Consensus Building: Statistical Treatment of Multiple Results of the Same Measurand

Amanda Koepke

Joint work with Antonio Possolo, NIST Fellow & Chief Statistician

March 2019

- 1. Definitions
- 2. Principles
- 3. Statistical Methods
- 4. Degrees of Equivalence

Consensus building

• Combine measurement results into consensus estimate.

Consensus building

• Combine measurement results into consensus estimate.

CCQM-K6: Cholesterol in Human Serum

Consensus building

• Combine measurement results into consensus estimate.

CCQM-K6: Cholesterol in Human Serum

- Combine measurement results into consensus estimate.
- Qualify consensus estimate with evaluation of measurement uncertainty that captures
 - Stated uncertainties associated with individual measured values

- Combine measurement results into consensus estimate.
- Qualify consensus estimate with evaluation of measurement uncertainty that captures
 - Stated uncertainties associated with individual measured values
 - Dark uncertainty (Thompson & Ellison, 2011)

Dark uncertainty

- Analogy to 'dark matter'
- Uncovered when measured values are intercompared
- Unexpectedly large dispersion of values among the labs

P1: The statistical model used for analysis should be able to detect, evaluate, and propagate dark uncertainty.

P2: No measurement result should be set aside except for substantive, documented cause.

• Graphical and statistical detection of anomalous results are useful screening tools, but should be advisory

P3: No measured value should dominate consensus value simply because it has a small uncertainty.

P3: No measured value should dominate consensus value simply because it has a small uncertainty.

P3: No measured value should dominate consensus value simply because it has a small uncertainty.

P4: Participating laboratories/methods should be selected and characterized sufficiently well to warrant belief that measured values are roughly centered at the true value of measurand.

Summary of Principles

- Dark uncertainty
- Outliers
- Belief that laboratories/methods are selected and characterized well

Summary of Principles

- Dark uncertainty
- Outliers
- Belief that laboratories/methods are selected and characterized well

"The willingness of the participants in an interlaboratory study to engage in an intercomparison should include a tacit agreement to abide by the resulting findings, which create the opportunity for collective learning and provide a stimulus for improving measurement quality." – Koepke et al (2017), *Metrologia*

Methods

CCQM-K6: Cholesterol in Human Serum

Random effects model

$$x_j = \mu + \lambda_j + \varepsilon_j$$
 for $j = 1, \dots, n$

- x_j Value measured by lab j
- μ Measurand
- $egin{aligned} \lambda_j & \mathsf{Effect} ext{ of lab } j \ \lambda_j &\sim \mathsf{N}(\mathsf{0}, au^2) \end{aligned}$
- $arepsilon_{j}$ Measurement error for lab j $arepsilon_{j} \sim \mathsf{N}(\mathbf{0}, \sigma_{j}^{2})$

DerSimonian-Laird procedure

DerSimonian-Laird procedure

•
$$\widehat{\tau}_{\mathsf{M}}^2 = \frac{Q - n + 1}{\sum_{j=1}^n u_j^{-2} - \sum_{j=1}^n u_j^{-4} / \sum_{j=1}^n u_j^{-2}}$$
, where $Q = \sum u_j^{-2} (x_j - \widehat{\mu})^2$

Bayesian approach

$p(\theta|y) \propto p(\theta) \times p(y|\theta) = \text{Prior} \times \text{Likelihood}$

Bayesian approach

 $p(\theta|y) \propto p(\theta) \times p(y|\theta) = \text{Prior} \times \text{Likelihood}$

• Same random effects model: $x_j = \mu + \lambda_j + \varepsilon_j$ for $j = 1, \dots, n$

Bayesian approach

 $p(\theta|y) \propto p(\theta) \times p(y|\theta) = \text{Prior} \times \text{Likelihood}$

- Same random effects model: $x_j = \mu + \lambda_j + \varepsilon_j$ for $j = 1, \dots, n$
- Can easily incorporate:
 - Uncertainty in σ_i^2
 - $\nu_j u_j^2 / \sigma_j^2 \sim \chi^2(\nu_j)$
 - Uncertainty in au estimate
 - Any other prior knowledge

Posterior density: $p(\theta|x, u, \nu) \propto p(\theta) \times p(x, u, \nu|\theta)$

• Unknown: $\boldsymbol{\theta} = (\mu, \tau, \boldsymbol{\lambda}, \boldsymbol{\sigma})$

Posterior density: $p(\theta|x, u, \nu) \propto p(\theta) \times p(x, u, \nu|\theta)$

- Unknown: $\boldsymbol{\theta} = (\mu, \tau, \boldsymbol{\lambda}, \boldsymbol{\sigma})$
- Prior: $p(\theta) = p(\mu)p(\tau)\prod_{i=1}^{n}[p(\lambda_{j}|\tau)p(\sigma_{j})]$
 - $\mu \sim \text{Normal}(0, 10^5)$
 - $\tau \sim half-Cauchy(scale=Large)$
 - $\sigma_j \sim half-Cauchy(scale=Large)$
 - $\lambda_j | \tau \sim \text{Normal}(0, \tau^2)$

Posterior density: $p(\theta|x, u, \nu) \propto p(\theta) \times p(x, u, \nu|\theta)$

- Unknown: $\boldsymbol{\theta} = (\mu, \tau, \boldsymbol{\lambda}, \boldsymbol{\sigma})$
- Prior: $p(\theta) = p(\mu)p(\tau)\prod_{i=1}^{n}[p(\lambda_{j}|\tau)p(\sigma_{j})]$
 - $\mu \sim \text{Normal}(0, 10^5)$
 - $\tau \sim$ half-Cauchy(scale=Large)
 - $\sigma_j \sim \text{half-Cauchy(scale}=Large)$
 - $\lambda_j | \tau \sim \text{Normal}(0, \tau^2)$

Posterior density: $p(\theta|x, u, \nu) \propto p(\theta) \times p(x, u, \nu|\theta)$

- Unknown: $\boldsymbol{\theta} = (\mu, \tau, \boldsymbol{\lambda}, \boldsymbol{\sigma})$
- Prior: $p(\theta) = p(\mu)p(\tau) \prod_{i=1}^{n} [p(\lambda_i | \tau)p(\sigma_i)]$
 - $\mu \sim \text{Normal}(0, 10^5)$
 - $\tau \sim half-Cauchy(scale=Large)$
 - $\sigma_j \sim half-Cauchy(scale=Large)$
 - $\lambda_j | \tau \sim \text{Normal}(0, \tau^2)$
- Likelihood: $p(x, u, \nu | \theta) = p(x | \theta) p(u, \nu | \theta)$
 - $x_j | \mu, \lambda_j, \sigma_j \sim \text{Normal}(\mu + \lambda_j, \sigma_j^2)$

•
$$\frac{\nu_j u_j^2}{\sigma_j^2} |\sigma_j \sim \chi^2(\nu_j)$$
 20/38

Posterior density: $p(\theta|x, u, \nu) \propto p(\theta) \times p(x, u, \nu|\theta)$

- Unknown: $\boldsymbol{\theta} = (\mu, \tau, \boldsymbol{\lambda}, \boldsymbol{\sigma})$
- Prior: $p(\theta) = p(\mu)p(\tau) \prod_{i=1}^{n} [p(\lambda_i | \tau)p(\sigma_i)]$
 - $\mu \sim \text{Normal}(0, 10^5)$
 - $\tau \sim half-Cauchy(scale=Large)$
 - $\sigma_j \sim half-Cauchy(scale=Large)$
 - $\lambda_j | \tau \sim \text{Normal}(0, \tau^2)$
- Likelihood: $p(x, u, \nu | \theta) = p(x|\theta)p(u, \nu | \theta)$

Simulate from the posterior distribution using Markov chain Monte Carlo.

Linear Pool

- $f = \sum_{j=1}^{n} w_j \phi_j$
 - f Probability density of measurand
 - ϕ_j Probability density for lab j
 - w_j Weight of lab j

Linear Pool

Typically, a large sample is drawn from the mixture distribution by repeating the following:

- 1. Select a laboratory at random
- 2. Draw a value from the corresponding distribution

Which method should I use?

Results for key comparison:

PROCEDURE	CONSENSUS	STD. UNC.	EXP. UNC. (95%)
DerSimonian-Laird	1.7294	0.0047	0.0095
Bayesian	1.7291	0.0055	0.0112
Linear Pool	1.7332	0.0222	0.0502

Unilateral DoEs: Identify measurement results that differ significantly from the consensus value

Bilateral DoEs: Identify measurement results that differ significantly from one another when considered in pairs

- Conventional version (as defined by the MRA)
 - Unilateral: $D_j = x_j \hat{\mu}$
 - Bilateral: $B_{ij} = D_i D_j$

- Conventional version (as defined by the MRA)
 - Unilateral: $D_j = x_j \hat{\mu}$
 - Bilateral: $B_{ij} = D_i D_j$
- Uncertainty: Simulate for $k = 1, \ldots, K$

$$D_{j,k} = x_j + e_{j,k} - \hat{\mu},$$

 $e_{j,k} \sim$ Student's *t* with mean 0, variance u_j^2 , d.f. ν_j

$$B_{ij,k} = D_{i,k} - D_{j,k}$$

95% coverage interval computed from quantiles of the simulated DoEs.

Unilateral DoEs

DoE estimate and 95% coverage interval

Bilateral DoEs

Yellow squares (with black asterisks in the center) indicate results that differ significantly from 0 at 95% coverage.

33/38

- Conventional version (as defined by the MRA)
 - Unilateral: $D_j = x_j \hat{\mu}$

- Bilateral:
$$B_{ij} = D_i - D_j$$

- Conventional version (as defined by the MRA)
 - Unilateral: $D_j = x_j \hat{\mu}$
 - Bilateral: $B_{ij} = D_i D_j$
- Leave-one-out version
 - Unilateral: $D_j^* = x_j \hat{\mu}_{-j}$
 - Bilateral: $B_{ij}^* = D_i^* D_j^*$

- Leave-one-out version
 - Unilateral: $D_j^* = x_j \hat{\mu}_{-j}$

- Bilateral:
$$B_{ij}^* = D_i^* - D_j^*$$

- Leave-one-out version
 - Unilateral: $D_j^* = x_j \hat{\mu}_{-j}$
 - Bilateral: $B_{ij}^* = D_i^* D_j^*$
- Uncertainty: Simulate for $k = 1, \ldots, K$:
 - $\{\tilde{x}_{-j,k}\}$: Sample from linear pool applied to all but lab j
 - $\{e_{j,k}\}$: Sample from Student's t with mean 0, variance u_j^2 , d.f. ν_j
 - $D_{j,k}^* = x_j + e_{j,k} \tilde{x}_{-j,k}$
 - $B_{ij,k}^* = D_{i,k}^* D_{j,k}^*$

Unilateral DoEs: Leave-one-out version

DoE estimate and 95% coverage interval

NIST Consensus Builder

NIST Consensus Builder — consensus.nist.gov

NIST Consensus Builder

Ab

Ent

Cho Der Hier

out the NIST nsensus Builder	List laboratory labels, measured values, standard uncertainties, and (if available) numbers of degrees of freedom, seperated by commas.		
	Laboratories (REQUIRED)		
	LGC, NARL, NIST, NMI, NMIJ, NRCCRM, P		
	Measurement units, e.g. mg/kg		
er data	(OPTIONAL)		
	mg/g		
	Measured values (REQUIRED)		
ose a method for analysis	1.732, 1.777, 1.735, 1.729, 1.718, 1.736, 1.		
Simonian-Laird	Standard uncertainties (REQUIRED)		
archical Bayes	0.0066, 0.017, 0.0033, 0.0045, 0.0039, 0.0		
ar Pool	Numbers of Degrees of Freedom (OPTIONAL)		
	60, 11.3, 13.5, 60, 27, 7.4, 314		
	Coverage probability (REQUIRED)		
	0.95		
	Degrees of equivalence		
	Compute degrees of equivalence		
	Type • DoEs conforming to MRA DoEs based of	on Leave-One-Out estimates	
	Number of bootstrap replicates		
	10000		

Summary

- Goal: Consensus value and uncertainty, degrees of equivalence
- Principles
- Statistical models
- NIST Consensus Builder: consensus.nist.gov

More details: *Consensus building for interlaboratory studies, key comparisons, and meta-analysis,* Koepke et al (2017)