Detection of Gravitational Wave Transients

in the Era of LSST

Alan J Weinstein LIGO Laboratory, Caltech for the LIGO and Virgo Collaborations LSST-2019, Tucson AZ, August 15, 2019

LIGO-G1901461

Three BBH events, compared

Abbott, et al., LIGO Scientific Collaboration and Virgo Collaboration, "Binary Black Hole Mergers in the first Advanced LIGO Observing Run", https://arxiv.org/abs/1606.04856, Phys. Rev. X 6, 041015 (2016)

Starting to build up a mass distribution

http://ligo.org/detections/GW170814.php; https://media.ligo.northwestern.edu/gallery/mass-plot

LIGO-Virgo Compact Binary Catalogue

Data release:

https://www.gw-openscience.org/catalog/

GW170817 1.46 -0.10

GW170818 35.5 -4.7

GW170823 **39.6** +10.0

1.27 .0.09

26.8 .5.2

29.4 ^{+6.3}

- GWTC-1 strain data, parameter estimation samples, skymaps, ...
- Full 01 & 02 strain data
- Tutorial, software
- **Detector status**
- **Event alerts**
- Lots more!

	R)	Gra	avitatio	nal Wave	Open So	cience C	enter			
ŧ	Data▼	Software	e• Online S	Status• Aboi	ut GWOSC -						
			Confident of and Virgo of Catalog Do	detections fro during the Firs escription	m GWTC-1, the G st and Second Ob	Catalog ravitational-W serving Runs.	GWTC-1-(ave Transient	confide Catalog o	n t of Compact Bi	inary Mergers Ob	served by LIGO
			For strain da Click ar Or see	ata: n event name the JSON file lis neter Table	st.						Show/hide column
			Event	Primary mass	Secondary mass	Effective	chirp mass	Final	Final mass	Luminosity distance (Mpc)	GPS time (s)
			GW150914	*4.8 35.6 _{-3.0}	30.6 ^{+3.0}	+0.12 -0.01 -0.13	28.6 ^{+1.6} _{-1.5}	0.69 +0.05 -0.04	63.1 ^{+3.3} _{-3.0}	430 ⁺¹⁵⁰ ₋₁₇₀	1126259462.4
			GW151012	23.3 ^{+14.0} _{-5.5}	+4.1 13.6 -4.8	+0.28 -0.19	15.2 ^{+2.0} _{-1.1}	0.67 +0.13 -0.11	35.7 ^{+9.9} _{-3.8}	+540 -480	1128678900.4
			GW151226	13.7 +8.8 -3.2	7.7 ^{+2.2} _{-2.6}	*0.20 •0.18	*0.3 •0.3	0.74 +0.07 -0.05	20.5 +6.4 -1.5	440 +180 -190	1135136350.6
			GW170104	31.0 ^{+7.2} _{-5.6}	+4.9 20.1 _{-4.5}	+0.17 -0.04 -0.20	21.5 ^{+2.1} _{-1.7}	0.66 +0.08 -0.10	49.1 ^{+5.2} _{-3.9}	+430 -410	1167559936.6
			GW170608	10.9 ^{+5.3} _{-1.7}	7.6 ^{+1.3} _{-2.1}	0.03 ^{+0.19} _{-0.07}	+0.2 -0.2	0.69 +0.04 -0.04	17.8 ^{+3.2} _{-0.7}	320 ⁺¹²⁰ ₋₁₁₀	1180922494.5
			GW170729	+16.6 50.610.2	34.3 ^{+9.1} _{-10.1}	•0.21 •0.36 .0.25	*6.5 35.7 _{-4.7}	0.81 +0.07 -0.13	80.3 ^{+14.6} _{-10.2}	2750 ⁺¹³⁵⁰ ₋₁₃₂₀	1185389807.3
			GW170809	35.2 ^{+8.3} _{-6.0}	23.8 ^{+5.2} _{-5.1}	0.07 ^{+0.16} _{-0.16}	25.0 ^{+2.1} _{-1.6}	0.70 +0.08 -0.09	56.4 +5.2 -3.7	+320 -380	1186302519.8
			GW170814	30.7 ^{+5.7} _{-3.0}	+2.9 25.3 _{-4.1}	0.07 +0.12 -0.11	24.2 ^{+1.4} _{-1.1}	0.72 +0.07 -0.05	53.4 ^{+3.2} _{-2.4}	580 ⁺¹⁶⁰ ₋₂₁₀	1186741861.5
						. 0. 0.0	. 0.001				

1.186 .0.00

26.7 .1.7

+4.2 29.3 .3.2

 $\leq 0.89 \leq 2.8$

59.8 .3.8

65.6 +9.4

0.67 +0.07

0.71 +0.08

0.00 .0.01

-0.09 _0.21

+0.20 -0.22

40 .10

1020 -360

+840 1850 -840

1187008882.4

1187058327.1

1187529256.5

Distributed **low-latency** O2 skymaps in ICRS coordinates - Mollweide projection. Shaded areas: 90% CR of source localization. BAYESTAR (Singer & Price 2016)

Offline O2 skymaps from GWTC-1. lalInference (Veitch et al. 2015)

- Inclusion of Virgo greatly improves sky localization: importance of a *global GW detector network* for accurate localization of GW sources (GW170814, GW170817, GW170818)
- $\bullet\,GW170818$ (LHV) is best localized BBH to date: with a 90% area of 39 deg^2

Low-Latency Gravitational Wave Alerts - Astrophys. J. 875, 161 (2019) GWTC-1 - arxiv.org/abs/1811.12907 (2018)

Sky localization in O2

 $CR_{0.9}^{BNS}$, the (smallest) area enclosing 90% of the total posterior probability. A_*^{BNS} , the area of the smallest credible region containing the true position.

Abbott, B.P et al. Living Rev Relativity (2018) 21: 3. https://doi.org/10.1007/s41114-018-0012-9

GraceDB – Gravitational-Wave Candidate Event Database

HOME	PUBLIC ALERTS	SEARCH	LATEST	DOCUMENTATIO	N						LOGIN
Superevent Info											
Supereve ID	ent Category		Labels		FAR (Hz)	FAR (yr⁻ ¹)	t_start	t_0	t_end	UTC • Submission time	Links
\$190701a	ah Production	PE_READY ADVOK SKYMAP_READY EMBRIGHT_READY PASTRO_READY DQOK 1.9 GCN_PRELIM_SENT 08			1.916e 08	1 per - 1.6543 years	1246048403.576563	1246048404.577637	1246048405.814941	2019-07- 01 20:33:24 UTC	<u>Data</u>
S190701a	ah Production	GCN_PRELIM_SE	NT		08	years	1246048403.576563	1246048404.577637	1246048405.814941	UTC	<u>Da</u>

Preferred Event Info

Group	Pipeline	Search	Instruments	GPS Time - Event time	UTC 👻 Submission time
CBC	pycbc	AllSky	H1,L1,V1	1246048404.5776	2019-07-01 20:33:45 UTC

- Superevent Log Messages

- Sky Localization

Greatly improved sky localization with 3 detectors

Credit: LIGO/Virgo/NASA/Leo Singer (Milky Way image: Axel Mellinger)

http://ligo.org/detections/GW170814.php

Localization of GW170817

Source located to 28 sq deg, and ~ 40 Mpc. Time is of the essence!

Virgo "non-detection" of GW170817 was very important for sky localization!

The signal was in Virgo's "blind spot". Reduces the localization patch to "only" ~28 deg²

LIGO-Virgo / Greco, Arnaud, Vicere (2017). Background: Fermi/NASA

GW170817 - The next evening

M. M. Kasliwal et al., Science 10.1126/science.aap9455 (2017).

Coordinated Observations with the GW Network

	01	02	O 3	04	O5
LIGO	80 Мрс	100 Мрс	105-130 Mpc	160-190 Mpc	Target 330 Mpc
Virgo		30 Мрс	50 Mpc	90-120 Mpc	150-260 Mpc
KAGRA			8-25 Mpc	25-130 Mpc	130+ Mpc
LIGO-India	a		1 1		Target 330 Mpc
201	5 2016	2017 2018	2019 2020 2	2021 2022 2023	2024 2025 2026

https://dcc.ligo.org/LIGO-P1900218/public - pending update to: Abbott, B.P et al. Living Rev Relativ (2018) 21: 3.

Estimated Sensitivity Evolution: LIGO, Virgo, KAGRA

https://dcc.ligo.org/LIGO-P1900218/public - pending update to: Abbott, B.P et al. Living Rev Relativ (2018) 21:3.

Estimated Inspiral Ranges for LIGO, Virgo, KAGRA

'Seeing' distance (averaged over all sky and binary orientations) to binary neutron star (1.4 M $_{\odot}$ -1.4 M $_{\odot}$) and binary black hole (30 M $_{\odot}$ -30 M $_{\odot}$) for SNR = 8

		01	O2	O3	04	05
BNS Range (Mpc)	aLIGO AdV	80 _	100 30	110–130 50	160 - 190 90 - 120 25 - 120	330 150-260
BBH Range (Mpc)	aLIGO AdV KAGRA	- 740 - -	910 270	8-23 990-1200 500 80-260	1400 - 1600 860 - 1100 260 - 1200	2500 1300-2100 1200+
NSBH Range (Mpc)	aLIGO AdV KAGRA	140 - -	180 50	190–240 90 15–45	300 - 330 170 - 220 45 - 290	590 270–480 290+
Burst Range (Mpc)	aLIGO AdV KAGRA	50 - -	60 25	80-90 35 5-25	110-120 65-80 25-95	210 100–155 95+

Note: Horizon distance ≈ 2.25 x average distance

https://dcc.ligo.org/LIGO-P1900218/public - pending update to: Abbott, B.P et al. Living Rev Relativ (2018) 21: 3.

Major LIGO Detector Improvements for O3

- Squeezed light injection
 - Goal is 3 dB noise reduction; have seen 2+ dB
- Replaced all end test masses, added annular end reaction masses
- Vastly improved interferometer stray light control
- New robust 70W laser amplifiers → 50 W into interferometers
- Installation of acoustic mass dampers on all test masses
 - Parametric instability suppression → hasn't been a problem in O3, shouldn't be a problem for O4!
- New monolithic Signal Recycling Cavity mirrors, new 118 MHz SRC modulation sideband control scheme
- Replace Output Faraday Isolators
- Electric field meters installed in one end station for H1 and L1

LIGO Progress – Online detector status

https://www.gw-openscience.org/detector_status/

August 10 2019 - » Home Summary Environment - Instrument performance -Summary The plots shown below characterize the sensitivity and status of each of the LIGO interferometers as well as the Virgo detector in Cascina, Italy and the GEO600 detector in Hanover, Germany For more information about the plots listed below, click on an image to read the caption. Use the tabs in the payigation bar at the top of the screen for more detailed information about the LIGO. Virgo, and GEO interferometers. [1249430418-1249516818, state: Observing] GEO-LIGO-Virgo gravitational-wave strain GW amplitude spectral density [strain/ $\overline{\text{Hz}}$] 10^{-50} [strain/ $\overline{\text{Hz}}$] 10^{-51} [strain/ $\overline{\text{Hz}}$] GEO600 Hanford Livingston Virgo 10^{-23} 10^{-24} 10^{3} 10 100 Frequency [Hz] GEO-LIGO-Virgo operating segments LIGO-Virgo binary neutron star inspiral range 150 Livinestor GEO Virg Hanfor 75 Livinest 5095 Virg 0+ 10 12 14 16 18 20 22 12 6 8 24 10 14 18 $2\dot{0}$ 22 24 Time [hours] from 2019-08-10 00:00:00 UTC (1249430418.0) Time [hours] from 2019-08-10 00:00:00 UTC (1249430418.0)

This page is a product of the Gravitational Wave Open Science Center, See gw-openscience.org for more information. Note that some information on these pages may be missing or incomplete

Gravitational Wave Detector Network

Operational Snapshot as of Aug 11, 01:14 UTC

Detector	Status	Duration
<u>GEO 600</u>	Observing	12:53
LIGO Hanford	Observing	14:48
LIGO Livingston	Observing	6:40
<u>Virgo</u>	Science	3:23
<u>KAGRA</u>	Future addition	
Detector status sum	<u>LVC</u> links	

https://gracedb.ligo.org/superevents/public/O3/

GraceDB – Gravitational-Wave Candidate Event Database

HOME PUBLIC ALERTS SEARCH LATEST DOCUMENTATION

LIGO/V	LIGO/Virgo Public Alerts Detection candidates: 22							BBH (99%)	June 2, 2019 17:59:27 UTC	<u>GCN Circulars</u> <u>Notices VOE</u>	 1 per 16.673 years	
SORT: EVENT ID	(A-Z) ¥	170	CON	Lengther.			<u>5190524g</u>	Terrestrial (71%), BNS (29%)	May 24, 2019 04:52:06 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>	1 per 4.5458 years	RETRACTED
S190808ae	Possible Source (Probability) Terrestrial (57%), BNS (43%)	Aug. 8, 2019 22:21:21 UTC	GCN Circulars Notices VOE		FAR 1.0622 per year	RETRACTED	<u>\$190521r</u>	86H (>99%)	May 21, 2019 07:43:59 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>	1 per 100.04 years	
<u>5190728q</u>	BBH (95%), MassGap (5%)	July 28, 2019	GCN Circulars		1 per 1.2541e+15		<u>5190521</u> g	88H (97%), Terrestrial (3%)	May 21, 2019 03:02:29 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>	1 per 8.3367 years	
		06:45:10 UTC	Notices VOE		years		<u> 5190519bj</u>	88H (96%), Terrestrial (4%)	May 19, 2019 15:35:44 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>	1 per 5.5578 years	
<u>5190727h</u>	BBH (92%), Terrestrial (5%), MassGap (3%)	06:03:33 UTC	Notices VOE		1 per 229.92 years		<u>5190518bb</u>	BNS (75%), Terrestrial (25%)	May 18, 2019 19:19:19 UTC	GCN Circulars Notices VOE	 1 per 3.1557 years	RETRACTED
<u> 5190720a</u>	BBH (99%), Terrestrial (1%)	July 20, 2019 00:08:36 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>		1 per 8.3367 years		<u>5190517h</u>	88H (98%), MassGap (2%)	May 17, 2019 05:51:01 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>	1 per 13.354 years	
<u>5190718y</u>	Terrestrial (98%), BNS (2%)	July 18, 2019 14:35:12 UTC	<u>GCN Circulars</u> <u>Notices VOE</u>		1.1514 per year		<u>5190513bm</u>	BBH (94%), MassGap (5%)	May 13, 2019 20:54:28 UTC	GCN Circulars Notices VOE	1 per 84864 years	
<u>S190707q</u>	BBH (>99%)	July 7, 2019 09:33:26 UTC	<u>GCN Circulars</u> <u>Notices VOE</u>		1 per 6018.9 years		<u>5190512at</u>	BBH (99%), Terrestrial (1%)	May 12, 2019 18:07:14 UTC	GCN Circulars Notices VOE	1 per 16.673 years	
		July 6, 2019	GCN Circulars		1 per 16.673		<u>S190510g</u>	Terrestrial (58%), BNS (42%)	May 10, 2019 02:59:39 UTC	<u>GCN Circulars</u> <u>Notices VOE</u>	 1 per 3.5872 years	
<u> 5190706ai</u>	BBH (99%), Terrestrial (1%)	22:26:41 UTC	Notices VOE		years		<u>S190503bf</u>	BBH (96%), MassGap (3%)	May 3, 2019 18:54:04 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>	 1 per 19.368 years	
<u> 5190701ah</u>	BBH (93%), Terrestrial (7%)	July 1, 2019 20:33:06 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>		1 per 1.6543 years		<u>5190426c</u>	BNS (49%), MassGap (24%), Terrestrial (14%), NSBH (13%)	April 26, 2019 15:21:55 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>	1 per 1.6276 years	
<u> 5190630ag</u>	BBH (94%), MassGap (5%)	June 30, 2019 18:52:05 UTC	<u>GCN Circulars</u> <u>Notices VOE</u>		1 per 2.2077e+05 years		<u>5190425z</u>	BNS (>99%)	April 25, 2019 08:18:05 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>	1 per 69834 years	
							<u>5190421ar</u>	88H (97%), Terrestrial (3%)	April 21, 2019 21:38:56 UTC	<u>GCN Circulars</u> <u>Notices</u> <u>VOE</u>	1 per 2.1285 years	

GCN/LVC Notices and Circulars

 Preliminary Notices sent out within ~ minutes with no human intervention.

https://gcn.gsfc.nasa.gov/selected.html

Collected Information About Recent GRBs/GW events/SGRs/Transients

- 1. Recent GRBs/GW_event/SGRs/Transients
- 2. Past GRBs/GW_event/SGRs/Transients (2017-1997)
- 3. Circular-by-Circular in serial number sequence

This page contains links to files of all the Circulars on the given GRB/GW event/transient This includes the circulars published by the mission-instrument(s) making a detection, and by the follow-up observers.

For each GRB/transient, the link label contains a series of strings. These strings show which mission-instrument made the initial detection (the first to publish for simultaneous detections), then zero or more strings showing which other mission-instruments made detections (in the order published), and the "Optical" string if there were any ground-based optical detection(s) (or "optical" if only upper limit(s)). "Radio" for a detection or "radio" for an upper limit observation(s), and "z=n.nnn" for a redshift measurement

Since this page and the linked pages herein are constantly changing, you should hit the RELOAD button every time you view it.

If there is no link to a recent burst, this is because the addition of the explicit link is done manually. However, the file that the would-be link would point to IS created automatically. So, with a small effort the savy web surfer can get to the file without having a formal link by just editing one of the other links (shown in your 'location URL window' in your browser) to contain the new new burst date (ie change the old 'vymmdd' field in the URL to the new burst's 'vymmdd' (with an 'A' or 'B' etc suffix change as well) and hit reload -- note it is prefix-dependant: 'GRB', 'S', 'icecube_'). This 30-sec effort will get you to the recent burst's concatenated-file of all Circulars even before a slow human (such as myself) comes along to add the explicit link in this page

Recent GRBs/SGRs/XRFs/Transients:

LIGO/Virgo S190808ae: GCN Circ archive: MASTER, LIGO/Virgo, IceCube, HAWC

HAWC-190806A: GCN Circ archive: MASTER, HAWC, IceCube

GRB 190805B: GCN Circ archive: Fermi-GBM, MAXI, BALROG

GRB 190805A: GCN Circ archive: Fermi-GBM

GRB 190804C: GCN Circ archive: Fermi-GBM, BALROG

GRB 190804B: GCN Circ archive: MAXI, Swift-XRT

GRB 190804A: GCN Circ archive: Fermi-GBM, MASTER

GRB 190731A: GCN Circ archive: Fermi-GBM/-LAT, Swift, CALET, Fermi-GBM, IPN, Swift-XRT, optical, Swift-UVOT, AstroSat CZTI

IceCube-190730A: GCN Circ archive: IceCube, MASTER, INTEGRAL SPI-ACS, Fermi-GBM, HAWC, Fermi-LAT, IceCube status

LIGO/Virgo S190728q: GCN Circ archive: MASTER, IceCube, LIGO/Virgo, MAXI/GSC, SPI-ACS/INTEGRAL, INTEGRAL SPI-ACS, HAWC, AGILE-MCAL, ANTARES, AGILE-GRID, Fermi-GB?

GRB 190727B: GCN Circ archive: Swift-BAT, Fermi-GBM, BALROG, Fermi-LAT, KONUS-Wind

GRB 190727A: GCN Circ archive: Fermi-GBM, BALROG

LIGO/Virgo S190727h: GCN Circ archive: IceCube, optical, LIGO/Virgo, MAXI/GSC, INTEGRAL-SPI-ACS, AGILE-MCAL, ANTARES, HAWC, Fermi-GBM/-LAT, Swift-BAT, LIGO/Virgo status

https://gcn.gsfc.nasa.gov/gcn3/24168.gcn3

TITLE: GCN CIRCULAR NUMBER: 24168 SUBJECT: LIGO/Virgo S190425z: Identification of a GW compact binary merger candidate DATE: 19/04/25 09:53:13 GMT FROM:

Leo Singer at GSFC <leo.p.singer@nasa.gov>

The LIGO Scientific Collaboration and the Virgo Collaboration report:

We identified the compact binary merger candidate S190425z during real-time processing of data from LIGO Livingston Observatory (L1) and Virgo Observatory (V1) at 2019-04-25 08:18:05.017 UTC (GPS time: 1240215503.017). The candidate was found by the GstLAL [1] and PyCBC Live [2] analysis pipelines.

The signal-to-noise ratio (SNR) was below threshold in V1 so the candidate was treated as a single-instrument event and no automated preliminary notice was sent. Nonetheless, the V1 SNR is consistent with the L1 data given the relative sensitivities of the detectors. LIGO Hanford Observatory (H1) was offline at the time.

S190425z is an event of interest because its false alarm rate as estimated by the online analysis is 4.5e-13 Hz, or about one in 7e4 years. The event's properties can be found at this URL:

https://gracedb.ligo.org/superevents/S190425z

The classification of the GW signal, in order of descending probability, is BNS (>99%), Terrestrial (<1%), NSBH (<1%), BBH (<1%), or MassGap (<1%).

Assuming the candidate is astrophysical in origin, there is strong evidence for the lighter compact object having a mass < 3 solar masses (HasNS: >99%). Using the masses and spins inferred from the signal, there is strong evidence for matter outside the final compact object (HasRemnant: >99%).

One skymap is available at this time and can be retrieved from the GraceDB event page:

* bayestar.fits.gz, an initial localization generated by BAYESTAR [3], distributed via GCN notice about 42 minutes after the candidate.

For the bayestar.fits.gz skymap, the 90% credible region is 10183 deg2. Marginalized over the whole sky, the a posteriori luminosity distance estimate is 155 +/- 45 Mpc (a posteriori mean +/- standard deviation). The skymap is coarser than usual due to the low signal-to-noise ratio in V1; the localization is dominated by the L1 antenna pattern.

For further information about analysis methodology and the contents of this alert, refer to the LIGO/Virgo Public Alerts User Guide <https://emfollow.docs.ligo.org/userguide/>.

[1] Messick et al. PRD 95, 042001 (2017)

[2] Nitz et al. PRD 98, 024050 (2018)

[3] Singer & Price PRD 93, 024013 (2016)

https://emfollow.docs.ligo.org/userguide/

MONV **Public Alerts User Guide**

Primer on public alerts for astronomers from the LIGO and Virgo gravitational-wave observatories.

Navigation

Getting Started Checklist Observing Capabilities Data Analysis Alert Contents Sample Code

Change Log Glossary

Question? Issues? Feedback?

Email <u>emfollow-</u> userguide@support.ligo.org

Quick search

LIGO/Virgo Public Alerts User Guide

Welcome to the LIGO/Virgo Public Alerts User Guide! This document is intended for both professional astronomers and science enthusiasts who are interested in receiving alerts and real-time data products related to gravitational-wave (GW) events.

Three sites (LHO, LLO, Virgo) together form a global network of ground-based GW detectors. The LIGO Scientific Collaboration and the Virgo Collaboration jointly analyze the data in real time to detect and localize transients from compact binary mergers and other sources. When a signal candidate is found, an alert is sent to astronomers in order to search for counterparts (electromagnetic waves or neutrinos).

Advanced LIGO and Advanced Virgo began their third observing run (O3) on April 1, 2019. For the first time, **LIGO/Virgo alerts are public**. Alerts are distributed through NASA's Gamma-ray Coordinates Network (<u>GCN</u>). There are two types of alerts: human-readable <u>GCN Circulars</u> and machine-readable <u>GCN Notices</u>. This document provides a brief overview of the procedures for vetting and sending GW alerts, describes their contents and format, and includes instructions and sample code for receiving GCN Notices and decoding GW sky maps.

Contents

Getting Started Checklist → Contents

- Getting Started Checklist
 - 1. Read This User Guide
 - 2. Subscribe to GCN Circulars
 - 3. Join the OpenLVEM Community
 - 4. Visit GraceDB
- Observing Capabilities
 - Timeline
 - Live Status
 - Sensitivity and Sky Localization Accuracy
 - Event Rates
- Data Analysis
 - Online Pipelines
 - Superevents
 - Candidate Vetting
 - Sky Localization and Parameter Estimation
 - Inference
 - Alert Timeline
- Alert Contents
 - Notice Types
 - Notice Contents
 - Circular Contents
 - Not Included in Alerts
 - Examples
- Sample Code
 - Prerequisites
 - Receiving GCNs
 - Working with Sky Maps
 - Multi-Order Sky Maps (For Advanced Users)
 - Basic Observability Calculations
 - Distance and 3D Sky Maps
 - Additional Tools

Living Reviews in Relativity December 2018, 21:3 | Cite as

Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

Authors

Authors and affiliations

B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, <u>show 1086 more</u>

 Open Access
 Review Article

 Latest version
 View article history

 First Online: 26 April 2018

65 12k 119 Shares Downloads Citations

Abstract

We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitationalwave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5–20 deg² requires at least three detectors of sensitivity within a factor of ~ 2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitationalwave observations alone.

Keywords

Gravitational waves Gravitational-wave detectors Electromagnetic counterparts
Data analysis

Download PDF 🗕 🛓							
Cite article							
Article							
Abstract							
1 Introduction							
2 Commissioning and obs							
3 Searches for gravitation							
4 Observing scenarios							
5 Conclusions							
Footnotes							
Notes							
A Changes between versio							
References							
Copyright information							
About this article							

LIGO in the Era of LSST

Advanced LIGO Plus (A+) A Mid-scale Upgrade to Advanced LIGO

- An incremental upgrade to aLIGO that leverages existing technology and infrastructure, with minimal new investment and moderate risk
- Target: factor of 1.7 increase in binary inspiral detection range over aLIGO baseline design

→ About a factor of 4-7 greater CBC event rate

- Bridge to future 3G GW astrophysics, cosmology, and nuclear physics
- Stepping stone to 3G detector technology
- Can be observing within 6 years (late 2024)
- "Scientific breakeven" within 1/2 year of operation
- Incremental cost: a small increment on aLIGO
 - US\$ 20.4M (NSF) + GB£ 10.1M (UKRI/STFC) +AU\$ 0.2M (ARC)

Advanced LIGO 'A+' ~ 2024/2025 and beyond

- Sensitivity improvement over ALIGO:
 - 1.4/1.4 M_{\odot} BNS inspiral range by ~ 1.9 to 325 Mpc
 - 30/30 M_☉ binary black hole inspiral range by ~1.6 to > 2.5 Gpc

Greater event rate than Advanced LIGO

→Higher SNR CBC events

- Employs frequency-dependent squeezing & lower thermal noise mirror coatings
- Currently planning for a 1.5-2 year run duration beginning mid 2024 or early 2025
- <u>LIGO-India planned to come online in</u> <u>the A+ configuration in 2025</u>

BBH redshift distribution Advanced LIGO \rightarrow 'A+' ~ 2024/2025

BNS Disruption & Post-Merger Physics

BNS @ 100 Mpc Read, Schmidt, Clark and Lackey, G1700453 Read et al, Phys. Rev. D 88, 044042 (2013)

Improving Localization with four detectors

120 – 180+ deg² across the sky.

~10 deg² over the entire sky.

Abbott, B.P et al. Living Rev Relativ (2018) 21: 3. https://doi.org/10.1007/s41114-018-0012-9

Plausible observing schedule, expected sensitivities, and source localization with the Advanced LIGO, Advanced Virgo and KAGRA detectors

Epoch			2015-2016	2016-2017	2018-2019	2020+	2024+
Planned run du	iration		4 months	9 months	12 months	(per year)	(per year)
Expected burst	range/Mpc	LIGO	40-60	60-75	75–90	105	105
		Virgo	-	20-40	40-50	40–70	80
		KAGRA	-	-	-	-	100
Expected BNS	range/Mpc	LIGO	40-80	80–120	120-170	190	190
		Virgo	-	20-65	65-85	65-115	125
		KAGRA	-	-	-	-	140
Achieved BNS	range/Mpc	LIGO	60-80	60–100	_	_	_
		Virgo	-	25-30	-	-	-
		KAGRA	-	-	-	-	_
Estimated BNS	5 detections		0.05-1	0.2–4.5	1–50	4-80	11-180
Actual BNS de	etections		0	1	-	-	_
90% CR	% within	5 deg ²	< 1	1–5	1–4	3–7	23-30
		20 deg^2	< 1	7–14	12-21	14-22	65-73
	Median/deg ²		460-530	230-320	120-180	110-180	9–12
Searched area	% within	5 deg ²	46	15-21	20–26	23-29	62–67
		20 deg^2	14–17	33-41	42-50	44–52	87-90

Abbott, B.P et al. Living Rev Relativ (2018) 21: 3. https://doi.org/10.1007/s41114-018-0012-9

Longer Term:

Facility-limited '2.5 Generation' Detectors

New '3rd Generation' Gravitational-wave Observatories

3G GW detector White Papers Submitted to Astro2020 (2020 Astronomy and Astrophysics Decadal Survey)

https://arxiv.org/abs/1903.09220 https://arxiv.org/abs/1903.09277 https://arxiv.org/abs/1903.09221 https://arxiv.org/abs/1903.09260 https://arxiv.org/abs/1903.09224 https://arxiv.org/abs/1903.04615

Voyager: Facility-limited LIGO Detector

- Voyager Key Technologies
 - <u>Silicon Mirrors</u>: 200 kg, 45 cm dia., mCZ process
 - <u>Mirror Coatings</u>: α-Si/SiO₂ (α-Si: ~lossless thin film)
 - <u>Cryogenics</u>: 123 K (zero CTE), radiative (<u>non-contact</u>) cooling
 - <u>Lasers</u> (2000 nm): P~ 180 W, PARM ~ 2800 kW
 - <u>Wavefront Compensation</u>: thermally adjustable lenses only (no actuation of test mass)
 - <u>Photodiode Quantum</u> <u>Efficiency</u>: 80 -> 99% for 2 micron

• Effort Led by R. Adhikari

Einstein Telescope (Europe)

Slide Credit: Vaishali Adya, AEI

- Third-generation GW observatory
- Target sensitivity for ET a factor of ten improvement in comparison to current advanced detectors
- 10 km long, Underground
- Xylophone configuration, 6 interferometers

Cosmic Explorer (US)

- Third-generation GW observatory
- Target sensitivity a factor of > 10 improvement in comparison to current advanced detectors
- Above ground, 40 km arm length, L configuration

Formal design study under way (M. Evans, MIT, lead PI) cosmicexplorer.org

Timeline of a Cosmic Explorer 40km Observatory

https://arxiv.org/abs/1903.04615

OBSERVING EARLIEST MOMENTS OF FORMATION OF STARS AND STRUCTURE

https://arxiv.org/abs/1903.04615

Let's build up a close and tight connection between GW detection and LSST, to maximize the science!