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Cavity Dynamics Using Finesse

1 Introduction

Suspended optical cavities are frequently used in precision measurements such as Gravitational
Wave detection. In such optical cavities pitch and yaw motion of the mirrors with respect to
the input laser can cause the axis on which the cavity resonates to shift. In this document we
explore how to model these shifts and tilts using Finesse (v 2.3.1), an interferometer modelling
tool commonly used in the gravitational wave community.

The document is structured as follows: in Section 2 we highlight analytic equations which
describe the cavity axis shift and tilt for a two mirror infinite finesse cavity; in section 3 we
describe the modal model we use; in section 4 we outline a relationship between the finesse
outputs and cavity axis shift and tilt, valid at any point in the resonator; and in section 5 we
compare our anayltic solution against our finesse model in the case of a two mirror hemispherical
cavity.

2 Analytical Solution

We look at the expected translation of a cavity axis using geometrical arguments. All formulas
and how they arise originate from Siegman [4], chapter 19. In the following, the index for
each variable indicates which optic we are referring to. Without any known loss of generality,
we consider a hemispherical cavity. We define the length of the cavity L and the radii of
curvature RM1 and RM2 of the mirrors M1 and M2. We chose the first mirror, M1, to be flat,
i.e. RM1 = ∞. The tilting angles are given by θ1 and θ2. They describe the rotations of the
mirrors in a global coordinate system.

We define the resonator g-parameters as g = 1− L
R

, hence

g1 = 1 , (1)

g2 = 1− L

RM2

. (2)

The parameter g2 becomes negative if L > RM2. This is when the centre of the circle defined
by the curved mirror surfaces sits between the two mirrors. If the investigated mirror is flat,
RM2 becomes infinite and hence L

RM2
is zero.

The translation of the cavity axis is shown in figure 1. It is derived the following way: We first
examine the centres of the circles defined by the curved mirror surfaces. For the flat mirror
this point is found to be infinitely far from the mirrors surface in the direction of its surface
normal vector. In the next step we draw a line intersecting these two points. The height of the
line at the mirrors defines the wanted translation. It is analytically given by
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Figure 1: Diagram showing the misalignment’s modelled on Finesse. a) shows the initial setup
with the cavity mirrors perfectly aligned. b) shows how the cavity eigenmode shifts parallel to the
input axis as the curved mirror is rotated for a given angle βM2. In this scenario the tilt of the
eigenmode, θ = 0◦ such that the shift of the beam spot on each mirror is the same, ∆x1 = ∆x2.
c) shows the resultant shift and tilt of the cavity eigenmode for a tilt of βM1. Unless the flat
mirror is placed at the radius of curvature of the curved mirror there will be a beam shift on the
flat mirror.

∆x1 =
g2

1− g1 · g2
L · θ1 −

1

1− g1 · g2
L · θ2 , (3)

∆x2 =
1

1− g1 · g2
L · θ1 −

g1
1− g1 · g2

L · θ2 . (4)

Note that the signs of the θ2-dependent parts are chosen contrary to the sign in [4]. Investigating
Figure 1 and rotating the mirrors in a global coordinate system, we find them to be negative.

Next to the translations we also analyse the angular displacement of the optical axis. Since we
only assume small rotation angles, it is approximately given by,

∆θ =
∆x1 −∆x2

L
. (5)
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3 The Modal Model

Under the paraxial approximation we can describe the light resonating in the optical cavity by
a sum of higher order spatial modes[2],

E(t, x, y, z) =
√
P
∑
j

∑
nm

ajnmunm(x, y, z) exp (i (ωjt− kjz)) . (6)

We use the Hermite-Gauss modes and so for a anastigmatic beam the mode function is,

unm(x, y, z) =

√
1

2n+m−1n!m!π

1

w(z)
exp (i (n+m+ 1) Ψ(z))

Hn

(√
(2)x

w(z)

)
Hm

(√
(2)y

w(z)

)
exp

(
−ik(x2 + y2)

2R(z)
− x2 + y2

w2(z)

)
. (7)

Where P is the total beam power all parameters are defined as in [2]. To fully recreate a
beam, each mode has a complex power scaled amplitude, ajnm which describes the relative
mode phases and amplitudes at the waist. These relative mode phases will differ as the beam
propagates due to the Gouy phase.

In this model, a small shift or tilt in the cavity axis away from the input laser axis by a small
addition of first order Hermite Gauss modes. Starting from the relations in Table 1 of [1] we
can rearrange to obtain1,

∆x(z) ≈ Re (a10(z))w(z) (8)

∆y(z) ≈ Re (a01(z))w(z) (9)

θx(z) ≈ Im (a10(z)) θxdiv (10)

θy(z) ≈ Im (a01(z)) θydiv. (11)

4 Finesse Model

Finesse is a frequency domain interferometer modelling software using the Hermite-Gauss
mode basis[3]. The software outputs information via virtual detectors, of note is the non-
physical amplitude detector (ad). The amplitude detector outputs the complex amplitude of
the mode bjnm. However, this complex amplitude also contains the plane wave phase, gouy
phase, power and amplitude information. We can relate it to the usual ajnm in equation 6 by
multiplying though by the power and propagation terms in equation 7,

bjnm = ajnm
√
P exp (i (n+m+ 1) Ψ(z)) exp (i (ωjt− kjz)) . (12)

1See section 4.4.2 of [5] for a recent derivation.
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Figure 2: Difference geometric and modal model predictions of spot position as a function
of mirror transitivity. The cavity was always impedance matched. One shortcoming of the
geomtric model is that it does not take into account the transmissivity of the mirrors. For
example, the geometric model incorrectly predicts a spot shift when the mirrors are totally
transmissive. As illustrated above, this causes a small finesse-dependant mismatch between the
models. In the high finesse case, a limiting mismatch may arise from either numerical precision,
or, scattering into modes higher than first order (see approximations in the derivation of Eq.
8).

The complete field can then be described by these bjnm parameters by

E(t, x, y, z) =
∑
j

∑
nm

bjnm
unm(x, y, z)

exp (i (n+m+ 1) Ψ(z))
. (13)

To account for the inclusion of the rapidly rotating, i(wjt − kjz), term in, bjnm, which is
common to all modes, we can find the inter-modal phase φjnm. Provided the input beam is
in the fundamental mode and the cavity axis shift is small compared to the waist size of the
beam we can work out the phase of the mode with respect the fundamental to subtract this
term away,

φjnm = Arg (bjnm)− Arg (bj00) . (14)

The cavity dynamics are also invariant to power and therefore we need to scale the mode
amplitude by the power. Provided the amplitude of these modes are small, we can normalise
by the absolute amplitude of the fundamental,

|ajnm| =
|bjnm|
|bj00|

. (15)

We can then substitute these into equations 8 to 11 to obtain

∆xj = |aj10|w(z) cosφj10, (16)

∆yj = |aj01|w(z) cosφj01, (17)

θxj = |aj10| θxdiv sinφj10, (18)

θyj = |aj01| θxdiv sinφj01, (19)

which is valid for an amplitude detector placed at any point in a cavity.

page 5 of 8



Cavity Dynamics Using Finesse

(a) Plane mirror rotated (M1) (b) Hemispherical mirror rotated (M2)

Figure 3: The top plots shows the phase difference between the HG10 mode and the fundamental
for the carrier light (j = 0, n = 1, m = 0). The second and third plots show the expected
spot position shift on the plane mirror (M1, ∆x1) and the hemispherical mirror (M2, ∆x2)
respectively, calculated using analytically using geometric optics (eq 3) and numerically using
Finesse modal model. The green trace shows difference (geometric - modal). The fourth and
fifth plots show the wave-front tilt predicted by the Modal Model and the Geometric axis tilt,
at M1 and M2 respectively.

5 Comparison

To verify the results above we checked the cavity dynamics predicted by Finesse against the
geometrical model for a hemispherical cavity. For this cavity we used an lossless impedance
matched cavity with a mirror transmissivity of 1× 10−6. The mirror spacing was 0.1m and the
end mirror radius of curvature was 0.5m.

page 6 of 8



5.1 Spot Position MismatchesCavity Dynamics Using Finesse

5.1 Spot Position Mismatches

As illustrated in Figure 3a and Figure 3b, numerically solving the modal model via Finesse
and equation 16 can be used to accurately predict the cavity axis shift throughout the cavity.
However, cavity axis position calculated in equations 3 and 4 assumes an ideal infinite finesse
cavity, any real cavity will experience losses which will shift the cavity axis. This causes
a small, finesse dependant mismatch between the geometric results and the Finesse modal
model results as illustrated in figure 2.

5.2 Cavity Axis Mismatches

Equation 18 outputs the wave-front tilt. As stated in [1], at the waist this wave front tilt will
coincide with the cavity axis tilt calculated geometrically. However, as is the case with the spot
position, there will be a small difference caused by the inclusion of loss in the modal model. In
our hemispherical cavity the waist is at the plane mirror (M1).

In the case of a small misalignment to a plane mirror then we expect from geometric considera-
tions the cavity axis tilt to equal the mirror tilt. At M1, figure 3a shows an excellent agreement
between the wave front tilt and cavity axis tilt. There is no waist at M2 and so the wave-front
tilt must match the curved untitled surface of the hemispherical mirror in order to resonate
and thus do not match the cavity axis tilt. This highlights an important constraint - the wave
front tilt only matches the cavity axis tilt at the beam waist.

In the case of tilting the hemispherical mirror (figure 3b), geometrically we would expect no
cavity axis tilt. The modal model shows a small wavefront tilt at the waist due to the inclusion
of loss in this model, but otherwise excellent agreement. As before, at M2 the wave fronts
match the curved tilted mirror surface as expected.

6 Conclusions

In the limit of a high finesse cavity, both numerically solving the modal model and geometric
optics are able to predict the cavity spot position shift. However, as cavity finesse is reduced,
the modal model is more accurate as it is able to model the losses.

One should be careful when interpreting the relations described in [1], as only at the waist is
the wave front tilt equal to the cavity axis tilt. In a hemispherical cavity, the waist position
is known and so either the modal model or geometric optics can calculate the cavity axis tilt.
However, in general the waist position it is not known, in these cases the cavity axis tilt can be
obtained by examining the spot positions output by the Finesse and applying equation 5.
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