
Sensor Correction Update to the ISI models

Implement a Fader and Allow Common mode control
Brian Lantz

T1800414-v3, Oct 2018

1 Summary

This document describes the installation, function, and use of the ISI Sensor Correction block
for correction from the ground sensors to stage 1 (for the BSC-ISI) or ground sensors to the
platform (for the HAM-ISI). The general ECR for all of the Common-mode earthquake control is
ECR E1800268 and FRS ticket 11553. The common-mode earthquake control also involves changes
to how the ground motion signals are processed and distributed. Those changes are discussed in
T1800420.

2 Major Changes

2.1 Channel Fading

The Channel Fader is a new tool for smoothly changing between channels. It is similar to the
blend-switching, except that now each possible filter is run all the time, and the Fader simply
ramps from one running filter to the next. This means the switching is faster because, unlike the
blend-switcher, there is no start-up transient associated with selecting a new filter, and you only
have to transition 1 time per fade (the blend-switcher had to switch back to the CUR filter). This
requires more computing time per cycle and more memory, but the ISI models still complete with
plenty of time. This also means that each sensor correction filter can use an entire filter bank,
rather than just a single module.

For the Sensor Correction, this should be a big improvement, because one be able to choose
between running correction filters, rather than having to turn one off and turn another one on to
change the correction filter.

2.2 Ground motion calculation

The ground motion signals are no longer calculated by each model. Going forward, each ISI and
HPI model will have the calibrated ground motion signals as inputs. These signals are calculated
by the SEI-PROC model in the corner station, and the top-level ISI-ETMX and ISI-ETMY models
in the end stations. These signals all need to be calculated and distributed before this
model update is implemented.

https://dcc.ligo.org/T180414
https://dcc.ligo.org/E1800268
https://services.ligo-la.caltech.edu/FRS/show_bug.cgi?id=11553
https://dcc.ligo.org/T1800420

The new inputs to the ISI models are:

inputs 1-3 Normal ground motion channels. These are the X, Y, and Z channels used to monitor
the ground motion during normal operation for the building. The BRS-corrected channels
are used if they exist. For LHO End-X, these would be SUPER-X, STS-Y, and STS-Z.

inputs 4-6 Common-mode motion for X, Y, and Z. These are calculated by the SEI-PROC model
in the corner station.

inputs 7 & 8 These are the uncorrected ground motion signals for X and Y. If the BRS is used,
these channels will be different than those for 1-2. If there is not a tilt-corrected channel,
then these will be the same as those used for 1-2. These back-up channels are available for
use if the BRS is not working correctly. For LHO End-X, these would be STS-X and STS-Y.

input 9 Spare. Left for future use. Having nine inputs keeps the input numbering the same.

2.3 STS outputs from master model have been removed

Since the ground motion signals are no longer calibrated within isi2stagemaster.mdl, the outputs
of that have been removed. This will require re-wiring the outputs at the top level of the BSC
models.

2.4 Weiner Filtering

The Weiner filters still exist, and have been extended slightly. For X, Y, and Z there are now filters
for the Normal ground signal, the Uncorrected ground signal, and the local mode motion.

2.5 RX, RY, and RZ

No changes have been made to the sensor correction for the rotational degrees of freedom. There
seemed to be little motivation at the time of the writing, so Brian Lantz and Jim Warner decided
to leave this unchanged for now.

3 Installation

3.1 Overview

Here is a summary of the installation steps:

1. Before you begin, make sure that the calibrated ground motion signals and common-mode
signals are being calculated by the End Station ISI models (T1800420) or by the SEI-PROC
model.

2. The isi/common part of the userapps svn needs to be updated.

3. In each chamber model, the new ground motion signals need to be connected, and the master
library part, isi2stagemaster.mdl will be replaced with the new part isi2stagemaster SC 2018.mdl.
The wiring to the new part does change, but not much.

4. The framewriter needs to be restarted because the filter list is different. The DQ channels do
not change.

5. The location of the Sensor Correction filters gets changed; the filters are the same but they
need to be installed into the new locations.

2

https://dcc.ligo.org/T1800420

6. Once the filters have been installed, set them up in the plethora of new medm screens.

7. There are a few epics channels which need to be updated and saved in SDF.

8. Finally, the guardian control for the Sensor correction needs to be changed.

3.2 SVN updates

There are several files in various folders of the seismic userapps which have been updated for the
BSC-ISI. You need to SVN up the following files:

code update is in rev 18007

{userapps }/ release/isi/common/src/

CHANNEL_FADER.c / this code has been updated

medm screens appear in rev 18034

{userapps }/ release/isi/common/medm/bscisi/

ISI_CUST_CHAMBER_GND_BRS.adl / added new block to calibrate the STS

ISI_CUST_CHAMBER_OVERVIEW.adl / new link to the sensor correction controls

ISI_CUST_CHAMBER_ST1_SENSCOR_MATCH_ALL_2018.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_MATCH_ALL_OLD.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_OVERVIEW_2018.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_OVERVIEW_OLD.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_SELECT_XYZ.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_WNR_OVERVIEW.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_WNR_X.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_WNR_Y.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_WNR_Z.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_X_EQ_ALL.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_X_NORM_ALL.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_Y_EQ_ALL.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_Y_NORM_ALL.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_Z_EQ_ALL.adl

ISI_CUST_CHAMBER_ST1_SENSCOR_Z_NORM_ALL.adl

models appear in rev 18036

{userapps }/ release/isi/common/models/

isi2stagemaster_SC_2018.mdl / new library part for the BSC -ISI

blend_switch_library.mdl / new library part for the sensor correction.

The models and 2 corresponding medm screens were updated in rev 18066.

There are several more files for the HAM-ISI update. These were committed on (not yet). The
HAM-ISI updates are in rev- (not yet). The HAM and the BSC source the same fader c-code and
library parts, but the HAM-ISI master model has been updated to a new master part.

{userapps }/ release/isi/common/medm/

(not yet)

{userapps }/ release/isi/common/models/

(not yet)

3.3 Model updates

The inputs to the ground motion channels need to be updated, and the models have new master
library parts to minimize confusion and prevent accidental updates.

3

3.3.1 BSC-ISI model update

The master library part for the ISI needs to be replaced.

1. Commit the working chamber model to the SVN.

2. Leave all the inputs to the master part unchanged. The number and order of the inputs to
the new part are the same, although the 9 GND inputs get different signals.

3. Delete the output for the 9 STS {A/B/C} {X/Y/Z} signals from the master part. These
outputs have been removed from the new part. These signals are now all calculated elsewhere.

4. Delete the master isi2stagemaster part.

5. Bring in the new block from the isi2stagemaster SC 2018.mdl. Rename the block per the
chamber.

6. Connect all the inputs and the outputs in the same order as the previous version (except the
outputs removed earlier). The outputs are all now connected correctly.

7. Fix the GND inputs. The 9 old STS inputs have been replaced by 9 new GND inputs. For
the End Station models, connect these as shown in figure 1. For the other models, these get
connected to signals from the SEI-PROC model.

8. save, commit, pray, compile.

Figure 1: New ground inputs for the isi2stagemaster SC 2018 library part.

3.3.2 HAM-ISI model update

TBD

3.3.3 HPI model update

also TBD

4

3.4 Framewriter restart

Oddly, the DQ channel list has not changed. The sensor correction signals which are saved are all
saved from the SCSUM block, and this block has not been touched. However, the list of filters has
been changed pretty dramatically, so the PAR and INI files are quite different, and the framewriter
will need to be restarted.

3.5 MEDM updates

There are several new MEDM screens. The overview screen is the same except that there is a
new block called ‘Gnd -> St1 SENSCOR’, as shown in figure 2. The new screens are described in
section 4.

Figure 2: Change to the BSC-ISI overview screen. There is a new GND -> St1 SENSCOR part,
which is linked to the new sensor correction screens. The ground STS calibrations are all gone, as
is the Ground STS selection matrix, so these displays are all white.

3.6 Filter arrangement

3.6.1 Foton filters

Several Foton filters need to be installed for each chamber. First, the filter which is most com-
monly used for sensor correction, e.g. CML BB SC should be installed in the first filter bank for
the Normal ground signals, and also in the first filter bank for the uncorrected ground filters. Open
the foton file for the chamber, and copy the filter into the first module for:
$(CHAMBER) ST1 SENSCOR {X, Y, and Z} NORM FILT1, and
$(CHAMBER) ST1 SENSCOR {X, Y, and Z} UNCOR FILT1

If there is a second Sensor correction filter which is currently used, that should be installed into
$(CHAMBER) ST1 SENSCOR {X, Y, and Z} NORM FILT2.

There is (soon to be) a new sensor correction filter for use during earthquakes called EQ trial1.
That filter will be in the seismic userapps as soon as I make it. When it is, install EQ trial1 into
the first module of the 3 filters
$(CHAMBER) ST1 SENSCOR {X, Y, and Z} EQ FILT1

5

3.6.2 Epics Parameters

We’ll talk about setting up the various epics variables shortly. Remember to put the filter settings,
and the new epics vars for ramp time and initial sensor correction filter under SDF control.

There are 9 new filters for each of X, Y and Z. These are
...ST1 SENSCOR {X, Y, and Z} NORM FILT1 to NORM FILT4,
...ST1 SENSCOR {X, Y, and Z} EQ FILT1 to EQ FILT3, and
...ST1 SENSCOR {X, Y, and Z} UNCOR FILT1 and UNCOR FILT2.

The new ramp time is ...ST1 SENSCOR {X, Y, and Z} TRAMP.
The Initial Filter is selected by ...ST1 SENSCOR {X, Y, and Z} INIT CHAN.

3.7 Guardian Changes

To select a new sensor correction filter, update the value of the ...ST1 SENSCOR {X, Y, Z} NEXT CHAN
epics variable. The ramp starts automatically when this value changes. The front-end prevents
changes to this variable during a ramp. The values 1-9 select the 9 possible filter banks.
1-4 select NORM FILT1-4,
5-7 select EQ FILT1-3, and
8 & 9 select UNCOR FILT1 and 2.
Setting NEXT CHAN to 0 ramps the sensor correction output to 0.

The NEXT CHAN epics variable is a bit special. It gets set to the value of INIT CHAN when
the code starts (cycle 2) and it can not be changed while the filter is transitioning. You also can
not set it outside the range of 0-9. I’ve attached the code to achieve this later in the document.

Please add docs for the guardian control here.

4 Using the new Sensor Correction

4.1 Setting up the Sensor Correction

When the foton file is ready, install it and then set up the Sensor Correction filters. From the
overview screen, press the new GND -> St1 SENSCOR module. This opens the new screen.
Figure 3 shows the new sensor correction overview screen. Each DOF has 9 filter banks: 4 for
normal operation, 3 for common-mode control during earthquakes, and 2 additional backup filters
which can be used if the BRS is not working correctly. These have descriptive names, but are just
numbered 1-9 for switching. To setup

4.2 Fade Time

I suggest starting with a fade time of 30 seconds. I’ve tried 30 seconds for blend time on long
duration filters, and the simulations look fine, see SEI log 890, Brian Lantz, from Dec. 7, 2015.
This is also comparable with the characteristic period of the surface waves. Feel free to try shorter
transitions, and let us know how it goes.

6

https://alog.ligo-la.caltech.edu/SEI/index.php?callRep=890

Figure 3: Updated Sensor Correction overview screen. The numbers on the ‘Filter Selection’ block
refer to the channel which is in use. 0 means it is off.

7

Figure 4: Selection Screen for the Sensor correction. The filters for each DOF are selected by
pressing the ‘engage’ button. You can also select a new filter by typing a number in the ‘Next
Chan’ variable. The filters are numbered 1-9 where 1= NORM FILT1 and 9 = UNCOR FILT2.
Here, the X DOF has channel 1, NORM FILT1, selected, but is part way through a transition from
1 to 5 (EQ FILT1). Y running happily on channel 1, and Z is off. At the top of each bank, you
need to set the initial channel to use. 0 is fine, it means the sensor correction starts OFF. Also set
the ramp times. 30 seconds is fine.

8

5 Additional MEDM screens

There are a few other medm screens which have been created.

Figure 5: New screen showing additional info on the fader status and the full filter set for the
Normal filters.

9

Figure 6: New screen showing full filter set for the Earthquake and the Uncorrected (backup) filters.

10

Figure 7: New Weiner Filter Sensor Correction overview screen

11

6 Simulink diagrams

Figure 8: New Sensor Correction diagram (for x). Channel selection is on the top left in the blue,
note that the NEXT block has some funky stuff going on. The 9 signals to select between come in
on the left. The new weiner filters are top right. The FADE block (bottom right) contains several
status monitors for the CHANNEL FADER code (center). This part is the X SENSCOR part from
the new blend switch library.mdl

12

Figure 9: Code for the NEXT block. This is based on the epics with limiter, T1800278, and also
includes a 2 cycle thing to set the initial value to match the INIT CHAN. This needs to be 2 cycles,
because the safe.snap value will be loaded at some point. This code allows it to be loaded on cycle
1, then replaced on cycle 2. When the c-code is ramping, this epics part also just gets the value
from last cycle. These things are done to keep the NEXT CHAN epics variable in sync with the
c-code. The code switches when the NEXT CHAN value updates, so the sync is important.

Figure 10: These are the epics channels which monitor the state of the FADE code

13

https://dcc.ligo.org/T1800278

7 Source Code

There is a new piece of c-code called CHANNEL FADER.c. It lives in userapps/trunk/isi/com-
mon/src/. Testing of the code was done by Brian Lantz in March 2018, please see SEI log 1320 for
details.

The code is:

/∗ CHANNEL FADER. c Function : FADE P5. c
∗
∗ Trans i t ion smoothly (fade) from one input channel to another .
∗ Used to sw i t ch between sensor co r r e c t i on f i l t e r s or between b l end f i l t e r s
∗
∗ Inputs :
∗
∗ (0) i n t i n i t i a l c h a n n e l : a t code s t a r t , s e l e c t t h i s channel (numbered 1−N, or 0

f o r OFF)
∗ (1) i n t nex t channe l : t h i s i s the channel to sw i t ch to (numbered 1−N, or 0 f o r

OFF) .
∗ i f t he channel i s 0 = fade output to 0 . f ader i s running , but output i s 0 .
∗ (2) doub le T ramp : ramp time in seconds
∗ (3) i n t s ta r t now : (e p i c s momentary) when t h i s channel i s 1 , s t a r t a t r a n s i t i o n
∗ (4) i n t jump to end : (e p i c s momentary) when t h i s channel i s 1 , go to ramp end
∗ (5 − end) doub le : inpu t channe l s to sw i t ch between
∗
∗ Outputs :
∗
∗ (0) doub le o u t p u t v a l : the curren t output va lue
∗ (1) doub le ramp sta te : 0 = ho ld ing , 1 = ramping
∗ (2) i n t current channel num : channel in use , or in use at ramp s t a r t (1−N)
∗ (3) i n t nex t channe l : channel be ing sw i t ched to (1−N) . −1 i f not ramping
∗ (4) doub le t i m e l e f t : seconds u n t i l end o f ramp
∗ (5) i n t s t a t u s c od e : 1 i f OK, 2 i f bad channel s e l e c t e d .
∗ (6) i n t NUM INPUT CHANS: how many input channe l s are t he r e ? (1−N)
∗
∗ note : current channel num and t a r g e t c hanne l are the i n t e r n a l vars used to t rack
∗ what i s go ing on . These are on ly updated at the s t a r t and end o f

t r a n s i t i o n s
∗
∗ Authors : BTL
∗ March , Apr i l 2018 , adapted from ramp bias . c
∗ see T1300510 f o r a d e r i v a t i on o f the ramp − BTL June 12 , 2013
∗
∗ pseudo code
∗ s t a r t wi th no ramp , s e l e c t the current channel num = i n i t i a l c h a n n e l as the

channel to use
∗
∗ i f ramping
∗ cont inue the ramp un l e s s the jump to end i s s e l e c t e d
∗ at end o f ramp , s e l e c t RampState = HOLDING se t current channel num =

ta r g e t c hanne l
∗ e l s e (i e i f not ramping)
∗ i f t he s tar t now i s s e l e c t e d and ramptime > 0 s t a r t a new ramp (s e t s t a t e to

RAMPING)
∗ e l s e i f s t a r t now i s s e l e c t e d and ramptime = 0 , j u s t sw i t ch .
∗ current channel num i s not changed , make t a r g e t c hanne l = channe l nex t .
∗ we only read the channe l nex t a t the ramp s t a r t , and
∗ we s t i c k wi th t a r g e t c h anne l u n t i l the end o f the ramp .
∗ end

14

https://alog.ligo-la.caltech.edu/SEI/index.php?callRep=1320

∗ Set the ou tpu t s :
∗ i f HOLDING, output = input from current channel num
∗ i f RAMPING output = ramp ∗ inpu t from current channel num + (1−ramp) ∗ inpu t from

ta r g e t c hanne l
∗/

#define MODELRATE FE RATE
#define MIN CHANS 0 // i f channel i s 0 , then use 0 as input , so output f ade s to

0
#define MAXCHANS 20 // maximum number o f a l l owed input channe l s (N<=t h i s number)

#define NUMCONTPARAMS 5 // number o f inpu t s which are used as con t r o l parameters
#define IN INIT CHAN 0 // the s e are the con t r o l input channel numbers (f o r

convenience)
#define IN NEXT CHAN 1
#define IN TRAMP 2
#define IN START NOW 3
#define IN JUMP 2 END 4

#define OUT SIGNAL 0 // the s e are the output channel numbers (f o r convenience)
#define OUTRAMP STATE 1
#define OUTCURCHAN 2
#define OUTNEXTCHAN 3
#define OUT TIME LEFT 4
#define OUT STATUS 5
#define OUTNUMCHANS 6

#define ALL GOODCODE 1 // s t a t u s codes f o r the user ;
#define BADCHANNEL REQUEST CODE 2
#define BADNUMBERCHANCODE 3

#define INITIAL VALUE 1 // the s e are the end va l u e s f o r the ramp (from 1
down to 0) ;

#define FINAL VALUE 0
#define MIN RAMP TIME 0.001 // ramptime > 0 but < min ramp time w i l l be s e t to

t h i s va lue
#define MAXRAMPTIME 100 .0 // maximum time in seconds .

typedef enum {HOLDING, RAMPING} RampStates ;

void FADE P5(double ∗ argin , int nargin , double ∗argout , int nargout) {
stat ic int RampTimer = 0 ; // How fa r a long the ramp are we , in c y c l e s
stat ic int TotalRampCycles = 0 ; // Number o f c y c l e s in the ramp
stat ic RampStates CurrentState = HOLDING;
stat ic int Fi r s tCyc l e = 2 ; // 1 or more w i l l i n i t i a l i z e th ings , 1 doesn ’ t

seem to work , so t r y 2 c y c l e s .

stat ic int current channel num ; // t h i s i s the number (1−N) o f the input chan to
send out

stat ic int next channel num ; // channel to sw i t ch to
stat ic int NUM INPUT CHANS; // assumes t ha t nargin s t a r t s a t 1 , not 0
stat ic bool ma jo r e r ro r = f a l s e ; // used f o r error monitoring ;
int r eques t ed channe l ; // t h i s i s what the user r eque s t ed . check i t b e f o r e

us ing i t .
f loat requested tramp ; // the s e are the o ther con t r o l i npu t s ;
f loat r e qu e s t e d s t a r t ;
f loat reques ted end ;
stat ic int e r r o r c ode = ALL GOODCODE;

15

double ThisOutput ;
double cu r r en t channe l va lu e ;
double next channe l va lue ;

stat ic double Tramp ; // ramptime (sec) read only on new ramp s t a r t ;
stat ic double RpC [6] ; // the s e are the po lynomia l Ramp Coefs .
double Xdi f f ; // Tota l change f o r the ramp
double Vmax; // max v e l o c i t y , computed from dX and dT
double t t ; // time from ramp s t a r t , but s c a l e d as −T/2 −> T/2.

double ThisRampVal ; // va lue o f the ramp (from 1 down to 0)
double t im e l e f t ; //number o f seconds l e f t in the ramp . f o r the GUI

int monkey = 1 ;

// on code s t a r t , g e t the i n i t i a l channel to use , and check t ha t number o f
inpu t s i s OK

// t h i s r e q u i r e s 2 cyc l e s , because the NEXTCHAN ep i c s var i s s e t to the
INIT CHAN va lue

// by the s imu l ink diagram code . t h a t assignment t a k e s 2 cyc l e s ,
// f i r s t i s to l e t the ep i c s code s e t NEXTCHAN to the va lue in s a f e . snap
// second to s e t i t to the co r r e c t v a l .

// i f (F i r s tCyc l e >=1) {
i f ((F i r s tCyc l e == 2) | | (F i r s tCyc l e ==1)) {

Fir s tCyc le −−; // needs 2 c y c l e s to g e t e p i c s vars a l l s e t .
NUM INPUT CHANS = (narg in − NUMCONTPARAMS) ;
i f ((NUM INPUT CHANS > MAXCHANS) | | (NUM INPUT CHANS < MIN CHANS)) {

major e r ro r = true ; // t h i s i s a f a t a l e r ror . j u s t s k i p to the end
} else {

current channel num = arg in [IN INIT CHAN] ;
i f (current channel num < MIN CHANS) { current channel num = MIN CHANS

;}
i f (current channel num > NUM INPUT CHANS) { current channel num =

NUM INPUT CHANS;}
next channel num = current channel num ;
// s e t the i n i t i a l ou tpu t s .
i f (current channel num == 0) { cu r r en t channe l va lu e = 0 ;} else {

cu r r en t channe l va lu e = arg in [current channel num + NUMCONTPARAMS
− 1] ; }
ThisOutput = cur r en t channe l va lu e ;
t im e l e f t = 0 ;
// so we have v a l s f o r ThisOutput , CurrentState ,

current channel num , next channel num ,
// t im e l e f t , error code , and NUM INPUT CHANS

}
} else i f (ma jo r e r ro r == true) {

// j u s t s k i p to the end , the ou tpu t s are s e t t h e r e

} else {
// t h i s i s the normal p i e ce o f the code which we expec t to run on every

normal i t e r a t i o n
// par t 1 :
// s t a r t by j u s t read ing ALL var ious con t r o l parameters and g i v i n g them

u s e f u l names
r eques t ed channe l = arg in [IN NEXT CHAN] ;
requested tramp = (double) a rg in [IN TRAMP] ;
r e qu e s t e d s t a r t = arg in [IN START NOW] ;
reques ted end = arg in [IN JUMP 2 END] ;

16

// par t 2 :
// now we examine the s t a t e and the inpu t s and dec ide what to do
// in t h i s p i e ce o f the code , we w i l l s e t the s t a t e s and update the ramp co−

e f f s .
// but we do not c a l c u l a t e the ou tpu t s ye t . t h a t i s in par t 4 .

i f ((CurrentState == RAMPING) && (requested end == 1)) {
// abor t the curren t ramp and jump to the end
CurrentState = HOLDING;
current channel num = next channel num ;
t im e l e f t = 0 ;

} else i f (CurrentState == RAMPING) {
// cont inue the ramp . t h i s w i l l i gnore new r e qu e s t s u n t i l the ramp i s

complete .
} else i f (r e qu e s t e d s t a r t == 1) {

// s t a r t a new ramp
// f i r s t , be sure the r eque s t ed channel i s OK
i f ((r eques t ed channe l > NUM INPUT CHANS) | | (r eques t ed channe l <

MIN CHANS)) {
// the user has s e l e c t e d an i n v a l i d channel . don ’ t sw i t ch .
e r r o r c ode = BADCHANNEL REQUEST CODE; // bad channel s e l e c t e d ;
// so we are not going to accep t the r e que s t .
// cont inue ho ld ing , but s e t the code to bad .

} else i f (requested tramp <= 0.0) {
// v a l i d channel , but ramp time o f 0 (or nega t i v e) :
// j u s t sw i t ch wi thou t ramping
e r r o r c ode = ALL GOODCODE;
CurrentState = HOLDING;
current channel num = reques t ed channe l ;
next channel num = reques t ed channe l ;

} else {
// user has s e l e c t e d a v a l i d channel and f i n i t e ramp time
// s t a r t the sw i t ch ing proces s
e r r o r c ode = ALL GOODCODE;
next channel num = reques t ed channe l ;
// now s e t up the ramp .
Tramp = requested tramp ;
i f (Tramp < MIN RAMP TIME) { Tramp = MIN RAMP TIME; }
i f (Tramp > MAXRAMPTIME) { Tramp = MAXRAMPTIME; }
RampTimer = 0 ;
TotalRampCycles = (int) (MODELRATE ∗ Tramp) ;
CurrentState = RAMPING;
Xd i f f = (double) FINAL VALUE − INITIAL VALUE ;
Vmax = (1 . 8 75) ∗ Xdi f f /Tramp ;
// RC are the Ramp Co e f f i c i e n t s
RpC[0] = INITIAL VALUE + (0 . 5 ∗ Xdi f f) ;
RpC[1] = Vmax;
RpC[2] = 0 . 0 ;
RpC[3] = (−2.6666666667/(Tramp∗ Tramp)) ∗ Vmax;
RpC[4] = 0 . 0 ;
RpC[5] = (3 . 2 0/ (Tramp∗Tramp∗Tramp∗Tramp)) ∗ Vmax;

} // end o f the new ramp s e c t i on
} else {

// we are j u s t ho l d ing . dont do anyth ing ;
}

// par t 3 : i f we are now in the ramping s t a t e , update the ramp parameters
i f (CurrentState == RAMPING) {

17

RampTimer++;
// make t h i s back in t o a time which goes from −T/2 to +T/2;
t t = (double) 2∗RampTimer − TotalRampCycles ;
t t = (0 . 5 ∗ t t) / (1 . 0 ∗ MODELRATE) ; // ca s t to doub le

b e f o r e the d i v i d e
// RC[5] ∗ t t ˆ5 + RC[4] ∗ t t ˆ4 + . . . RC[0]
ThisRampVal = ((((RpC[5] ∗ t t + RpC[4]) ∗ t t + RpC[3]) ∗ t t + RpC

[2]) ∗ t t + RpC[1]) ∗ t t + RpC [0] ;
i f (RampTimer >= TotalRampCycles) {

// the ramp i s done ! update the ramp s t a t e
CurrentState = HOLDING;

current channel num = next channel num ;
// next channel num = 0; // no − j u s t l e a v e t h i s a t the curren t

channel
t im e l e f t = 0 ;

} else {
CurrentState = RAMPING;

t im e l e f t = Tramp − (RampTimer / (1 . 0 ∗ MODELRATE)) ;
}

} else {
// noth ing to do in the ho l d ing s t a t e

}

// par t 4 : update the main output based on the ramp s t a t e .
i f (CurrentState == RAMPING) {

// here i s where we do the mixing o f the two input channe l s
i f (current channel num == 0) { cu r r en t channe l va lu e = 0 ;} else {

cu r r en t channe l va lu e = arg in [current channel num + NUMCONTPARAMS
− 1] ; }

i f (next channel num == 0) { next channe l va lue = 0 ;} else {
next channe l va lue = arg in [next channel num + NUMCONTPARAMS
− 1] ; }

ThisOutput = ThisRampVal ∗ cu r r en t channe l va lu e + (1 . 0 − ThisRampVal) ∗
next channe l va lue ;

} else {
// j u s t make the output equa l to the input
i f (current channel num == 0) { cu r r en t channe l va lu e = 0 ;} else {

cu r r en t channe l va lu e = arg in [current channel num + NUMCONTPARAMS
− 1] ; }

ThisOutput = cur r en t channe l va lu e ;
}

}
// par t 5 : update a l l the output parameters , t h i s runs every cyc l e , i n c l u d i n g

f i r s t and major error .
i f (ma jo r e r ro r == true) {

argout [OUT SIGNAL] = −1;
argout [OUT RAMP STATE] = HOLDING;
argout [OUT CURCHAN] = −1;
argout [OUTNEXTCHAN] = −1;
argout [OUT TIME LEFT] = 0 ;
argout [OUT STATUS] = BADNUMBERCHANCODE;
argout [OUTNUMCHANS] = NUM INPUT CHANS;

} else {
argout [OUT SIGNAL] = ThisOutput ;
argout [OUT RAMP STATE] = CurrentState ;
argout [OUT CURCHAN] = current channel num ;
argout [OUTNEXTCHAN] = next channel num ;
argout [OUT TIME LEFT] = t im e l e f t ;
argout [OUT STATUS] = e r r o r c ode ;

18

argout [OUTNUMCHANS] = NUM INPUT CHANS;
}

}

19

	Summary
	Major Changes
	Channel Fading
	Ground motion calculation
	STS outputs from master model have been removed
	Weiner Filtering
	RX, RY, and RZ

	Installation
	Overview
	SVN updates
	Model updates
	BSC-ISI model update
	HAM-ISI model update
	HPI model update

	Framewriter restart
	MEDM updates
	Filter arrangement
	Foton filters
	Epics Parameters

	Guardian Changes

	Using the new Sensor Correction
	Setting up the Sensor Correction
	Fade Time

	Additional MEDM screens
	Simulink diagrams
	Source Code

