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PHOTON CALIBRATOR
Principle of Operation
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PHOTON CALIBRATOR
Hardware Overview
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Schematic Layout of Photon calibrator

Bird’s eye view of the layout of Photon calibrator as installed. 

Pcal persicope structure



POWER CALIBRATION
GS/WS Strategy (J. Hadler at NIST)
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● Gold Standard (GS) 
calibrated at NIST

» One single standard.

● Working Standard (WS) 
calibrated against GS.

» WS -> One for each 
detector

● Pcal power sensors (Tx and 
Rx) at each end station 
calibrated against WS.



POWER CALIBRATION
Sharing Gold Standard Calibration
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POWER CALIBRATION
Calibration Transfer
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● Annual NIST measurement has 
uncertainty of ~ 0.35%.

● Uncertainties in relative 
responsivity measurements are 
approx. 0.10%.
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POWER CALIBRATION
Calibration Transfer (WS → Tx / Rx)
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POWER CALIBRATION
Uncertainty Budget

Parameter
Relative

Uncertainty (O2)

NIST -> GS [⇢GS ] 0.51%

WS/GS [↵WG] 0.03%

Rx/WS [↵0
RW ] 0.05%

Optical e�ciency [ET ] 0.37%

Overall 0.63%

Table 4: Pcal uncertainty estimate for O2

Parameter
Relative

Uncertainty

NIST -> GS [⇢GS ] 0.35%

WS/GS [↵WG] 0.10%

Rx/WS [↵RW ] 0.10%

Overall < 0.40%

Table 5: Pcal uncertainty estimate for O2
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POWER CALIBRATION 
Optical Efficiency
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POWER CALIBRATION 
Optical Efficiency Improvements

11

● In vacuum measurements at all 4 end 
stations

» Allows us to apportion the losses 
between the input and output paths

0.37% è 0.10%

T1 
(at TX Module)

ETM

R1 
(at RX Module)

R2

T2



DISPLACEMENT CALIBRATION
Uncertainty in “M” and “!”
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Parameter Rel. Uncertainty

Mass (M) 0.005 %

Cos ! 0.07 %



DISPLACEMENT CALIBRATION
Error due to Rotation
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● Unintended Rotational effect 
» Poor localization of the beams
» Power imbalance between the 

beams

~ 0.20 %



Parameter
Relative

Uncertainty (O2)

NIST -> GS [⇢GS ] 0.51%

WS/GS [↵WG] 0.03%

Rx/WS [↵RW ] 0.05%

Optical e�ciency [ET ] 0.37%

Angle of incidence [cos ✓] 0.07%

Mass of test mass [M ] 0.005%

Rotation [R] 0.40%

Overall 0.75%

Table 2: Pcal uncertainty estimate for O2

Parameter
Relative

Uncertainty

NIST -> GS [⇢GS ] 0.35%

WS/GS [↵WG] 0.10%

Rx/WS [↵RW ] 0.10%

Optical e�ciency [ET ] 0.10%

Angle of incidence [cos ✓] 0.07%

Mass of test mass [M ] 0.005%

Rotation [R] 0.20%

Overall < 0.50%

Table 3: Expected Pcal Uncertainty estimate for O3

2
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DISPLACEMENT CALIBRATION
Expected Uncertainty

This is the  accuracy of calibration on the displacement fiducials.



OPTICAL FOLLOWER SERVO
Frequency Response of WS
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Drumhead Mode
8151 Hz

Butterfly Mode
5953 Hz
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ETM motion deviates from their rigid body approximation due to the 
excitation of the natural modes by applied forces

CALIBRATION AT HIGHER FREQUENCIES
Bulk Elastic Deformation
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CALIBRATION AT HIGHER FREQUENCIES
FEA (COMSOL) Results

Front face of the test mass



CONTINUOUS CALIBRATION
via Pcal Lines
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36 Hz

331 Hz

Photon calibrators, that rely on absolute laser power 
calibration from NIST,  are providing fiducial 

displacements with sub-1% accuracy.





EXTRA SLIDES
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● Principle of Operation

● Hardware Overview

● Laser Power and Displacement Calibration
» Uncertainty

● Frequency Dependence

● Summary
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OUTLINE
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CALIBRATION AT HIGHER FREQUENCIES
Experimental Results
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Experimental confirmation of the results estimated from FEA. 



101 102 103

0.5

1.0
M

ag
ni

tu
de

[c
ts

/m
] ⇥106

C(f) Model

C(f) Meas

101 102 103

Frequency (Hz)

�100

�50

0

P
ha

se
[d

eg
]

C(f) Model

C(f) Meas

APPLICATION
Swept-Sine Measurements

24
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APPLICATION
Temporal Variations

Improvement in calibrated signal after applying the 
time-varying calibration parameters



UNCERTAINTY BUDGET
Meeting at NIST Boulder (May 9,2018)
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● The larger variations in NIST 
measurement was due to the light 
reflecting back from the nearby 
aperture into the power sensor.

» Confirmed this through an experiment 
conducted at NIST during the visit.

» Will start new measurements of Gold 
Standard and collect at least two data 
points before O3.

● Calibration provided by NIST are 
traceable to fundamental units.

» They are the only institute that 
calibrate at 1 W level. 

» Rest of the countries extrapolate from 
microwatt level

26

Unusually large variations in 
NIST calibration

Comparison of Global Power Standard.
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CALIBRATION AT HIGHER FREQUENCIES
Measurement Setup

Config.

Pcal Beam Position

Beam Config.Beam Target (mm) Actual (mm)

OP

Upper [0, 111.6] [0.8, 112.2]

Lower [0,-111.6] [-0.8, -111.8]

P14

Upper [0, 127.6] [1.2, 126.1]

Lower [0, -127.6] [-0.5, -125.7]

M8

Upper [0, 103.6] [2.5, 103.2]

Lower [0, -103.6] [-1.3, -103.0]

TABLE 5.5. Positions of Pcal beams on the surface of the test mass for three di↵erent
beam configurations. The illustration on the right shows optimal positions (OP) in
black, P14 in red and M8 in blue.

The beams were moved symmetrically to avoid unwanted rotation of the test

mass. After the beams were placed approximately at the desired positions, the Pcal

system was used to inject sinusoidal excitations at frequencies between 1000 Hz and

5000 Hz. Since the Pcal laser power required to produce a given displacement of the

test mass increases as the square of the frequency at which the displacement is made,

for these “high frequency” excitations, a single excitation was introduced at one given

time using all available laser power. The excitations were left on for at least 24 hours

and sometimes even for days, depending on the duty cycle of the interferometer. An

automated script was used to change the frequency of the excitation if and when the

interferometer went out of lock and enough data had been collected at that frequency.

For the times when the excitation lines were on and the interferometer was

in lock, data from relevant channels were demodulated at the excitation frequency.

During demodulation, the integration time was set to 10 minutes for frequencies below

2500 Hz, 30 minutes for frequencies between 2500 Hz and 4000 Hz and and one hour

for frequencies above 4000 Hz to achieve an appreciable SNR for each data point. The

127



OVERALL CALIBRATION UNCERTAINTY 
For O1 and O2
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Cahillane et al., Phys Rev D 96, 102001 

Observing Run 1 Observing Run 2



IN-VACUUM OPTICAL EFFICIENCY 
MEASUREMENTS

NIST Boulder Visit May 9, 2018 29

With 55% to 
45% loss on 
two sides and  
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CALIBARTION AT HIGHER FREQUENCIES
Effect of IFO beam position
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POWER CALIBRATION
Calibration Transfer (WS/GS)
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POWER CALIBRATION
Calibration Transfer (Rx/WS)
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