channels which monitor the state of the FADE code

13

https://dcc.ligo.org/T1800278

7

Source Code

There is a new piece of c-code called CHANNEL_FADER.c. It lives in userapps/trunk/isi/com-
mon/src/. Testing of the code was done by Brian Lantz in March 2018, please see SEI log 1320 for
details.

/*

* % ¥ % ¥ % %

*

¥ %X ¥ X %X %X X % X X X X %X X ¥ % ¥ %

¥ % % %X ¥ % %

* % % %

* %

* % %X % %

The code is:
CHANNEL_FADER. c¢ Function: FADE_P5.c

Transition smoothly (fade) from one input channel to another.
Used to switch between sensor correction filters or between blend filters

Inputs:

(0) int initial_channel: at code start, select this channel (numbered 1-N, or 0
for OFF)
(1) int next_channel: this is the channel to switch to (numbered 1-N, or 0 for
OFF) .

if the channel is 0 = fade output to 0. fader is running, but output is 0.
(2) double T_ramp: ramp time in seconds

(3) int start-now: (epics momentary) when this channel is 1, start a transition
(4) int jump_to_end: (epics momentary) when this channel is 1, go to ramp end
(5 — end) double: input channels to switch between

Outputs :

(0) double output_-val: the current output value

(1) double ramp_state: 0 = holding, 1 = ramping

(2) int current_channel_-num: channel in use, or in use at ramp start (1—N)
(3) int next_channel: channel being switched to (1-N). —1 if not ramping
(4) double time_left: seconds until end of ramp

(5) int status_code: 1 if OK, 2 if bad channel selected.

(6) int NUMINPUT_-CHANS: how many input channels are there? (1—N)

note: current_channel_-num and target_channel are the internal vars used to track
what i1s going on. These are only updated at the start and end of
transitions

Authors: BTL
March, April 2018, adapted from ramp_bias.c
see T1300510 for a derivation of the ramp — BTL June 12, 2013

pseudo_code
start with no ramp, select the current_channel_num = initial_channel as the
channel to wuse

if ramping
continue the ramp wunless the jump_to_end is selected
at end of ramp, select RampState = HOLDING set current_channel_-num =
target_channel
else (ie if mot ramping)
if the start_-now is selected and ramptime > 0 start a new ramp (set state to

RAMPING)
elseif start_-mow is selected and ramptime = 0, just switch.
current_channel_num is not changed, make target_channel = channel_next.

we only read the channel_next at the ramp start, and
we stick with target_channel until the end of the ramp.
end

14

https://alog.ligo-la.caltech.edu/SEI/index.php?callRep=1320

* Set the outputs:

* 1f HOLDING, output = input from current_channel_num

*x 1f RAMPING output = ramp x input from current_channel_num + (I—ramp) * input from
target_channel

*/

#define MODELRATE FERATE

#define MIN.CHANS 0 // if channel is 0, then use 0 as input, so output fades to
0

#define MAX CHANS 20 // mazimum number of allowed input channels (N<=this number)

#define NUM.CONTPARAMS 5 // number of inputs which are used as control parameters
#define IN_INIT_CHAN 0 // these are the control input channel numbers (for
convenience)
#define INNEXT CHAN
#define INTRAMP
#define IN.START NOW
#define IN_JUMP_2_END

=W N =

#define OUT_SIGNAL
#define OUT RAMP.STATE
#define OUT_.CUR.CHAN
#define OUTNEXT.CHAN
#define OUT_TIME_LEFT
#define OUT-STATUS
#define OUTNUM_CHANS

// these are the output channel numbers (for convenience)

SOk W N~ O

#define ALL.GOOD_CODE 1 // status codes for the user;
#define BAD.CHANNEL REQUEST CODE 2
#define BADNUMBER.CHAN_.CODE 3

#define INITIAL_VALUE 1 // these are the end wvalues for the ramp (from 1
down to 0);

#define FINAL_VALUE 0

#define MIN.RAMP_TIME 0.001 // ramptime > 0 but < min_ramp_time will be set to
this wvalue

#define MAX RAMP.TIME 100.0 // mazimum time in seconds.

typedef enum {HOLDING, RAMPING} RampStates;

void FADE_P5(double xargin, int nargin, double xargout, int nargout){
static int RampTimer = 0; // How far along the ramp are we, in cycles
static int TotalRampCycles = 0; // Number of cycles in the ramp
static RampStates CurrentState = HOLDING;
static int FirstCycle = 2; // 1 or more will initialize things, 1 doesn’t
seem to work, so try 2 cycles.

static int current_channel.num; // this is the number (I-N) of the input chan to

send out

static int next_channel.-num; // channel to switch to

static int NUMINPUT.CHANS; // assumes that mnargin starts at 1, not 0

static bool major_error = false; // used for error monitoring;

int requested_channel; // this is what the user requested. check it before
using it.

float requested_tramp; // these are the other control inputs;

float requested_start;
float requested_end;
static int error_code = ALL.GOOD_CODE;

15

double ThisOutput;
double current_channel_value;
double next_channel_value;

static double Tramp; // ramptime (sec) read only on new ramp start;
static double RpC[6]; // these are the polynomial Ramp Coefs.
double Xdiff; // Total change for the ramp

double Vmax; // maz velocity , computed from dX and dT

double tt; // time from ramp start, but scaled as —T/2 —> T/2.
double ThisRampVal; // wvalue of the ramp (from 1 down to 0)

double time_left; //number of seconds left in the ramp. for the GUI
int monkey = 1;

// on code start, get the initial channel to use, and check that number of
inputs is OK

// this requires 2 cycles, because the NEXT CHAN epics wvar is set to the
INIT_-CHAN wvalue

// by the simulink diagram code. that assignment takes 2 cycles,

// first is to let the epics code set NEXT-CHAN to the wvalue in safe.snap

// second to set it to the correct val.

// if (FirstCycle >=1) {
if ((FirstCycle = 2) || (FirstCycle ==1)) {
FirstCycle ——; // meeds 2 cycles to get epics vars all set.
NUM_INPUT.CHANS = (nargin — NUM.CONTPARAMS) ;
if ((NUMINPUT.CHANS > MAXCHANS) || (NUMINPUT.CHANS < MIN.CHANS)) {
major_error = true; // this is a fatal error. just skip to the end
} else {
current_channel_num = argin [IN.INIT_.CHAN];
if (current_channel_-num < MIN_.CHANS) {current_channel_-num = MIN_CHANS
i}
if (current_channel_num > NUMINPUT.CHANS) {current_channel num =
NUM_INPUT_CHANS; }

next_channel_num = current_channel_num;
//set the initial outputs.
if (current_.channel.-num = 0) {current_channel_value = 0;} else {

current_channel_value = argin[current_channel_-num + NUM.CONTPARAMS
- 1]}
ThisOutput = current_channel_value;
time_left = 0;
// so we have wvals for ThisOutput, CurrentState,
current_channel_-num , next_channel_num,
// time_left, error_code, and NUM_INPUT-CHANS

} else if (major_error = true) {
//just skip to the end, the outputs are set there

} else {
// this is the normal piece of the code which we expect to run on every
normal iteration
// part 1:
// start by just reading ALL wvarious control parameters and giving them
useful names

requested_channel = argin [INNEXT.CHAN];
requested_tramp = (double) argin [INTRAMP];
requested_start = argin [INSTART NOW];
requested_end = argin [IN.JUMP_2_END | ;

16

// part 2:
// now we examine the state and the inputs and decide what to do

// in this piece of the code, we will set the states and update the ramp co—

effs.
// but we do not calculate the outputs yet. that is in part 4.

if ((CurrentState — RAMPING) && (requested_end =— 1)) {
// abort the current ramp and jump to the end
CurrentState = HOLDING;
current_channel_num = next_channel_num;
time_left = 0;
} else if (CurrentState = RAMPING) {
// continue the ramp. this will ignore new requests until the ramp is
complete.
} else if (requested_start =— 1) {
// start a new ramp
// first, be sure the requested channel is OK
if ((requested_channel > NUMINPUT_CHANS) || (requested_channel <
MIN_CHANS)) {
// the user has selected an invalid channel. don’t switch.
error_.code = BAD CHANNELREQUEST.CODE; // bad channel selected;
// so we are not going to accept the request.
// continue holding, but set the code to bad.
} else if (requested_-tramp <= 0.0){
// wvalid channel, but ramp time of 0 (or negative):
// just switch without ramping
error_code = ALL_GOOD_CODE;
CurrentState = HOLDING;
current_channel_num = requested_channel;
next_channel_num = requested_channel;
} else {
// user has selected a wvalid channel and finite ramp time
// start the switching process
error_code = ALL_GOOD_CODE;
next_channel_num = requested_channel;
// now set up the ramp.
Tramp = requested_tramp;
if (Tramp < MINRAMP.TIME) { Tramp = MIN.RAMP.TIME; }
if (Tramp > MAXRAMP.TIME) { Tramp = MAXRAMP.TIME; }
RampTimer = 0;
TotalRampCycles = (int) (MODELRATE % Tramp) ;
CurrentState = RAMPING;
Xdiff = (double) FINAL.VALUE — INITIAL_VALUE;
Vmax = (1.875) * Xdiff/Tramp;
// RC are the Ramp Coefficients
RpC[0] = INITIAL.VALUE + (0.5 % Xdiff);
RpC[1] = Vmax;
RpC[2] = 0.0;
RpC[3] = (—2.6666666667/(Tramp* Tramp)) * Vmax;
RpC[4] = 0.0;
RpC[5] (3.20/(Tramp+Tramp*Tramp*Tramp)) * Vmax;
Y} // end of the new ramp section
} else {
// we are just holding. dont do anything;
}

// part 3: if we are now in the ramping state , update the ramp parameters
if (CurrentState = RAMPING) {

17

RampTimer++;

// make this back into a time which goes from —T/2 to +T/2;

tt = (double) 2xRampTimer — TotalRampCycles;

tt = (0.5 * tt) /(1.0 *= MODELRATE); // cast to double
before the divide

// RC[5]xtt "5 + RC[4]~tt"4 + ... RC[0]

ThisRampVal = ((((RpC[5]*tt + RpC[4])*tt + RpC[3])=*tt + RpC
[2]) xtt + RpC[1])«tt + RpC[0];

if (RampTimer >= TotalRampCycles) {

// the ramp is done! update the ramp state

CurrentState = HOLDING;
current_channel_num = next_channel_num;
// mext_channel_num = 0; // no — just leave this at the current
channel
time_left = 0;
} else {
CurrentState = RAMPING;
time_left = Tramp — (RampTimer / (1.0 % MODELRATE));

}
} else {

// mothing to do in the holding state
}

// part 4: update the main output based on the ramp state.
if (CurrentState = RAMPING) {
// here is where we do the mizing of the two input channels

if (current_channel num == 0) {current_channel_value = 0;} else {
current_channel_value = argin[current_.channel_num + NUM.CONT_PARAMS
- 1]}
if (next_channel . num == 0) {next_channel_value = 0;} else {
next_channel_value = argin| next_channel_num + NUM.CONT_PARAMS
- 115}

ThisOutput = ThisRampVal * current_channel_value + (1.0 — ThisRampVal) x
next_channel_value;

} else {
// just make the output equal to the input
if (current_channel.-num = 0) {current_channel_value = 0;} else {
current_channel_value = argin[current_channel_ num + NUM.CONT_PARAMS
- 1]}
ThisOutput = current_channel_value;
}
}
// part 5: update all the output parameters, this runs every cycle, including
first and major error.
if (major_error = true) {
argout [OUT_SIGNAL] = —1;
argout [OUT_RAMP STATE] = HOLDING;
argout [OUT_.CUR.CHAN] = —1;
argout [OUTNEXT_-CHAN] = —1;
argout [OUT_TIMELEFT] = 0;
argout [OUT_STATUS] = BADNUMBER CHAN_CODE;
argout [OUT_NUM.CHANS] = NUM_INPUT_CHANS;
} else {
argout [OUT_SIGNAL] = ThisOutput;
argout [OUT_RAMP STATE] = CurrentState;
argout [OUT_CUR.CHAN] = current_channel _num;
argout [OUTNEXT_-CHAN] = next_channel_num;
argout [OUT_TIME_LEFT] = time_left;
argout [OUT_STATUS] = error_code;

18

argout [OUT_NUM_CHANS] = NUMINPUT_CHANS;

19

	Summary
	Major Changes
	Channel Fading
	Ground motion calculation
	STS outputs from master model have been removed
	Weiner Filtering
	RX, RY, and RZ

	Installation
	Overview
	SVN updates
	Model updates
	BSC-ISI model update
	HAM-ISI model update
	HPI model update

	Framewriter restart
	MEDM updates
	Filter arrangement
	Foton filters
	Epics Parameters

	Guardian Changes

	Using the new Sensor Correction
	Setting up the Sensor Correction
	Fade Time

	Additional MEDM screens
	Simulink diagrams
	Source Code

