

(IO))/VIRG

LIGO & Future GW Detectors

Patrick Brady LIGO Scientific Collaboration

_____ The Leonard E. Parker _____ Center for Gravitation, Cosmology & Astrophysics at the University of Wisconsin-Milwaukee

((O))/VIRGD

International Gravitational-Wave Observatory Network (I-G-W-N)

Schematic detector

1GO

3

Center for Gravitation, Cosmology & Astrophysics at the University of Wisconsin-Milwaukee

Noise budget

LIGO

Precision interferometry for gravitational wave detection: Current status and future trends Vajente, Gustafson, Reitze in Advances In Atomic, Molecular, and Optical Physics, Academic Press, 68, 2019

at the University of Wisconsin-Milwaukee

Observing runs

LIGO

	01	O 2	— O3	04 0	5
LIGO	80 Mpc	100 Мрс	105-130 Mpc	160-190 Mpc	Target 330 Mpc
Virgo		30 Mpc	50 Mpc	90-120 Mpc	150-260 Mpc
KAGRA			8-25 Mpc	25-130 Mpc	130+ Mpc
LIGO-India	2				Target 330 Mpc
201	1 5 2016	2017 2018 2	019 2020 202	1 2022 2023 202	4 2025 2026

LIGO-Virgo-KAGRA Collaborations, Prospects for Localizing Gravitational-wave Transients ..., arXiv:1304.0670

Center for Gravitation, Cosmology & Astrophysics at the University of Wisconsin-Milwaukee

GWTC-1

- First LIGO-Virgo Gravitational-wave Transient
 Catalog (GWTC-1) released in December 2018
- 11 events with false-alarm-rate < 1/30 days and
 > 50% chance of being astrophysical
 - 10 binary black hole (BBH) mergers
 - 1 binary neutron star (BNS) merger
- 14 marginal candidates < 50% chance of being astrophysical

LIGO Gravitational-wave Transient Catalog

Abbott et al.,

Binary systems

4GO

Credit: SXS Collaboration

8

Center for Gravitation, Cosmology & Astrophysics at the University of Wisconsin-Milwaukee

Strain at detector

$$\begin{aligned} h(t - t_c; \alpha, \delta, \psi, \overrightarrow{\lambda}) &= F_+(\alpha, \delta, \psi) h_+(t - t_c; \overrightarrow{\lambda}) \\ &+ F_\times(\alpha, \delta, \psi) h_\times(t - t_c; \overrightarrow{\lambda}) \end{aligned}$$

GWTC-1 with EM

LIGO-Virgo | Frank Elavsky | Northwestern

Stars

Open Data

- OI strain data released in 2018; O2 strain data released in 2019
 - https://www.gw-openscience.org

• Six additional candidate BBH in O2 reported by IAS group

Name	$FAR^{-1}(O2)^{b}$	$\frac{W(\text{event})}{\mathcal{R}(\text{event} \mathcal{N})}$ (O2)	$p_{ m astro}$
GW170121	$2.8 imes10^3$	> 30	> 0.99
GW170304	377	13.6	0.985
GW170727	370	11.8	0.98
GW170425	15	0.65	0.77
GW170202	6.3	0.25	0.68
GW170403	4.7	0.23	0.56

Venumadhav et al., New Binary Black Hole Mergers ..., arXiv:1904.07214

GW 170817

Credit: NASA's Goddard Space Flight Center, Caltech/MIT/LIGO Lab

4G0

LIGO

GW170817: Masses

Explosion

NGC4993

120 million light years

Discovery Image August 17, 2017

GW+GRB delay+distance:

$$\frac{|v_{\rm gw} - c|}{c} \lesssim 10^{-15}$$

Generation of Universe

Observing run O3

This is first 6 months (O3a). Second 6 months (O3b) is similar Gravitation, Cosmology & Astrophysics

Observing run O3

This is first 6 months (O3a). Second 6 months (O3b) is similar Gravitation, Cosmology & Astrophysics

Low-latency Alerts in O3

Image: https://gracedb.ligo.org/superevents/S190924h/view/

🕑 🚥 🖾 🏠 🚽 🛍 🛄 🔅

GraceDB - Gravitational-Wave Candidate Event Database

HOME	PUBLIC ALER	S SEARCH	LATEST	DOCUMENTATION							LOGIN
Super	event Info										
Super	event Catego	r		Labels	FAR (Hz)	FAR (yr ⁻¹)	Lstart	٤.0	t_end	UTC • Submission time	Links
\$1909	4h Producti	PE_READY AL	OVOK EM_Sele	cted SKYMAP_READY EMBRIGHT_READY N_PRELIM_SENT	8.928e-19	1 per 3.5493e+10 years	1253326743.785645	1253326744.846654	1253326745.876674	2019-09-24 02:19:25 UTC	Data

Preferred Event Info

Group	Pipeline	Search	Instruments	GPS Time + Event time	UTC + Submission time
CBC	gstlal	AllSky	H1,L1,V1	1253326744.8467	2019-09-24 02:19:15 UTC

	1
MassGap	>99%
Terrestrial	<1%
NSBH	0%
BNS	0%
BBH	0%
	1

Center for Gravitation, Cosmology & Astrophysics at the University of Wisconsin-Milwaukee

Observing run O3

Sum of probabilities in each category

LIGO

LIGO

GW190425

- Most likely second binary neutron star
- Identified in single detector analysis
- Mass is outlier relative to Galactic population

20

Abbott et al., GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 3.4 Msun, arXiv:2001.01761. To appear in ApJL

_____ The Leonard E. Parker _____ Center for Gravitation, Cosmology & Astrophysics at the University of Wisconsin-Milwaukee

Publication Plans

- SI90412m: Release in ~Mar/Apr 2020
- SI90521g: Release in ~Mar/Apr 2020
- SI90814bv: Release ~Mar/Apr 2020
- GWTC-2: Release ~ April 2020

LIGO

2020s

Center for Gravitation, Cosmology & Astrophysics at the University of Wisconsin-Milwaukee

Observing runs

LIGO

	01	0	2 💻 03	04	05
LIGO	80 Мрс	100 Мрс	105-130 Mpc	0 160-190 Mpc	Target 330 Mpc
Virgo		30 Mpc	50 Mpc	90-120 Mpc	150-260 Mpc
KAGRA			8-25 Mpc	25-130 Mpc	130+ Mpc
LIGO-India					Target 330 Mpc
2015	2016	2017 2018	2019 2020	2021 2022 2023	2024 2025 2026

LIGO-Virgo-KAGRA Collaborations, Prospects for Localizing Gravitational-wave Transients ..., arXiv:1304.0670

Center for Gravitation, Cosmology & Astrophysics at the University of Wisconsin-Milwaukee

aLIGO Design (O4)

Projections toward aLIGO+ (Comoving Ranges: NSNS 1.4/1.4 M_{\odot} and BHBH 20/20 M_{\odot}) 10⁻²²

Credit: LIGO Laboratory / A+ Team / D. Reitze

A+ (~2025)

Credit: LIGO Laboratory / A+ Team / D. Reitze 25

AdV+ (~2025)

4GO

_____ The Leonard E. Parker _____ Center for Gravitation, Cosmology & Astrophysics at the University of Wisconsin-Milwaukee

LIGO

IGWN 2030 and Beyond

LIGO

Voyager

28

Center for Gravitation, Cosmology & Astrophysics Transients 2020, Cape Town, February 5, 2020

Generation (~2035)

- Cosmic Explorer
 - NSF-funded US conceptual design study
 - 40km surface observatory
 - Stage I (~2035): extension of A+
 - Stage 2 (~2045): cryogenic, new test masses, coatings, ...
- Einstein Telescope
 - European conceptual design study
 - 10km, triangle, multi-detector, underground
 - 10-15 year technology development

Gravitational-wave International Committee, 3G Subcommittee https://gwic.ligo.org/3Gsubcomm/documents.shtml

http://www.et-gw.eu/

LIGO Sensitivity to Binary Mergers

LIGO

Thank you!