Understanding H1's O3 B Electronics Compensation Systematic Error
 J. Kissel for the Calibration Group

Outline

Two Parts, each quite long. *sigh*

PART I: The ETMX UIM Driver, from Nov 27 to Dec 032019

1. Why do you care about the UIM?
2. Review where we were before we started
3. Review of the Circuit
4. The Measurement
5. Other models of the circuit
6. The Fit and Each Coil Result
7. Converting fit results in to systematic error in $\mathrm{A}_{\text {UIM }}$
8. Converting sys error in $\mathrm{A}_{\text {UIM }}$ to sys error in R and Conclusions

PART II: The OMC Whitening Chassis, from Mar 16 to 272020

1. Review of the Circuit
2. Fit Results for each channel
3. Converting fit results in to systematic error in C
4. Converting sys error in C to sys error in R

But -- your time is valuable

This is 126 page slide show. Here are the answers, in case you don't have time to be educated as to how I came to each conclusion, with the confusing details and the lessons learned that got me to it. I hope at least some folks read it.

PART I: The ETMX UIM Driver, from Nov 27 to Dec 032019

- Executive summary: non-Jeff's everywhere whom guessed the answer ahead of time are vindicated in that the UIM electronics error -- either from differences in compensation between states, or poor compensation in general - doesn't substantially contribute to the response function systematic error. (See slide $\mathbf{7 0}$ for quantitative answer)
- We may safely proceed with O3B chunk 1 uncertainty budget development without including this systematic error.
- Note that this would have *not* been "covered" by the GPR even it it were non-negligible.

PART II: The OMC Whitening Chassis, from Mar 16 to 272020

- Executive summary: While I can predict the systematic error from the configuration switch, it also doesn't substantially contribute to the response function systematic error ('see slide 124 for quantitative answer).
- We can probably proceed with O3B chunk 2 uncertainty development without including this systematic error.
- We need to remeasure and recompensate the OMC Whitening Chassis.
- We need to find out what happened on / around 2020-03-23 instead.
- We need to use different measurements we have to make the best guess for the systematic error...

PARTI:
 The ETMX UIM Driver, from Nov 27 to Dec 032019

Outline

Two Parts, each quite long. *sigh*

PART I: The ETMX UIM Driver, from Nov 27 to Dec 032019

1. Why do you care about the UIM?
2. Review where we were before we started
3. Review of the Circuit
4. The Measurement
5. Other models of the circuit
6. The Fit and Each Coil Result
7. Converting fit results in to systematic error in $A_{\text {UIM }}$
8. Converting sys error in $\mathrm{A}_{\text {UIm }}$ to sys error in R and Conclusions

PART II: The OMC Whitening Chassis, from Mar 16 to 272020

I. 1 Why do you care about the UIM?

- The UIM always gets pushed to "low priority" because "we should be rolling off its authority fast enough that it doesn't matter in the detection band."
- That means: we ignore it, assuming anything we do above 10 Hz to the UIM doesn't matter, and don't stress about the consequences when we change something until it's too late.
- We've already identified one systematic error in the UIM that has bit us 'cause we ignored it: the nasty bending response of the UIM Blade + Non-magnetic Blade Dampers.
- This amplifies the contribution of the UIM to the response function at 150 Hz , making *all* UIM systematic error important, right in the bucket. (This is true only for H1, which doesn't roll off their UIM fast enough. L1 should be safe.)
- But also: this is the era of the 1%. Even when we fix the UIM contribution by rolling it off faster, this study emphasizes that we must question everything and *confirm* *quantitatively* that something is "negligible."
- This didactic presentation is good practice, and by presenting in great detail, I aim to train the next generation, lest the art of understanding analog electronics analysis dies.

I. 1 Why do you care about the UIM?

\section*{H1 O3

3

}Figure 4 from P1900245

Outline

Two Parts, each quite long. *sigh*

PART I: The ETMX UIM Driver, from Nov 27 to Dec 032019

1. Why do you care about the UIM?
2. Review where we were before we started
3. Review of the Circuit
4. The Measurement
5. Other models of the circuit
6. The Fit and Each Coil Result
7. Converting fit results in to systematic error in $\mathrm{A}_{\text {UIM }}$
8. Converting sys error in $\mathrm{A}_{\text {UIM }}$ to sys error in R and Conclusions

PART II: The OMC Whitening Chassis, from Mar 16 to 272020

I. 2 Review of where we were before starting
 UIM Driver State Machine

Modified as per T1400233 T1100507-v8
STATE 1: All Lowpasses OFF

	simLP1 $[10.5: 1]$	simLP2 $[10.5: 1]$	simLP3 $[10.5: 1]$			
FM1	FM2	FM3		FM4	FM5	

- During 01 and O2, we were using all ETMY stages for the DARM actuators, the UIM included.
- We updated the low-pass compensation filters on ETMY based on fit to measurements [LHO:21283], but we only used the "DTT measurements with the coil driver monitor circuits" technique, which are insensitive to the 85:300 zero:pole pair which results from the output impedance network [LHO:21142], and we ran out of time (remember GW150914?), so we didn't update the antiAcq filter.
- We ran in ETMY, UIM, State 1 for all of O 1 and O2, so the updates didn't actually matter (Sorry Darkhan!).
- In Jan 2019, 4 months before O3, we made the switch to using all ETMX stages for the DARM actuator.
- The UIM electronics were fully measured in analog on Feb 032019 (yes, a Sunday!), by Rich Abbott and Jeff Kissel. Rich was unconvinced that we needed the differential driver full setup as described in D1900027, so we did some sort of singleended, direct via clip-leads measurement [LHO:46927] (this becomes important later).
- Lilli tried to fit the State 1 data, but they didn't make any sense to us at the time [LHO:47195].
- We did take the DTT data on Feb 072019 to update the low pass compensation, but never got to processing it.
- Because of confusion about the results in the State 1 measurements, and because the UIM was low priority, we just chose not to update anything: [LHO:47167]. (Remember ER14 and how there was systematic error everywhere [LHO:47378]?)
- Flash-forward to Nov 27 2019, we got suspicious of DAC quantization noise [LHO:53376], and switched the ETMX UIM driver to State 2 [LHO:53528], forgetting the terrible state of the compensation, and assuming "the UIM doesn't matter."
- Only 6 days later on Dec 032019 (and thus in between regular calibration sweeps), we reverted back to State 1 [LHO:53652].
- The switch happened between two regular actuator sweeps (taken on 2019-11-11 and 2019-12-04), so there for we must model what the systematic error with the measurements we have (namely, the Feb 032019 data) for this 6 day period, in which -- of course - there lies GW191129.

Outline

Two Parts, each quite long. *sigh*

PART I: The ETMX UIM Driver, from Nov 27 to Dec 032019

1. Why do you care about the UIM?
2. Review where we were before we started
3. Review of the Circuit
4. The Measurement
5. Other models of the circuit
6. The Fit and Each Coil Result
7. Converting fit results in to systematic error in $\mathrm{A}_{\mathrm{UIM}}$
8. Converting sys error in $\mathrm{A}_{\text {UIM }}$ to sys error in R and Conclusions

PART II: The OMC Whitening Chassis, from Mar 16 to 272020

I. 3 Review of the Circuit: Forest through the Trees

To understand the 2019-02-03 data, we need to understand the circuit and the measurement. Let's start with the circuit: $\underline{\text { D070481, specifically, the UIMCircuit_v5.pdf }}$

It looks intimidating, so l'll start with the parts, and break it down to the parts that are important to our story.

I. 3 Review of the Circuit: Simplified, Differential

Here's the circuit Simplified.

- All parts of the circuit that have gain, but no frequency dependence, we just ignore. We'll scale the gain of all models to the measurement in the end. We're looking for poles and zeros
- The low pass, the output impedance network, and the coil will define the "important" poles and zeros (below 1 kHz). (I wonder if the output current amplifier is important later)
- In the end, the "transfer function" we want the transconductance of the driver / coil system: $I_{\text {coil }} / V_{\text {in }}$

I. 3 Review of the Circuit: Trust the Basics

Here's a friendly reminder of the tools in the circuit analysis toolbox:

Converting to Impedance:

$$
\begin{array}{ll}
Z_{R}=R & \bullet \mathrm{R} \\
Z_{C}=1 / i \omega C & \bullet \\
Z_{L}=i \omega L & \bullet-2 \pi f)
\end{array}
$$

Series Impedance:

$$
Z_{t o t}^{S}=Z_{1}+Z_{2}+\ldots
$$

Parallel Impedance:

$$
\begin{aligned}
& \frac{1}{Z_{\text {tot }}^{P}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\ldots \\
& Z_{\text {tot }}^{P(2)}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}
\end{aligned}
$$

Ohm's Law:

$$
V=I Z
$$

Voltage Divider:

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{Z_{2}}{Z_{1}+Z_{2}}
$$

Non-inverting Op-Amp

I. 3 Review of the Circuit: Simplified, Single-Ended

- One trick for differential circuit analysis: consider only one leg, and divide everything that "crosses between legs" by two -- voltage, impedance, etc, -- and reference everything to ground (OV). The transfer functions are the same, and the analysis is equivalent.

$$
\begin{aligned}
& Z_{s w}^{\text {open }}(\omega)=\frac{1}{2}\left(R_{21}+\frac{1}{i \omega C_{23}}\right) \\
& Z_{s w}^{\text {closed }}(\omega)=\frac{1}{2}\left(\left[\frac{R_{17} R_{21}}{R_{17}+R_{21}}\right]+\frac{1}{i \omega C_{23}}\right) \\
& \frac{(1 / 2) V_{L P 1}}{(1 / 2) V_{i n}}=\frac{V_{L P 1}}{V_{i n}}=G_{L P 1}=\frac{Z_{s w}}{R_{8}+Z_{S w}}
\end{aligned}
$$

With the switch closed, that means,

$$
\left.G_{L P 1}\right|_{\text {closed }}=\frac{\frac{1}{2}\left(\left[\frac{R_{17} R_{21}}{R_{17}+R_{21}}\right]+\frac{1}{i \omega C_{23}}\right)}{R_{8}+\frac{1}{2}\left(\left[\frac{R_{17} R_{21}}{R_{17}+R_{21}}\right]+\frac{1}{i \omega C_{23}}\right)}
$$

which is enough to plot the transfer function, but we can re-arrange to show the analytic computation of the poles and zeros of this TF...

I. 3 Review of the Circuit: The Low Pass

$$
\left.G_{\text {LP1 }}\right|_{\text {closed }}=\frac{\left(1+i \omega\left[\frac{R_{17} R_{21}}{R_{17}+R_{21}}\right] C_{23}\right)}{\left(1+i \omega\left(R_{8}+\frac{1}{2}\left[\frac{R_{17} R_{21}}{R_{17}+R_{21}}\right]\right)\left(2 C_{23}\right)\right)}
$$

That means
$\left.f_{Z}^{\text {LP1 }}\right|_{\text {closed }}=1 /\left(2 \pi\left[\frac{R_{17} R_{21}}{R_{17}+R_{21}}\right] C_{23}\right)=10.2953 \mathrm{~Hz} \quad \frac{1}{2} V_{\text {in }}$ $\left.f_{p}^{L P 1}\right|_{\text {closed }}=1 /\left(2 \pi\left[R_{8}+\frac{1}{2} \frac{R_{17} R_{21}}{R_{17}+R_{21}}\right]\left(2 C_{23}\right)\right)=0.9596 \mathrm{~Hz}$

Consistent with the expected low pass z:p $=(10.5: 1.0) \mathrm{Hz}$.
With the switch open, Rpara reduces to R17, leaving,
$\left.G_{L P 1}\right|_{\text {open }}=\frac{1+i \omega R_{21} C_{23}}{1+i \omega\left(R_{8}+\frac{1}{2} R_{21}\right)\left(2 C_{23}\right)}$
$\left.f_{Z}^{L P 1}\right|_{\text {open }}=1 /\left(2 \pi R_{21} C_{23}\right)=0.0339 \mathrm{~Hz}$
$\left.f_{p}^{L P 1}\right|_{\text {closed }}=1 /\left(2 \pi\left[R_{8}+\frac{1}{2} R_{21}\right]\left(2 C_{23}\right)\right)=0.0328 \mathrm{~Hz}$

R8 = 16e3 \# Ohms
R17 = 3.3e3 \# Ohms
R21 $=1 \mathrm{e} 6$ \# Ohms
C23 $=4.7 \mathrm{e}-6 \quad$ \# Farads

I. 3 Review of the Circuit: The Low Pass

Low Pass Response, V_LP1 / V_in

Another analysis trick: the suppression of the low pass (i.e. the asymptotic gain at high frequency) is the ratio of f_{p} / f_{z} Also, with the switch open, the pole and zero nearly cancel.

- When the switch is open, each LP stage - above 0.1 Hz - has gain of $0.969 \mathrm{~V} / \mathrm{V} \approx 1 \mathrm{~V} / \mathrm{V}$.
- Where we're concerned - above 1 Hz - we can treat this as "just" a part of the overall gain to be measured later, and uninteresting in terms of the frequency response
- Thus: For State 1 (with no low passes on, all switches open), we can ignore the response of all three low passes.

I. 3 Review of the Circuit: The Output

On to the response of the amplifier gain and impedance network.

These are important for State 1.

This complicated network can be treated as "just" a non-inverting amplifier, with capacitive load, that has been "in-loop compensated." More in-loop compensation here.
But, with a "duct tape and bubble gum" story ... 17

I. 3 Review of the Circuit:

$R_{S}=R 104=10 \quad$ \# Ohm
$R_{F}=R 3=3.3 \mathrm{e} 3 \quad$ \# Ohm
$R_{G}=R 10=2.2 \mathrm{e} 3 \quad$ \# Ohm
$\mathrm{C}_{\mathrm{F}}=\mathrm{C} 100=0.22 \mathrm{e}-9$ \# Farad
$C_{L}=C_{\text {cable }}=1.0 \mathrm{e}-9$ \# Farad
R4 = 750.0 \# Ohm
" R_{L} " $=R 5=2.0 \mathrm{e} 3 \quad$ \# Ohm
C12 $=0.68 \mathrm{e}-6 \quad$ \# Farad

- Use the AD8671, it's a nice, low noise op amp. "OK, I'll use the data-sheet-recommended configuration, because the cable run will be pretty long - probably 3 nF of parasitic capacitance. Same component values should be fine."
- Right, but be conscious of the current noise, so make sure R_{L} stays big (the BOSEM, $Z_{\text {coil }}$, should be connected after it), and DAC noise from upstream. "OK, cool, a big series resistor *in the driver circuit*, prior to the cable load with R5 $=4 \mathrm{k}$ and increase R_{F} / R_{G} from 1 to 0.33 ."
Mmm... but that reduces the actuator range. Can you give me more gain?
"Sure -let's put in an RC bypass around R_{L} to amplify the range at 100 Hz ."
- That reduces the protection against current noise, but should still be OK. And also... sorry... we still need more range.
- "OK, dropping R_{5} to $2 k$, and bumping R_{F} / R_{G} up to 0.5."
- But wait... the circuit isn't really ever capacitively loaded any more... so the this design doesn't make sense with this silly R_{s} that makes the circuit confusing to analyze!

I. 3 Review of the Circuit: Op-Amp = Just a Gain

So can we just ignore $R_{S}=R 104=10$ Ohms?

$$
\begin{aligned}
& \begin{array}{l}
R 3=3.3 \mathrm{e} 3 \\
\mathrm{R} 10=2.2 \mathrm{e} 3 \quad \text { \# Ohm } \\
\mathrm{R} 104=10 \quad \text { \# Ohm }
\end{array} \quad \frac{V_{\text {out }}}{V_{\text {out }}^{\prime}}=\frac{}{R_{3}} \\
& \begin{array}{l}
\text { C100 }=220 \mathrm{e}-12
\end{array} \text { \# Farad } \\
& \text { YES. R10 is just a tiny voltage drop } \\
& \text { between Vout and Vout'. }
\end{aligned}
$$

Now, "just" a non-inverting amplifier.

What's the pole frequency?

$$
Z_{R C} \approx \frac{R_{3}\left(1 / i \omega C_{100}\right)}{R_{3}+1 / i \omega C_{100}}=R_{3} \frac{1}{\left(1+i \omega R_{3} C_{100}\right)}
$$

219 kHz is sufficiently high frequency

$$
G_{a m p} \approx \frac{V_{o u t}}{V_{\text {in }}}=1+\left(\frac{Z_{R C}}{R_{10}}\right)=1+\frac{R_{3}}{R_{10}}\left(\frac{1}{1+i \omega R_{3} C_{100}}\right)
$$ that we can ignore this pole too.

$$
\left.G_{a m p}\right|_{D C}=1+\frac{R_{3}}{R_{10}}=2.5
$$

So, YES, ignore R104 and C100.
$G_{\text {amp }}$ for us is just 2.5.
This won't be a part of the State 1

$$
{ }_{G 2000527-\mathrm{v} 5} f_{p}^{R C}=1 /\left(2 \pi R_{3} C_{100}\right)=219.2 \mathrm{kHz}
$$ response either

I. 3 Review of the Circuit: Output Zs: Rs, Ls, and Cs

Let's look at the load impedance.

We'll find out here's from were *all* the response from State 1 comes.

$$
\begin{gathered}
Z_{\text {out }}=\frac{R_{5}\left(R_{4}+1 / i \omega C_{12}\right)}{R_{5}+\left(R_{4}+1 / i \omega C_{12}\right)}=R_{5}\left(\frac{1+i \omega R_{4} C_{12}}{1+i \omega\left(R_{4}+R_{5}\right) C_{12}}\right) \\
f_{Z}^{\text {out }}=1 /\left(2 \pi R_{4} C_{12}\right)=312.069 \mathrm{~Hz} \\
f_{p}^{\text {out }}=1 /\left(2 \pi\left(R_{4}+R_{5}\right) C_{12}\right)=85.110 \mathrm{~Hz} \\
Z_{\text {coil }}=\frac{1}{2}\left(R_{\text {coil }}+i \omega L_{\text {coil }}\right)=\frac{R_{\text {coil }}}{2}\left(1+i \omega\left(L_{\text {coil }} / R_{\text {coil }}\right)\right) \\
f_{Z}^{\text {coil }}=1 /\left(2 \pi L_{\text {coil }} / R_{\text {coil }}\right)=571.085 \mathrm{~Hz} \\
Z_{R L C}=Z_{\text {coil }} \| Z_{\text {cable }} \\
=\frac{1}{2} R_{\text {coil }} \frac{\left(1+i \omega\left[L_{\text {coil }} / R_{\text {coil }}\right]\right)\left(1+i \omega R_{\text {cable }} C_{\text {cable }}\right)}{\left(1+i \omega\left(2 R_{\text {cable }}+R_{\text {coil }}\right) C_{\text {cable }}-(1 / 2) \omega^{2} L_{\text {coil }} C_{\text {cable }}\right)} \\
f_{Z}^{\text {coil }}=1 /\left(2 \pi L_{\text {coil }} / R_{\text {coil }}\right)=571.085 \mathrm{~Hz} \\
f_{Z}^{\text {cable }}=1 /\left(2 \pi R_{\text {cable }} C_{\text {cable }}\right)=2.27 \mathrm{MHz}
\end{gathered}
$$

$f_{p}^{\text {coil } \mid \text { cable }}=1 /(2 \pi) \sqrt{\frac{1}{(1 / 2) L_{\text {coil }} C_{\text {cable }}}-\left(\frac{2 R_{\text {cable }}+R_{\text {coil }}}{(1 / 2) L_{\text {coil }}}\right)^{2}}=65.063 \mathrm{kHz}$

I. 3 Review of the Circuit: z total: poles and zeros

I. 3 Review of the Circuit: OK, Let's Review

OK, now that we know what kind of response to expect from everything, we can head back to the differential picture and summarize.

The response of the current created across the coil, $I_{\text {coil }}$ to $\mathrm{V}_{\text {in }}$. So let's talk about how to measure it.

Outline

Two Parts, each quite long. *sigh*

PART I: The ETMX UIM Driver, from Nov 27 to Dec 032019

1. Why do you care about the UIM?
2. Review where we were before we started
3. Review of the Circuit
4. The Measurement
5. Other models of the circuit
6. The Fit and Each Coil Result
7. Converting fit results in to systematic error in $A_{U I M}$
8. Converting sys error in $\mathrm{A}_{\text {UIM }}$ to sys error in R and Conclusions

PART II: The OMC Whitening Chassis, from Mar 16 to 272020

I. 4 The Measurement: Coil Current/Vout

We calculated that whatever the values of Rcable and Ccable are, they're not going to matter until several 10s of kHz. So let's make it easy to think about.

In State 1, we already know, Vout/Vin is "just a gain" at ${ }^{\sim} 2.5$. So the current, held fixed by the $\mathrm{G}_{\text {amp }}$ opamps, will just obey Ohms Law as it heads out to the coil and back across the differential connection to the coil:

$$
\begin{gathered}
V_{\text {out }}=I_{\text {coil }} Z_{\text {total }}=I_{\text {coil }}\left(2 Z_{\text {out }}+Z_{\text {coil }}\right) \\
\frac{I_{\text {coil }}}{V_{\text {out }}}=\frac{1}{\left(2 Z_{\text {out }}+Z_{\text {coil }}\right)}
\end{gathered}
$$

And, we know for State 1, that means,

$$
\left.\frac{I_{\text {coil }}}{V_{\text {in }}}\right|_{\text {State } 1} \approx \frac{2.5}{\left(2 Z_{\text {out }}+Z_{\text {coil }}\right)}
$$

So let's look at that response, with our basic analytic model.

I. 4 The Measurement: Coil Current / Vout

$$
I_{\text {coil }} / V_{\text {out }}=1 /\left(2 Z_{\text {out }}+Z_{\text {coil }}\right) \quad \text { Ah - OK, since }
$$

I. 4 The Measurement: Fast Current Monitor?

Why do we have to physically measure the transfer function in analog? Why not use the fast current monitor?

- The answer does include the output impedance network for this driver (contrary to popular belief, started by 2014 Jeff)
- BUT -- the fast current monitor board itself may contribute some frequency dependence, and there's an AA chassis between the analog IMON signal and where it's read in by the DAQ. These responses will confuse fitting routines and/or your interpretation of the results.
- It works well for *ratios* of measurements, namely to get poles and zeros from things that *change* between states (ie. the low pass filters), but it does not help you characterize State 1.
- We typically operate in state 1 , and at least the AA chassis has appreciable response in frequency bands of interest to us, so ...
- Analog measurement it is.

I. 4 The Measurement: should / Would / Could...

OK Great! Gung-ho Jeff will go out there, he'll take some clip leads, a differential driver, and breakout boards, to measure at the output of the driver - but leaving output connected to the OSEM as normal, "because you need the current to go across the output legs" - the opamps need to be loaded with *something,* so might as well make it "as accurate as possible."

Coil Driver Measurement J. Kissel, 2016-01-05
DUT Setup, Real OSEM Engaged

I. 4 The Measurement: Facepalm!

But wait - if you've left the coil connect "as normal" then you're not going to measure...
$\left.\frac{I_{\text {coil }}}{V_{\text {in }}}\right|_{1} \approx \frac{2.5}{\left(2 Z_{\text {out }}+Z_{\text {coil }}\right)}$
But instead...

$$
\begin{gathered}
V_{\text {coil }}=I_{\text {coil }} Z_{\text {coil }} \\
\left.\frac{V_{\text {coil }}}{V_{\text {in }}}\right|_{1} \approx \frac{2.5 Z_{\text {coil }}}{\left(2 Z_{\text {out }}+Z_{\text {coil }}\right)} \\
f_{Z}^{\text {coil }}=1 /\left(2 \pi L_{\text {coil }} / R_{\text {coil }}\right)=571.085 \mathrm{~Hz} \\
f_{p}^{\text {out }}=1 /\left(2 \pi R_{4} C_{12}\right)=312.069 \mathrm{~Hz} \\
f_{Z}^{\text {out }}=1 /\left(2 \pi\left(R_{4}+R_{5}\right) C_{12}\right)=85.110 \mathrm{~Hz}
\end{gathered}
$$

Which means you're going to be confused for months - YEARS - by your results, until you write this presentation!

I. 4 The Measurement: "missing" pole, really solved.

$$
V_{\text {coil }} / V_{\text {in }} \approx Z_{\text {coil }} /\left(2 Z_{\text {out }}+Z_{\text {coil }}\right)
$$

I. 4 The Measurement: What we really did...

But wait ... it gets worse. To quote [LHO:46927]:
"This time (unlike the 2016 attempt; with measurement as shown on the last slide, as in [LHO:24725]) we tried to cut corners by only driving the coil drivers with single-ended input directly from the SR785-- so we can avoid having to characterize the details of the differential driver box that has been used previously. This failed, causing (what we believe to be saturations) of the coil driver electronics and wonky unphysical*** transfer functions."

The joys of that Sunday measurement you think will work to save you time...

I. 4 The Measurement: *** wonky, unphysical TFs

Frequency (Hz)
^/trunk/Common/Electronics/H1/Data/SUSElectronics/ETMX/UIM/ 2019-02-03/2019-02-03_UIMdriver_measurementnotes.txt

UR

LR

Evan plotted the results 2019-02-03 results the next day (see [LHO:46773]).
Evan apologizes for the lack of tick marks.

Sure, it looks like there's "there's no 300 Hz pole," but we now understand that.

Further, it looks like, for at least State 2, the $z: p=$ 10.5:0.95 Hz low pass shows up, good...

But look at how the magnitude gets distorted at (let's say 500 Hz) and above in States 3 and 4...

But ... this is the data we have. Maybe we can salvage the data for States 1 and 2?

I. 4 The Measurement: Finally, The Data.

Outline

Two Parts, each quite long. *sigh*

PART I: The ETMX UIM Driver, from Nov 27 to Dec 032019

1. Why do you care about the UIM?
2. Review where we were before we started
3. Review of the Circuit
4. The Measurement
5. Other models of the circuit
6. The Fit and Each Coil Result
7. Converting fit results in to systematic error in $A_{\text {UIM }}$
8. Converting sys error in $\mathrm{A}_{\text {UIM }}$ to sys error in R and Conclusions

PART II: The OMC Whitening Chassis, from Mar 16 to 272020

I. 5 Other Models of the Circuit

- What if we use a more sophisticated model? Can we predict this deviation? There are lots of more sophisticated modelling tools for circuits out there, LISO, Spice, Altium, etc.
- Chris Wipf put together a LISO model of the UIM circuit in the Noise Budget SVN,
- https://svn.ligo.caltech.edu/svn/aligonoisebudget/trunk/Dev/SusElectro nics/LISO/QUAD/UIM
- Note that, unfortunately, the LISO models Chris ran didn't export poles and zeros, we so don't have them (we'll find later that re-running to get them won't be worth it)
- It will be instructive to show that model too, especially because
- More models = more understanding
- More poles and zeros will appear from the fit than we predict from the analytic model,
- The LISO model doesn't make approximations for clarity, and
- The parameters of the cable and coil load are (apparently) quite uncertain

But, also, let's just fit the data.

Outline

Two Parts, each quite long. *sigh*

PART I: The ETMX UIM Driver, from Nov 27 to Dec 032019

1. Why do you care about the UIM?
2. Review where we were before we started
3. Review of the Circuit
4. The Measurement

This parts a four-sub-part doooosey
5. Other models of the circuit
6. The Fit and Each Coil Result
7. Converting fit results in to systematic error in $A_{\text {UIM }}$
8. Converting sys error in $\mathrm{A}_{\text {UIM }}$ to sys error in R and Conclusions

PART II: The OMC Whitening Chassis, from Mar 16 to 272020

I.6.1 The Fit: IIR Rational is Awesome

- Most transfer function software is unruly: if you don't understand what your data is, or the quality of the data, you're going to have a tough time tailoring the tool to suit your needs, and/or understanding the results.
- A 2016 call to action, G1601173, inspired Lee McCuller to develop IIRrationalv2. I've found it to work excellently, with minimal input.
- The script to run the fit lives here:
- $1 /$ trunk/Common/Electronics/H1/Scripts/fit ETMX UIM driver 20190203 IIRrationa 1 20200401.py
- Here's my environment that I used to get it to work (determined using
\qquad the output of which is quoted here):

```
This is Python version:
3.7.4 (default, Aug 13 2019, 15:17:50)
[Clang 4.0.1 (tags/RELEASE_401/final)]
If you import the following packages, you
will get the versions listed below:
        matplotlib.__version__= 3.1.1
        numpy.__version__ = 1.17.2
        scipy.__version__ = 1.3.1
        sklearn.__version__ = 0.21.3
        gwpy.__version__ = 1.0.1
        nds2._version = 0.16.5
        IIRrational.___version__ = 2.0.11
        h5py.__version__ = 2.\overline{9.0}
        emcee.__version__ = 3.0.2

\section*{I.6.1 The Fit Results Per Coil: Intro to Plot}

- The basic analytic model is as bad as we know from slide 27 (residual shown in dotted green)
- The LISO model seems to miss the basic RC and Coil pole and zero frequencies, resulting in magnitude error of \(\sim 15 \%\) by 300 Hz , and also bad in phase (residual, in dashed green, is 10 deg by 1 kHz ).
- The IIRrational fit is excellent, all the way out to 10 kHz . But ... let's look at all the poles and G2000527-v5 zeros it returns ...

\section*{I.6.1 Fit per Coil: State 1 Results Interpretation}

Again, understand the fit results is an important part of the game:
- Do zeros and poles make sense?
- Are there more than you expect?
- Are results consistent across several coils?
- Can we ignore any?

Take UL for example:
\(\frac{V_{\text {coil }}}{V_{\text {in }}}=Z_{\text {coil }} /\left(2 Z_{\text {out }}+Z_{\text {coil }}\right)\)
\begin{tabular}{|c|c|c|c|c|}
\hline Circuit Feature Assignment & UL Fit Zeros & & \multicolumn{2}{|l|}{UL Fit Poles} \\
\hline Coil Impedance & 696.5942 Hz & C.O) & & \\
\hline RC Network & 87.0329 Hz & 4000) & 431.3965 Hz & COM \\
\hline SW Closed LP & 0.0325 Hz & 4000 & 0.0293 Hz & 4000 \\
\hline ????? & 2246.0201 Hz & -000 & 1592.0174 & 000 \\
\hline Cable impedance? & & & \[
\begin{gathered}
\text { pair(22092.54 Hz, } \\
59.37 \mathrm{deg})
\end{gathered}
\] & cop \\
\hline
\end{tabular}



UL Fit Poles
Circuit Feature
Assignment

\(f_{z}\) or \(f_{p}\), or combo is right about where we expect. Or the \(f z: f p\) is close enough to "canceling" to ignore

feature \(X\), but is pretty far

high frequency enough to
not matter

\section*{I.6.1 Fit per Coil: State 1 Results Summary}
\begin{tabular}{|c|c|c|c|}
\hline Circuit Feature Assignment & UL Fit Zeros & UL Fit Poles & \\
\hline Coil Impedance & 696.5942 Hz O- & & \\
\hline RC Network & 87.0329 Hz & 431.3965 Hz & OM \\
\hline SW Closed LP & 0.0325 Hz & 0.0293 Hz & 4000 \\
\hline ???? & 2246.0201 Hz & 1592.0174 & 000 \\
\hline Cable impedance? & & \[
\begin{gathered}
\text { pair(22092.54 Hz, } \\
59.37 \mathrm{deg})
\end{gathered}
\] & \[
0 \times
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Circuit Feature Assignment & UR Fit Zeros & UR Fit Poles \\
\hline Coil Impedance & 671.7041 Hz O, & \\
\hline RC Network & 85.9533 Hz (OOO & 422.2943 Hz - \\
\hline SW Closed LP & No fit? & No fit? Na> \\
\hline ???? & 2337.1901 Hz OOS & 5132.4934 Hz OOO \\
\hline ???? & \[
\begin{aligned}
& \text { pair }(12262.2781 \mathrm{~Hz}, \\
& 15.218 \mathrm{deg}) \\
& \text { pair }(12822.8952 \mathrm{~Hz}, \\
& 21.5666)
\end{aligned}
\] & \[
\begin{gathered}
\text { pair( } 11037.6219 \mathrm{~Hz}, \\
61.3485 \mathrm{deg})
\end{gathered}
\] \\
\hline ???? & 19443.5355 OOO4 & \\
\hline \begin{tabular}{l}
Cable impedance? \\
CO
\end{tabular} & & \[
\begin{array}{r}
\text { pair }(21731.503 \mathrm{~Hz}, \\
73.7415 \mathrm{deg})
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Circuit Feature Assignment & LL Fit Zeros & \multicolumn{2}{|l|}{LL Fit Poles} \\
\hline Coil Impedance & 699.0254 Hz CO & & \\
\hline RC Network & 86.5228 Hz & 427.0135 Hz & COP \\
\hline SW Closed LP & No fit? GCD & No fit? & COD \\
\hline ???? & \[
2315.2727,5247.6252 \mathrm{~Hz}
\] & 1623.5029, pair(5943.6595, 10.6624 deg ) & OOO \\
\hline Cable impedance? & & \[
\begin{gathered}
\operatorname{pair}(21390.090 \mathrm{~Hz}, \\
58.138 \mathrm{deg})
\end{gathered}
\] & COD \\
\hline
\end{tabular}
\(f_{p}^{\text {coil } \| \text { cable }}=65.063 \mathrm{kHz}\)
G2000527-v5

\section*{I.6.1 Fit per Coil: State 1 Results LR}





Cable impedance?

\section*{LR Fit Zeros}
\begin{tabular}{|ll|}
\hline 570.3 Hz & \\
86.019 Hz & \\
\hline 0.036 Hz & \\
\hline 160.731 Hz & \\
\hline
\end{tabular}
380.235 Hz
0.032 Hz
1104.104 Hz
pair(3991.249Hz,
63.6625 deg )

6807.508, 11411.143

LR Fit Poles

pair(21818.686 Hz OCO
\(59.566 \mathrm{deg})\)

\section*{I.6.1 The Fit per Coil: State 1 Results Discussion}
- Why is LR the poster child, with \(\mathrm{f}_{\mathrm{z}}: \mathrm{f}_{\mathrm{p}}=(86,570: 380) \mathrm{Hz}\), where the other three are consistently \(f_{z}: f_{p}=(86,690: 430)\) ?
- Let's assume that, for whatever reason, the three coils - though not as expected, are fit at real values. 430 vs. 380 Hz means R4, C 12 values are in question, and 690 vs. 570 Hz means \(\mathrm{R}_{\text {coil }}\) or \(\mathrm{L}_{\text {coil }}\) are in question.
- Let's assume we know the resistances well at \(\left(R 4, R_{\text {coil }}\right)=(750,42.7)\) Ohm. That means ( \(\left.\mathrm{C} 12, \mathrm{~L}_{\text {coil }}\right)\) are actually \(\sim(0.49 \mathrm{e}-6 \mathrm{~F}, 9.8 \mathrm{mH})\) instead of the drawing/cannon values of ( \(0.68 \mathrm{e}-6 \mathrm{~F}, 11.9 \mathrm{mH}\) ).
- Plausible...
- What are all of these mid- kHz poles and zeros? Can we get by with ignoring the fit results above 1 kHz ?
- Is this a manifestation of the bad measurement / saturation?
- Why is the cable impedance so low in frequency and so low in Q ?
- Is *this* a manifestation of the bad measurement / saturation?

\section*{I.6.1 The Fit per Coil: What's next?}

You feel l'm in the weeds. I know. *I* feel I'm in the weeds. How can we come back up for air? Look at some more weeds.
2. We can blindly assume that the fit is perfect for all coils. If so, we'd use the value of the coil \(f_{z}\), divide it out of the \(V_{\text {coil }} /\) \(V_{\text {in }}\) data, and look at the \(I_{\text {coil }} / V_{\text {in }}\) transfer function. Does it make sense? Should we bother (re)fitting *that* data?
3. Look at the ratio of State 2 to State 1. Is getting the low pass \(f_{z}: f_{p}\) pair from that is as easy as we expect?
4. Look (and fit) at state 2 by itself. Does the data match the State 1 fit * (State 2 / State 1) fit?

\section*{I.6.2 Fit per Coil: state \(1 \mathrm{I}_{\text {coil }} / V_{\text {out }}\) taking out "knowns"}

What does Icoil/Vout look like, if we assume good fit for coil \(\mathrm{f}_{\mathrm{z}}\) and the RC network's \(\mathrm{f}_{\mathrm{z}}: \mathrm{f}_{\mathrm{p}}\) ?





\section*{I.6.2 Fit per Coil: State 1 remember our expectations?}

Green Solid on previous slide should look like Purple dashed here
Coil Impedance



\section*{I.6.2 Fit per Coil: State 1 How bad would it be?}





\section*{I.6.1 The Fit per Coil: What's next?}

You feel l'm in the weeds. I know. *I* feel I'm in the weeds. How can we come back up for air? Look at some more weeds.
2. We can blindly assume that the fit is perfect for all coils. If so, we'd use the value of the coil \(\mathrm{f}_{\mathrm{z}}\), divide it out of the \(\mathrm{V}_{\text {coil }} /\) \(V_{\text {in }}\) data, and look at the \(I_{\text {coil }} / V_{\text {in }}\) transfer function. Does it make sense? Should we bother (re)fitting *that* data?

Conclude: There's really something weird with this data, manifesting at \(1-2 \mathrm{kHz}\)
3. Look at the ratio of State 2 to State 1. Is getting the low pass \(f_{z}: f_{p}\) pair from that is as easy as we expect?
4. Look (and fit) at state 2 by itself. Does the data match the State 1 fit * (State 2 / State 1) fit?

\section*{I.6.3 Fit per Coil: State 2/State 1: the LP1 zs and ps}

OK. Need some air. Does the analog data we have make any sense? It does.
Look at the ratio between state 2 and state 1.




\section*{I.6.3 Fit per Coil: State 2/state 1: Results Summary}
\begin{tabular}{|c|c|c|}
\hline UL & Fit Zeros & Fit Poles \\
\hline Nearly cancelling & 2.89952 Hz -000 & 2.75042 Hz -000 \\
\hline Nearly canceling & 4.76888 Hz -000 & 5.05923 Hz -000) \\
\hline SW Closed LP & 10.5814 Hz & \(0.99443 \mathrm{~Hz} \mathrm{4000)}\) \\
\hline Nearly canceling & 145.8720 Hz & 143.2566 Hz -0, \\
\hline Nearly canceling & 1113.0777 Hz 400 & 1128.0047 Hz \$00) \\
\hline ???? & \[
\begin{aligned}
& \text { Pair(5367.8369 H7 } \\
& 32.3526 \mathrm{deg})
\end{aligned}
\] & \[
\begin{array}{r}
\text { Pair }(7623.7668 \mathrm{~Hz} \\
36.2003 \mathrm{deg})
\end{array}
\] \\
\hline ???? & \[
\begin{aligned}
& \text { Pair(9452.2185 Hz, } \\
& 52.8143 \mathrm{deg})
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pair(11133.7022 Hz, } \\
& 9.6965 \mathrm{deg})
\end{aligned}
\] \\
\hline ???? & \[
\begin{aligned}
& \text { Pair }(21080.1439 \mathrm{H7} \\
& 54.1226 \mathrm{deg}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pair(14240.3312 H7 } \\
& 31.3564 \mathrm{deg}) \mathrm{CO}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline UR & Fit Zeros & Fit Poles \\
\hline SW Closed LP & 10.3314 Hz 40 & 0.98556 Hz 4000 \\
\hline Nearly canceling & 52.4826 Hz -000 & 51.6746 Hz 4000 \\
\hline Nearly canceling & 344.4865 Hz [OOO & 341.47236 Hz 4OOO \\
\hline Nearly canceling & 2137.9732 Hz -000 & 2163.3018 Hz \\
\hline ???? & 3211.9846 Hz OCO & 5833.4346 Hz OOO \\
\hline ???? & \[
\begin{aligned}
& \text { pair }(4802.2480 \mathrm{~Hz} . \\
& 32.800 \mathrm{deg})
\end{aligned}
\] & \[
\begin{aligned}
& 4409.4475 \mathrm{~Hz}, \\
& 5019.2094 \mathrm{~Hz}
\end{aligned}
\] \\
\hline ???? & \[
\begin{aligned}
& \text { pair }(11329.7897 \mathrm{~Hz} . \\
& 52.0737 \text { dea }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pair }(14962.1253 \mathrm{~Hz} . \\
& 39.2143 \mathrm{deg} \mathrm{CO}
\end{aligned}
\] \\
\hline ???? & \begin{tabular}{l}
\[
\operatorname{pair}(24347.3447 \mathrm{H} 7
\] \\
57.547 deg
\end{tabular} & \[
\begin{aligned}
& 15509.4456 \mathrm{~Hz}, \\
& 17175.5778 \mathrm{~Hz}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline LL & Fit Zeros & \multicolumn{2}{|l|}{Fit Poles} \\
\hline SW Closed LP & 10.3830 Hz & 0.9820 Hz & 400 \\
\hline Nearly canceling & 61.3351 Hz -000) & 60.2293 Hz & 4000) \\
\hline Nearly canceling & 282.9903 Hz 500 & 291.4153 Hz & OOO \\
\hline Nearly canceling & \[
\begin{array}{r}
\text { Pair(643.6467 Hz } \\
11.4552 \mathrm{deg})
\end{array}
\] & \[
\begin{aligned}
& 630.7973 \mathrm{~Hz}, \\
& 654.7394 \mathrm{~Hz}
\end{aligned}
\] & 000| \\
\hline ???? & \[
\begin{aligned}
& \text { Pair(5512.6344 H7 } \\
& 39.6531 \mathrm{deg}) \mathrm{CO}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pair( } 6718.1860 \mathrm{~Hz} \\
& \quad 65.2573 \mathrm{deg})
\end{aligned}
\] & \[
30
\] \\
\hline ???? & \[
\begin{aligned}
& \text { Pair(7085.8327 H7 } \\
& \quad 66.5343 \mathrm{deg}) \mathrm{OO}
\end{aligned}
\] & \[
\begin{aligned}
& 10061.4559 \mathrm{~Hz}, \\
& 10891.6712 \mathrm{~Hz}
\end{aligned}
\] & O, \\
\hline Nearly canceling & \[
\begin{array}{r}
\text { Pair }(13638.8270 \mathrm{~Hz} . \\
63.1878 \mathrm{deg}){ }^{\text {H }} \mathrm{Q}
\end{array}
\] & \[
\begin{array}{r}
\text { Pair(13419.9763। } \\
26.1267 \mathrm{deg})
\end{array}
\] &  \\
\hline \[
\begin{aligned}
& \text { ???? } \\
& \text { G2000527-v5 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pair(24657.6748 H7 } \\
& 61.7029 \mathrm{deg} \mathrm{CO}
\end{aligned}
\] & \[
\begin{array}{r}
\text { Pair(15566.9234 } \\
55.0929 \mathrm{deg})
\end{array}
\] & COO \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LR & Fit Zeros & Fit Poles \\
\hline Nearly cancelling & \(0.05932 \mathrm{~Hz} \mathrm{400)}\) & 0.06045 Hz 500 \\
\hline SW Closed LP & 10.4728 Hz 500 & 0.98792 Hz \\
\hline Nearly canceling & 93.0036 Hz -000 & 91.4280 Hz \\
\hline Nearly canceling & 1522.7636 Hz (OO) & 1579.1637 Hz \\
\hline ???? & \[
\begin{aligned}
& \text { Pair(4255.9612 Hz, } \\
& 29.7771 \mathrm{deg}) \\
& \text { Pair(8332.2720 Hz } \\
& 54.3682 \mathrm{deg})
\end{aligned}
\] & \[
\begin{aligned}
& 5443.8019 \mathrm{~Hz}, \\
& 8077.0312 \mathrm{~Hz}, \\
& \text { Pair }(11032.6047 \mathrm{H7} \\
& 39.2195 \mathrm{deg})
\end{aligned}
\] \\
\hline Nearly canceling & \[
\begin{aligned}
& \text { Pair }(13237.5898 \mathrm{~Hz}, \\
& \quad 61.0969 \mathrm{deg})
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pair(13752.7035 Hz, } \\
& 39.9270 \mathrm{deg})
\end{aligned}
\] \\
\hline ???? & \[
\begin{aligned}
& \text { Pair(25155.6858 Hz, } \\
& \quad 59.6633 \mathrm{deg})
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pair(13801.8767 Hz, } \\
& 29.9008 \mathrm{deg})
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{I.6.3 Fit per Coil: State 2 / State 1 Oddball -- UR}

Only UR is of concern with the residual of "if we ignore everything but the fit fz:fp that closely matches the expected low pass frequencies" exceeding \(1 \%\) in magnitude above 100 Hz ...







But ... as you'll see (and what is often said with details of these studies): we've got bigger fish to fry...

\section*{I.6.1 The Fit per Coil: What's next?}

You feel I'm in the weeds. I know. *।* feel I'm in the weeds. How can we come back up for air? Look at some more weeds.
2. We can blindly assume that the fit is perfect for all coils. If so, we'd use the value of the coil \(\mathrm{f}_{\mathrm{z}}\), divide it out of the \(\mathrm{V}_{\text {coil }} /\) \(V_{\text {in }}\) data, and look at the \(I_{\text {coil }} / V_{\text {in }}\) transfer function. Does it make sense? Should we bother (re)fitting *that* data?

Conclusion: There's really something weird with this data, manifesting at \(1-2 \mathrm{kHz}\)
3. Look at the ratio of State 2 to State 1. Is getting the low pass \(\mathrm{f}_{\mathrm{z}}: \mathrm{f}_{\mathrm{p}}\) pair from that is as easy as we expect?

Conclusion: Yes, we can safely extract the fit low pass \(\mathrm{f}_{z}: \mathrm{f}_{\mathrm{p}}\) pair.
4. Look (and fit) at state 2 by itself. Does the data match the State 1 fit * (State 2 / State 1) fit?

\section*{I.6.4 Fit per Coil: State 2 vs State (1) and (2/1) Fits}


Since the ratio behaved so much like expected, State 2 by itself is probably going to look like the product of the State 1 results and the State2/State1, and it does.





\section*{I.6.4 Fit per Coil: State \(2 \mathrm{I}_{\text {coil }} / \mathrm{V}_{\mathrm{in}}\) Residuals}





\section*{I.6.4 Fit per Coil: Remember State 1...}





\section*{I.6.4 Fit per Coil: Fit answer Comparison: UL and LL \\ State 2 fit results}

State 1 fit and State 2/1 fit results
\begin{tabular}{|c|c|c|c|}
\hline Circuit Feature Assignment & UL Fit Zeros & \multicolumn{2}{|l|}{UL Fit Poles} \\
\hline Coil Impedance & 696.5942 Hz CO & & \\
\hline RC Network & \(87.0329 \mathrm{~Hz} \mathrm{400)}\) & 431.3965 Hz & (0) \\
\hline SW Closed LP & 10.5814 Hz -000 & 0.99443 Hz & 4000 \\
\hline ????? & 2246.0201 Hz & 1592.0174 & 00 \\
\hline Cable impedance? & & \[
\begin{gathered}
\operatorname{pair}(22092.54 \mathrm{~Hz}, \\
59.37 \mathrm{deg})
\end{gathered}
\] & (QO) \\
\hline
\end{tabular}

Hrmm... State 2 fit \(\mathrm{f}_{\mathrm{z}}: \mathrm{f}_{\mathrm{p}}\) numbers are pretty different from State 1 fit and State 2/1 fit, except for LP1 values
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Circuit Feature \\
Assignment
\end{tabular} & LL Fit Zeros & LL Fit Poles & \\
\hline Coil Impedance & 699.0254 Hz CO & & \\
\hline RC Network & 86.5228 Hz -0, & 427.0135 Hz & (aC) \\
\hline SW Closed LP & 10.3830 Hz COO & 0.9820 Hz & C.O) \\
\hline ????? & 2315.2727, 5247.6252 Hz & 1623.5029, pair(5943.6595, 10.6624 deg ) & \\
\hline Cable impedance? & & \[
\begin{gathered}
\text { pair( } 21390.090 \mathrm{~Hz}, \\
58.138 \mathrm{deg})
\end{gathered}
\] & COM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Circuit Feature Assignment & \multicolumn{2}{|l|}{UL Fit Zeros} & \multicolumn{2}{|l|}{UL Fit Poles} \\
\hline Nearly canceling & 0.028847 Hz & & 0.026747 Hz & \\
\hline Coil Impedance & 842.2736 Hz & & & \\
\hline RC Network & 89.2645 Hz & & 472.0885 Hz & \\
\hline SW Closed LP & 10.3110 Hz & & 0.97697 Hz & \\
\hline ????? & 4401.5227 Hz & & \[
2798.8233 \mathrm{~Hz}
\] & \\
\hline Cable impedance? & & & \[
\begin{array}{r}
\text { pair(21118.666 } \\
42.1804 d
\end{array}
\] & \\
\hline
\end{tabular}


\section*{I.6.4 Fit per Coil: Fit answẹ Comparison: UR and LR}


\section*{I.6.1 The Fit per Coil: What's next?}

You feel l'm in the weeds. I know. *।* feel I'm in the weeds. How can we come back up for air? Look at some more weeds.
1. We can blindly assume that the fit is perfect for all coils. If so, we'd use the value of the coil \(f_{z}\), divide it out of the \(V_{\text {coil }} /\) \(V_{\text {in }}\) data, and look at the \(I_{\text {coil }} / V_{\text {in }}\) transfer function. Does it make sense? Should we bother (re)fitting *that* data?

Conclusion: There's really something weird with this data, manifesting at \(1-2 \mathrm{kHz}\)
2. Look at the ratio of State 2 to State 1. Is getting the low pass \(\mathrm{f}_{\mathrm{z}}: \mathrm{f}_{\mathrm{p}}\) pair from that is as easy as we expect?

Conclusion: Yes, we can safely extract the fit low pass \(f_{z}: f_{p}\) pair.
3. Look (and fit) at state 2 by itself. Does the data match the State 1 fit * (State 2 / State 1) fit?
Conclusions: Sort of. The residuals have same mysterious 1-2 KHz features from State 1, but the poles and zeros are astoundingly different, some more like expected, some just wrong, with no general trends as each coil is

\section*{I. 6 Fit per Coil: Grand Conclusions}
- We definitely, definitely, definitely need to get good measurements.
- We should always drive the drivers, and measure the response differentially.
- Unfortunately, we can't assume each coil channel is going to be even roughly the same, and we may get conflicting answers between what should be the same answers when switching between states.
- e.g. State 2 / State 1 for for LP1 is not the same as State 2 alone
- So we should be prepare to the "two clocks" situation, where don't know which to choose.
- Make the data going in to the fitter as simple as possible, when it makes physical sense to do so.
- Never, ever, ever take measurements with the coil as a part of the measurement. Just put a no-capacitance, 40 Ohm dummy OSEM "across the back" of the driver as the "coil" "load" impedance.
- That also means that we can't use the FAST_I_MONs measurements either -not because "they don't measure the outpūt network" -- but because they include the coil impedance which drastically confuses the even the best fitting routines
- We should perform the same analytical analysis on PUM driver vs. the AOSEM to confirm Zcoil << Zout.... another day.

\section*{Outline}

Two Parts, each quite long. *sigh*

PART I: The ETMX UIM Driver, from Nov 27 to Dec 032019
1. Why do you care about the UIM?
2. Review where we were before we started
3. Review of the Circuit
4. The Measurement
5. Other models of the circuit
6. The Fit and Each Coil Result
7. Converting fit results in to systematic error in \(\mathrm{A}_{\text {UIM }}\)
8. Converting sys error in \(\mathrm{A}_{\text {UIM }}\) to sys error in R and Conclusions

PART II: The OMC Whitening Chassis, from Mar 16 to 272020

\title{
I. 7 Converting Individual Coil Fit Results in to Systematic Error in \(\mathrm{A}_{\text {UIM }}\)
}
- Let's assume we understood and we're happy with everything from section I.6.
- Remember: we're not, but let's move on anyways, because this is the data we have.
- The individual coil results must be used retroactively to predict what error was caused in the *total* longitudinal actuation strength in the UIM.

You can think of it like this:
\[
A_{U}=E 2 O *\left(\begin{array}{l}
F_{U L} \\
\frac{F_{L L}}{F_{U R}} \\
F_{L R}
\end{array}\right) * \mathrm{DAC} * \operatorname{AI} *\left(\begin{array}{c}
C D_{U L} \\
\frac{C D_{L L}}{C D_{U R}} \\
C D_{L R}
\end{array}\right) * M * S_{U}
\]

\section*{I. 7 Fit per Coil >> Error in \(\mathrm{A}_{\text {uim: }}\) : Reality}

Or like this:
\[
F_{i i}(f)=E 2 O_{i i} * D_{i i}(f) * D A C_{i i} * A I_{i i} * T C_{i i} * C D_{i i}(f) * M_{i i}
\]
\[
A_{U I M}=S_{U}(f) * \sum_{i i} F_{i i}
\]
where \(i i=U L, L L, U R, L R\), and for each coil chain, the actuation strength of each driver/coil/magnet chain, \(F_{i i}\), has the following components:
- \(E 2 O\) is the Euler 2 OSEM matrix (exactly 0.25 for each coil),
- \(D(f)\) is the normalized digital compensation "COILOUTF" filter for each coil,
- DAC, AI, and TC are the digital-to-analog converter gain, anti-aliasing filter, and DC transconductance of the coil driver respectively
- \(C D(f)\) is the normalized coil driver response,
- \(M\) is the magnet strength, and
- \(S_{U}\) is the UIM longitudinal force to TST displacement transfer function response

Ideally, \(D_{i i}(f)\) would be the perfect inverse of \(C D_{i i}(f)\) for every coil, they would cancel to a unity transfer function and we can exclude it from any model.

That's what we've done for the UIM in the calibration group's DARM loop model.

However, the frequency dependent systematic error in \(\mathrm{A}_{\text {UIM }}\) arises when \(D_{i i}(f)\) doesn't perfectly invert \(C D_{i i}(f)\), and the fact that the frequency dependent error from each stage is *summed* means that error is not easily intuitable from the individual chain error.

\section*{I. 7 Fit per Coil >> Error in \(A_{\text {UIM }}\) : Model}
\[
\begin{gathered}
F_{i i}(f)=E 2 O_{i i} * D_{i i}(f) * D A C_{i i} * A I_{i i}(f) * T C_{i i} * C_{i i}(f) * M_{i i} \\
A_{U I M}=S_{U}(f) * \sum_{i i} F_{i i}
\end{gathered}
\]

So we need to construct a model with these terms explicitly included.
Let's take the above, and assume everything in between \(D_{i i}\) and \(C_{i i}\) for each chain (namely \(D A C_{i j} A I_{i i}(f)\), and \(T C_{i j}\) ) is only a common gain to all four chains. This is an OK assumption because
- we take some effort (eg \(\underline{\underline{H O}: 42740) ~ t o ~ " b a l a n c e " ~ t h e ~ g a i n ~ o f ~ e a c h ~ p a t h ~ t o ~ m i n i m i z e ~ l e n g t h ~ t o ~ a n g l e ~ c o u p l i n g . ~}\)
- the AI filter response, \(A I(f)\), which is a 16 kHz elliptic lowpass, in general doesn't start to deviate from "just a gain" until several kHz , and each channel would only have a small difference at that. Including the measured differences is an exercise for some other day.
\[
\begin{gathered}
F_{i i}(f)=E 2 O * D A C * A I(f) * T C * M * D_{i i}(f) * C_{i i}(f) \\
A_{U I M}=S_{U}(f) * E 20 * D A C * A I(f) * T C * M * \sum_{i i} D_{i i}(f) * C_{i i}(f)
\end{gathered}
\]

Under this assumption, the systematic error, \(\eta_{U I M}\), can be computed using only what we already have!
\[
\eta_{U I M}=\frac{A_{U I M}^{(\text {"no" sys. error })}}{A_{U I M}^{(w / \text { sys.error })}}=\frac{A_{U I M}^{(\text {well-compensated })}}{A_{U I M}^{(\text {poorly-compensated })}}=\sum_{i i} \frac{\left[C_{i i}^{f i t}\right]^{-1} C_{i i}^{\text {meas }}}{\left[C_{i i}^{\text {foton }}\right]^{-1} C_{i i}^{\text {meas }}}=\sum_{i i} \frac{C_{i i}^{\text {foton }}}{C_{i i}^{f i t}}
\]

\section*{I. 7 Fit per Coil >> Error in \(\mathrm{A}_{\text {Uім }}\) : Model}
- But wait! Remember the whole reason we got in to this game was to find out what error was caused by *switching* from State 1 to State 2,
- So we should also compute
\[
\frac{\eta_{\text {UIM }} I_{2}}{\eta_{\text {UIM }} l_{1}}=\frac{\left.\sum_{i i}\left(C_{i i}^{\text {foton }} / C_{i i}^{\text {fit }}\right)\right|_{2}}{\left.\sum_{i i}\left(C_{i i}^{\text {foton }} / C_{i i}^{\text {fit }}\right)\right|_{1}}
\]
such that we'll know, not only the systematic error under "normal" operation (i.e. in state 1), but also during this Nov 27 - Dec 032019 time period.
\[
\begin{aligned}
A_{\text {UIM }}^{\text {("no" sys.error })}(\text { most times }) & =\left.\eta_{U I M}\right|_{1} A_{U I M}(20200113 \text { Model }) \\
A_{U I M}^{(\text {"no" sys. error) })}(\text { Nov } 27-\text { Dec }) & =\left.\eta_{U I M}\right|_{2} A_{\text {UIM }}(\text { Nov } 27-\text { Dec } 03) \\
& =\left.\eta_{U I M}\right|_{1}\left(\frac{\eta_{U I M} l_{2}}{\left.\eta_{U I M}\right|_{1}}\right) A_{U I M}(20200113 \text { Model })
\end{aligned}
\]

\section*{I. 7 Fit per Coil >> Error in \(A_{\text {UIM }}\) : State 1 Results}





\section*{I. 7 Fit per Coil >> Error in \(A_{\text {UIM }}\) : State 2 Results}





\section*{I. 7 Fit per Coil >> Error in \(A_{\text {UIM }}\) : Results Compared}





\section*{I. 7 Fit per Coil >> Error in \(A_{\text {UIM }}\) : Discussion}
- Huh! So - it looks like the error in State 1 compensation is really of much more concern that the switch between State 1 and State 2 for a short time period.
- That's pretty much it. At least all of this careful study was worth it for some reason.
- On to showing how this manifests in the response function!
- But also - do remember that this is based on fits of data that doesn't make sense. So hold these truths to be full of salt grains until we get a better measurement.
\[
\left.\eta_{U I M}\right|_{1}=\left.\frac{A_{U I M}^{(" n o \text { " sys. } \text { error })}}{A_{U I M}^{(w / \text { sys. error })}}\right|_{1}
\]



\section*{I. 7 Sys. Err in \(\mathrm{A}_{\text {еім }}\) Recap}

But, if we believe the measurement, is this error big w.r.t. other errors in the UIM? Yeah - it kinda is!

Namely - the blade spring bending nonsense completely fools the GPR above 50 Hz . So this kind of smoothly varying function just would not be found in / "accounted for with" the GPR. So, we're stuck having to model it all and estimate the impact on the Response Function systematic error.


\section*{Outline}

Two Parts, each quite long. *sigh*

PART I: The ETMX UIM Driver, from Nov 27 to Dec 032019
1. Why do you care about the UIM?
2. Review where we were before we started
3. Review of the Circuit
4. The Measurement
5. Other models of the circuit
6. The Fit and Each Coil Result
7. Converting fit results in to systematic error in \(A_{\text {UIM }}\)
8. Converting sys error in \(A_{\text {uim }}\) to sys error in \(\mathbf{R}\) and Conclusions

PART II: The OMC Whitening Chassis, from Mar 16 to 272020

\section*{I. 8 Converting Sys. Err in \(A_{\text {UIM }}\) to that in \(R\)}
- Hey! We wrote a paper on this! Check out Eq. 11 in P1900245:
\[
\tilde{\eta}_{R ; A_{i}}=\frac{1}{R^{(\text {model })}}\left[\frac{1}{C^{(\text {model })}}+\left(\tilde{\eta}_{A_{i}} \tilde{A}_{i}^{(\text {model })}+\sum_{j \neq i} \tilde{A}_{j}^{(\text {model })}\right) \widetilde{D}\right]
\]

\section*{H1 O3}

Error contributions to the response function recapped from Slide 6

UIM Contributes at the \(\sim 10 \%\) level out to \(\sim 25 \mathrm{~Hz}\)


Vertical Blade Spring Twisting / Bending in L direction causes UIM contribution to spike back in to play at 150 Hz

\section*{I. 8 Sys. Error R as a result of \(\mathrm{A}_{\text {Uім }}\) Error}


\section*{I. 8 UIM Electronics Error Conclusions}
- The executive summary: non-Jeff's everywhere whom guessed the answer ahead of time are vindicated in that the UIM electronics error -- either from differences in compensation between states, or poor compensation in general - doesn't substantially contribute to the response function systematic error.
- We may safely proceed with O3B chunk 1 uncertainty budget development without including this systematic error.
- Note that this would have *not* been "covered" by the GPR even it it were non-negligible.
- BUT: we've now learned many valuable lessons about:
- How to take the right measurement of a coil driver
- How to make sense of a fit to data using rough analytic expectations from converting a circuit diagram in to a collective transfer function
- How bad the compensation is for the UIM driver response
- How to propagate electronics errors to the response function```

