

LIGO-P2000185

A Data Mining Approach to Signal Processing in

Laser Interferometer Gravitational-Wave Observatory (LIGO) Fscan Data

by

Thomas Robert Brooks Harris

A thesis submitted in partial fulfillment of the requirements

for graduation with Honors in Physics.

Whitman College

2020

ii

Certificate of Approval

This is to certify that the accompanying thesis by Thomas Robert Brooks Harris has been

accepted in partial fulfillment of the requirements for graduation with Honors in Physics.

Prof. Frederick Moore

Whitman College

May 20, 2020

iii

Table of Contents

Acknowledgements .. iv

Abstract ... v

List of Figures .. vi

Chapter 1 Introduction and Background ... 1

Gravitational Waves.. 1

The LIGO Detectors ... 3

Signal Processing and Fscan ... 6

Chapter 2 Data Mining Projects .. 12

High Coherence Dictionary .. 12

Hanford-Livingston Coherence Investigations ... 16

High-Power Line Density Tracker .. 20

Appendix A: fscan_coherence_analyzer.py ... 26

Appendix B: script_modmultidayfscan.py .. 37

Appendix C: segment_intersector.py ... 40

Appendix D: fscan_lines.py .. 42

Appendix E: Sample Coherence Dictionary ... 45

Appendix F: Sample H1L1 Coherence Data .. 48

Appendix G: Sample Line Density Tracking Output ... 50

Bibliography ... 51

iv

Acknowledgements

I am very grateful to my previous research mentor, Dr. Gregory Vaughn-Ogin, for

enabling me to work with LIGO’s Detector Characterization group in the summer of

2018 and get my start in physics research. I am also very grateful to my present mentor,

Dr. Gregory Mendell of the LIGO Hanford Observatory, who has challenged and

supported me every step of the way over these last two years. I would also like to

sincerely thank my adviser, Prof. Frederick Moore, for his guidance throughout my

college career and for making it possible for me to work on continued LIGO research

during my senior year.

Many thanks to Whitman College for funding a summer of undergraduate research in

2018, which enabled me to make connections at LIGO and start on a path towards this

thesis project. LIGO is funded by the U.S. National Science Foundation.

v

Abstract

The Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors are designed

to capture and record gravitational wave strain signals from astrophysical sources. The

Fscan family of algorithms is a key signal processing tool for analyzing the spectral

content of LIGO data. An area of ongoing investigation are features of the LIGO Hanford

strain data in the sub-100Hz range that are not fully understood. This work utilizes a

statistically-oriented, data-mining approach to analyze three related but distinct subjects

in LIGO Hanford data from the O3-era observing run: the coherence of auxiliary data

channels with the strain, the potential for coherence between the Hanford and Livingston

interferometers not caused by astrophysical sources, and the shifting density of high-

power spectral lines in strain data.

vi

List of Figures

Figure 1: Gravitational wave + polarization and × polarization ... 1

Figure 2: GWTC-1 poster spectrogram representation ... 3

Figure 3: LIGO Hanford Optical Layout .. 4

Figure 4: Strain sensitivity amplitude spectral densities... 5

Figure 5: LIGO Hanford Physical Environment Monitoring (PEM) sensor layout 6

Figure 6: Fscan spectrum for one day of tiltmeter channel data 10

Figure 7: Fscan spectrogram for one day of tiltmeter channel data 10

Figure 8: Typical Hanford seismometer channel and strain month-long coherence 14

Figure 9: Coherence between Hanford and Livingston on February 11, 2020 18

Figure 10: Coherence between Hanford and Livingston on February 12, 2020 18

Figure 11: Coherence between Hanford and Livingston for all of February 2020 19

Figure 12: LIGO Hanford Fscan Strain Spectrum, Feb. 2020 .. 21

Figure 13: LIGO Livingston Fscan Strain Spectrum, Feb. 2020 21

Figure 14: Sample Hanford-Livingston daily coherence data; Feb. 5, 2020 48

Figure 15: Sample Hanford-Livingston daily coherence data; Feb. 10, 2020 48

Figure 16: Sample Hanford-Livingston daily coherence data; Feb. 27, 2020 49

Figure 17: Sample Hanford-Livingston monthly Fscan output page................................ 49

LIGO-P2000185

Chapter 1

Introduction and Background

Gravitational Waves

Gravitational waves (GWs) are ripples in space-time caused by acceleration of

sources of gravity. When an object has a time-changing quadrupole moment, it radiates

gravitational waves [1]. Gravitational waves are transverse waves and are described in

terms of plus (+) and cross (×) polarizations.

Figure 1: Gravitational wave + polarization and × polarization, depicted for GWs entering the page: the distances

between the points change as shown as a function of GW phase [2]

The amplitude of a gravitational wave is usually characterized by the wave’s

strain. As a function of time, conventionally the strain is called h(t). The strain is defined

as the fractional change in distance between test masses as the GW passes through the

masses and the space between them [3],

𝛿𝐿(𝑡)

𝐿
= 𝐹+ℎ+(𝑡) + 𝐹×ℎ×(𝑡) ≡ ℎ(𝑡) (Eqn. 1)

2

where δL denotes the amount by which the length between the test masses changes, L

denotes the original distance between the test masses, F+ and F× are the antenna patterns

of the detectors, and h+ and h× are the + polarization and × polarization. For reference,

the measured strain amplitude of the first GW detection event (GW150914) was

estimated to vary between roughly 0.5×10-21 and 1×10-21 during the inspiral in the fifth of

a second immediately prior to the merger of two black holes [4]. This strain amplitude is

on the higher end of what is expected from most compact binary coalescence GW

transient signals. For more information on the general relativity of GWs, see [1] and [3].

As of the time of this writing, one formal GW catalog (GWTC-1) has been

published (see Fig. 2) [5]. This catalog describes 11 confident GW detection events. Of

those 11 GWs, 10 were determined to have originated from binary black hole inspirals

and mergers, and 1 was determined to have originated from a binary neutron star inspiral

and merger. The results in GWTC-1 were obtained by matched filtered searches using

hundreds of thousands of GR-based waveform templates and by an unmodeled search for

transient signals without a specific waveform model. Candidate events with significant

signal-to-noise ratios (SNR) compared to background and probability of astrophysical

origin greater than 50% were cataloged as GW events. The time spent in the LIGO band

and the maximum GW frequency reached are used to determine the component masses of

the system, while the SNR indicates the distance from Earth to the source. All the binary

black hole events had duration of less than 2 seconds. The binary neutron star event spent

100 seconds in the LIGO band and was also observed electromagnetically. The total mass

of the black holes systems in GWTC-1 ranged from 18 to 85 solar masses and the

distances were from 300 to 3000 Mpc. The binary neutron star was also observed as a

3

weak gamma-ray burst and a kilonova in a galaxy 40 Mpc away, making it one of the

most spectacular multi-messenger astrophysical discoveries to date. Since the publication

of GWTC-1, a Gravitational-Wave Candidate Event Database website called GraceDB

has publicly announced high-probability GW candidate events [6].

Figure 2: A poster representation of the 11 GW events discussed in GWTC-1. The GWs are shown here as

spectrograms, with frequency on the y-axis and time on the x-axis [7].

The LIGO Detectors

 The LIGO GW-detecting observatories are located in Hanford, WA and

Livingston, LA. The observatories are modified Michelson interferometers with Fabry-

Pérot cavities in the 4-kilometer arms, as seen in Fig. 3 [4] [8]. The use of multiple

observatories to enable coincident detection of waveforms at widely separated locations

(including collaboration with the Italian Virgo Collaboration) is key to making confident

GW detections and to triangulating the origins of GW signals. The observatories ended

4

the O3 observing run in March 2020; O3 began in April 2019 and was split into two

parts, O3a and O3b.

Figure 3: LIGO Hanford Optical Layout [9]

5

Figure 4: Amplitude spectral density of the strain sensitivity of the Virgo (purple), LIGO Hanford (red), and LIGO

Livingston (blue) detectors. The curves are representative of the best performance of each detector during observing

run O2. [5]

The LIGO detectors have an optimal strain sensitivity on the order of 10-23 1 √Hz⁄

(see the definition of spectral density in the next section for information about units),

which translates to a length change on the order of 10-20 m in the detector’s most sensitive

frequency band due to the 4-kilometer arms (see Fig. 4). Many isolation systems and

noise-reducing design choices are necessary to maintain the detector sensitivity required

to confidently capture data on the small strain amplitudes of gravitational waves. In

addition to instrumental noise, the physical environment of the detector is a substantial

noise source. The locations of some of the Physical Environment Monitoring (PEM)

sensors is included here in Fig. 5 to illustrate the number and variety of witnesses there

are for potential noise sources. The data recorded by sensors like these is recorded in

interferometer “auxiliary channels.” Monitoring of thousands of auxiliary channels is

6

used to characterize the state of the detector and screen for terrestrial disturbances.

Analysis of the strain channel and auxiliary channels determines the quality of the data

and provides vetoes on poor quality times or frequency bands.

Figure 5: LIGO Hanford Physical Environment Monitoring (PEM) sensor layout [10]

Signal Processing and Fscan

 Spectral analysis is central to much of LIGO’s research. A primary tool used for

detector characterization efforts is the Fscan family of algorithms [11]. Fscans are

primarily used to find spectral lines in the strain channel and auxiliary channels and to

calculate coherences between the strain channel and auxiliary channels. An automated

system in the LIGO servers runs the Fscans on a daily, weekly, and monthly basis. The

7

Fscan driver script creates and organizes sets of Short-Time Fourier transforms (SFTs).

The SFTs are so named because they are Fast Fourier Transforms (FFTs) over shorter

chunks of time (typically 1800 s in duration) that get stitched together as the building

blocks for very long duration FFTs by LIGO’s Continuous Wave working group, among

other things.

 FFTs are algorithmic implementations one of the most fundamental signal

processing and spectral analysis tools, the Discrete Fourier Transform (DFT), which is

defined in LIGO as

 𝑥̃ 𝑘 = ∑ 𝑥̃𝑗𝑒
−𝑖2𝜋𝑗𝑘/𝑁

𝑁−1

𝑗=0

 (Eqn. 2)

where k is a frequency domain index, j is a time domain index, 𝑥̃𝑗 is a data point in the

time domain, N is the total number of data points, and i is the imaginary number √−1

[12]. For data sampled over time T, the frequency resolution Δf = 1/T is the width

between neighboring frequency “bins” in the frequency domain. The Fscans have a

frequency resolution of 1/(1800 s) = (1/1800) Hz. The frequency associated with any

given index k is fk = k / T. The highest possible frequency about which one can have

meaningful information from a DFT is the Nyquist frequency, which is defined as half of

the sampling frequency (fNyquist = N / (2T)).

Two problems associated with the information provided by the DFT are aliasing

and spectral leakage. Information in the useful band below the Nyquist frequency is

aliased into the frequencies above the Nyquist frequency, and disturbances above the

Nyquist frequency are also aliased into this useful band unless filtering is applied before

digitizing the data. Spectral leakage is caused by the finite amount of time used to

8

generate DFTs. Spectral disturbances at frequencies that do not have an integer number

of cycles during the DFT sample time leak power into neighboring frequency bins. To

combat aliasing and spectral leakage, Hann windowing is applied to Fscan data [12]. For

more information on spectral leakage, see [13].

 An important feature of the DFT is that DFT sinusoids are orthogonal:

 ∑𝑒−𝑖2𝜋𝑗𝑘
′/𝑁𝑒−𝑖2𝜋𝑗𝑘/𝑁

𝑁−1

𝑗=0

= 𝑁𝛿𝑘𝑘′ (Eqn. 3)

This can be shown by application of a geometric series to the left side of Eqn. 3 [12].

For two signals x and y, the correlation (or cross-correlation) of x and y is defined

as:

 𝑐𝑗′ = ∑ 𝑥̃𝑗𝑦𝑗+𝑗′

𝑁−1

𝑗=0

 (Eqn. 4)

where j and j’ are time-domain indices, as before [12]. In the frequency domain,

correlation is defined as:

 𝑐 𝑘 = 𝑥̃𝑘�̃�𝑘
∗ (Eqn. 5)

where k indicates the frequency domain index, as before. If x = y, then this is called the

autocorrelation of x. Signal correlation is foundational to several key signal processing

tools used by the Fscans, namely signal coherence and power spectral densities.

 The absolute square of a Fourier transform is termed “power” in signal

processing. The power spectral density (PSD) estimation Pk utilizes the absolute square

of DFTs to describe the power present in k-indexed frequency bins:

9

 𝑃𝑘 =
2〈|𝑥̃𝑘|

2〉𝛥𝑡2

𝑇
 (Eqn. 6)

where Δt is the time between samples in the time j-indexed domain, T is the total

sampling time, and angled brackets denote averaging [12]. This is a “one-sided” PSD that

is defined for positive frequencies; the factor of 2 accounts for power from negative

frequencies. Without averaging, Eqn. 6 is called a periodogram, so the PSD is estimated

by averaging periodograms. A comparison of signal PSD or power versus frequency is

called that signal’s spectrum. The square root of the PSD is called the amplitude spectral

density (ASD). The ASD is used to give units that can be compared more easily with

time domain data [14]; the ASD is generally how detector strain sensitivity is reported, as

in Fig. 4 previously.

 The Fscans display spectra as graphs of power (|�̃�̃𝑘|
2) versus frequency,

normalized with a running median to make the average power equal to one (see Fig. 6).

Recall that the frequency resolution of the Fscans is (1/1800) Hz. The Fscans also

generate spectrograms, which are time-frequency plots of the power spectral density (see

Fig. 7).

10

Figure 6: Illustrative sample of a normalized Fscan spectrum for one day of tiltmeter channel data [15]

Figure 7: Illustrative sample of an Fscan spectrogram for one day of tiltmeter channel data [15]

11

The coherence (short for magnitude-squared coherence) ĉ between two channels

A and B is defined as

 �̂� =
|〈�̃��̃�∗〉|

2

〈|�̃�|
2
〉 〈|�̃�|

2
〉
 (Eqn. 7)

where �̃� = 𝑎 𝑒𝑖𝛷1 and �̃� = 𝑏 𝑒𝑖𝛷2 and angled brackets denote averaging [12]. In terms of

signal correlation, the coherence is the squared magnitude of the average of the

correlation between A and B (numerator) divided by the product of the average

autocorrelations of A and B (denominator). The coherence can also be expressed in the

form

 �̂� =
|〈 𝑎𝑏 [𝑐𝑜𝑠(𝛷1 − 𝛷2) + 𝑖 𝑠𝑖𝑛(𝛷1 − 𝛷2)] 〉|

2

〈𝑎2〉〈𝑏2〉
 (Eqn. 8)

 As the equation above makes apparent, a constant phase difference will cause the

coherence to tend towards 1, whereas a random relationship between the phases will

cause the magnitude of the average to tend towards 0. In this way, the coherence between

two signals is a measure of the constancy of the phase difference between them. Two

important properties of the Fscans that minimize the impact of outliers in the product ab

(which can produce anomalous coherences) are the thousands of averages done on data

spanning an entire month, and the high frequency resolution of the individual SFTs.

12

Chapter 2

Data Mining Projects

 This discussion now turns to three projects designed to mine the output data of the

existing Fscan infrastructure for useful information that can be presented in a more

human-digestible format, along with leveraging the Fscans in a new way to do signal

coherence analysis across interferometers.

High Coherence Dictionary

One area of investigation is examining coherences between auxiliary channel data

and the gravitational wave strain channel. For context, some auxiliary channels are

considered by Detector Characterization and related LIGO groups to be “safe,” and some

are considered “unsafe” [16]. Safe channels are channels in which one would not expect

an astrophysical signal in the strain to couple into the data recorded by that channel.

Unsafe channels are channels in which a signal in the strain channel could couple into the

channel’s data, in addition to h(t) [11]. Whether or not an auxiliary channel couples with

the strain channel to a sufficient degree to be considered unsafe is determined by various

metrics, one of which is examination of data in auxiliary channels following “injections”

of waveforms into the strain channel. If a waveform injected into the strain channel by an

intentional manipulation of the test mass mirrors is found to be highly coherent with an

auxiliary channel, then the safety of that auxiliary channel will come into question. One

example of unsafe auxiliary channels are those that are coupled to the actuation on the

detector mirrors, such as certain magnetometers near the electromagnets used to control

the length of the interferometer arms.

13

A difficulty with using information from the Fscans to help determine channel

safety or find unexpected coupling between the strain channel and auxiliary channels is

that there is a large daily volume of coherence data produced by the Fscan system. The

Fscans produce thousands of daily plots of the coherence between the strain channel and

a subset of auxiliary channels. Historically, there has been too much information

produced about coherences on a daily, weekly, and monthly basis for a person to be able

to sit down and identify by eye what channels have unusually high coherence with the

strain channel – the volume is too great. Besides the problem of volume, determining

what constitutes an “unusually” high coherence is not a task that a person can

consistently perform by eye. Determining the threshold for a coherence to be “unusually”

high should be a flexible metric that behaves in a statistically consistent manner.

 An existing empirical study of the false alarm rate for coherences [17] found that

for N averages used to calculate a magnitude-squared coherence value, the false alarm

rate varied as described in Eqn. 9:

 Probability(𝑋𝑜𝑏𝑠 > 𝑋) = 𝑃 = (1 − 𝑋)𝑘(𝑁−1) (Eqn. 9)

where Xobs is the observed coherence value, X is any possible coherence value (note that

coherence values range from 0 to 1), and k is a factor very close to 1 that varies slowly

with N when data is Hann windowed. If we choose a target false alarm rate, we can solve

this equation for a coherence value X and use that as our threshold for coherences

between strain and auxiliary channels that are statistically unlikely to have happened by

random chance. Setting k = 1 (because k is close to 1, about 0.95 for Hann windowing

with 50% overlap) and rearranging Eqn. 9, we find that

 𝑋 = 1 − 𝑃
1

(𝑁−1) (Eqn. 10)

14

is a statistically consistent metric for a threshold for unusually high coherences. Upon

choosing a cutoff false alarm rate probability and finding the number of averages used to

make a particular set of coherence output for the strain channel and some auxiliary

channel, it is possible to determine which coherences are higher than one would expect to

find by chance based on the chosen probability. Typically, this probability cutoff is set to

be on the order of 10-10, about five orders of magnitude smaller than 1 / (the number of

frequency bins in the 0-100Hz range of the Fscans) = 1 / 180,000.

Figure 8: Typical Hanford seismometer channel and strain month-long coherence plot example [15]

 For illustration, see Fig. 8, which shows the month-long coherence between a

seismometer and the strain channel after 1258 averages. By Eqn. 10, a coherence above

~1.9×10-2 is highly unlikely by random chance. On the other hand, mechanical vibrations

tend to damp out and are unlikely coherent for a month. Thus, the significant coherences

seen in Fig. 8 are likely unwanted digital effects produced in computers. Efforts to track

15

down where this occurs in the electronics are aided by knowing which channels suffer

from this problem at a given frequency.

I created a series of Python algorithms that can take existing Fscan coherence data

and apply the method described above to find unusually high coherences. The code for

this project, fscan_coherence_analyzer.py, is in Appendix A to this paper. This

script is particularly useful because it can present the results in multiple ways. If one is

only interested in viewing the high coherences for individual channels over a certain time

frame, it’s possible to look at only that limited subset of data. Using command line

arguments, it is also possible to format the output of the script as a frequency

“dictionary.” Producing this dictionary is the primary utility of

fscan_coherence_analyzer.py. Bands of frequencies are listed in the dictionary

output file, and any auxiliary channels with high coherence to the strain channel in that

frequency band are listed, along with their coherence values. The goal of formatting the

output in this way is to allow persons working on detector characterization to tackle the

problem of mystery noise sources in the Hanford interferometer’s sub-100Hz band. For

example, the coherence dictionary output file sample in Appendix E (which uses data

from February 2020; it is labelled as March 1, 2020 because it uses data from the month

prior) lists a number of auxiliary channels that are coherent with the strain channel in a

narrow band less than 2mHz wide around 11.394Hz. Resources used to track mystery

spectral lines and sets of spectral lines called “combs” in the strain data list a potential

comb at 11.39495Hz, suggesting a possible match [18]. The fact that the match occurs in

channels in the x-arm of the detector is an important clue from the dictionary as to which

computers might be responsible for this comb of lines.

16

For the sake of convenience, certain sets of information can be omitted at the

discretion of the person running the script. If they are not interested in seeing integer

frequencies in the output, or not interested in seeing a band around 60Hz due to high

coherences with power supplies, it is possible to suppress those outputs.

A potential future application of this coherence analyzer could be generating

comparisons of the number of unusually high coherences in analogous channels at LHO

and LLO. This could be used to quantify exactly how much worse the coupling between

strain and certain types of noise sources is at one site compared to the other.

Hanford-Livingston Coherence Investigations

The Fscan architecture is capable of computing long-term coherences using many

SFTs – that’s how it generates monthly summary plots. However, the application of this

has historically only been to target the coherence between the strain channel at either

interferometer and an auxiliary channel at that interferometer. It was not used to generate

inter-site coherence analyses. Because of curiosity surrounding the potential application

of the Fscans to look directly at coherences between the interferometers, I worked on

script_modmultidayfscan.py (Appendix B) and segment_intersector.py

(Appendix C) to examine coherences between Hanford and Livingston GW strain

channels. A main goal of this project was investigating if the strain channels of the

interferometers are significantly coherent over long periods of time, on the order of a

month. Because of the physical separation of the interferometers, there shouldn’t be a

mechanical oscillations that manage to remain coherent between the two sites by chance

on the scale of a month.

17

Generating coherences between the interferometers using Fscans requires several

highly modified versions of other Fscan scripts in order to work, most of which are not

included in this work or its appendices (but are saved on the LIGO Hanford servers at

[19]). This is a new type of Fscan data product. The role of segment_intersector.py

is the most explicit. At different times, data from the interferometers is flagged as

belonging in different categories – for example, marking whether or not the

interferometer is on, if the interferometer is in low-noise mode, if the data being produced

is ready for use in analysis and searches, etc. This script finds the intersection between

the times when Hanford and Livingston are producing analysis-ready strain data and acts

as a substitute for the normal process used to find segments in the Fscans. Normally, the

Fscan algorithms only need to worry about the data form one interferometer, so adding

this script was necessary to utilize data only from segments of time when both

interferometers were locked and producing analysis-ready data. Failing to use this script

could result in good data from one interferometer overlapping with terrible or non-

existent data from the other interferometer, which could significantly throw off the results

of the Fscans.

Over a month of coherence data from the intersection of Hanford and Livingston

analysis-ready times was produced, and a summary month Fscan was generated on this

data to obtain month-long Hanford/Livingston coherence information [20]. Some of the

daily Hanford/Livingston coherence plots had unusual characteristics and bizarrely high

coherences, visible in the following plots [21]. The reason for these unusual features is

not fully understood, but we have suspicions that one or two very loud, very bad SFTs on

certain days had an excessive effect on the coherence values for the whole day.

18

Figure 9: Coherence between Hanford and Livingston on February 11, 2020 [19]

Figure 10: Coherence between Hanford and Livingston on February 12, 2020 [19]

19

 The month-long Hanford/Livingston coherence shown in Fig. 11 was closer to

what was expected for these plots. Many of the coherence values were low, nearly

plotting a straight line across the bottom of the coherence plot. There are some

appreciable bumps in the coherence, however, so all of the data points in this plot were

subjected to the significant coherence analysis described previously in the coherence

dictionary section.

Figure 11: Coherence between Hanford and Livingston for all of February 2020 [20]

Applying Eqn. 10 to the month-long Hanford/Livingston coherence values, where N =

930 averages and cutoff probability was on the order of 5×10-7, resulted in a threshold

coherence value of ~0.0154. There are about 20 significant frequencies with coherences

greater than this threshold in the month-long Hanford/Livingston coherence. All these

significant frequencies are between 53.3Hz and 65.1Hz. The reason for 20 frequencies

20

remaining significantly coherent over an entire month is unclear. They are all near 60Hz,

which suggests the possibility that they could be sidebands of 60Hz and electrical in

origin. It is possible that some part of the data being generated by the Fscan SFTs is

introducing coherence that should not be there. For now, the reason for these coherences

being significant at all is an unresolved question.

High-Power Line Density Tracker

One of the interesting features of the LIGO Hanford strain data is that it is

consistently noisier than the LIGO Livingston data in the sub-100Hz range. Comparing

spectra by eye, it is easy to tell for most of O3 that the LIGO Hanford strain spectrum had

more high-power lines than the LIGO Livingston strain data (pictured on the next page)

[15]. This “forest of lines” in the sub-100Hz LIGO Hanford data causes many strain

spectra plots to appear messy. For context, it also does not appear that there was a distinct

day/week/month in O3 (or before) that marked the onset of the Hanford forest of lines

[22]. It is difficult to identify which days have a worse proliferation of high-power

spectral lines than the average day at Hanford – by eye, some days look better or worse

than others, but that is not a systematic and objective evaluation. Most problematically, if

every day has a “bad-looking” spectral plot, human eyes will miss more subtle structural

changes in the forest of lines. See Figs. 12 and 13 for a visual comparison of month-long

Hanford and Livingston strain spectra.

21

Figure 12: LIGO Hanford Fscan Strain Spectrum, Feb. 2020 [20]

Figure 13: LIGO Livingston Fscan Strain Spectrum, Feb. 2020 [20]

22

To address this, I developed an algorithm (fscan_lines.py) that parses month-

long batches of daily Hanford spectra data and presents useful information about line

density [21]. The purpose of this tool is to address the lack of a human-legible summary

of Hanford’s changing line density. If one can generate criteria for what constitutes a

“high-power” line, one can count the number of high-power lines in a spectral plot. Line

density is a shorthand way of referring to the number of high-power lines in a spectrum

(i.e. number of lines per day, per week, per month, etc.).

To determine the threshold criteria for high-power lines in a given strain

spectrum, one can utilize χ2 statistical methods [13] [12]. Consider noise ñ in the strain as

a complex signal for a particular frequency bin, and for the moment also consider the

case of just one SFT contributing to the Fscan data. For Gaussian noise signals, the

distributions of the real (x) and imaginary (y) parts of ñ are each individually Gaussian.

For the FFT of noise ñ expressed as

if one treats only noise as contributing to the power ρ in each frequency bin in the

spectrum of the strain, then it follows that

 𝜌 = |ñ|2 = 𝑥̃2 + 𝑦2 (Eqn. 12)

with proper normalization of x and y. The power can be expressed as a sum of squares of

Gaussian-distributed variables, which is a type of statistical situation where χ2 statistical

methods apply. This can be shown through a simple change of variables from the

combined probability distribution of x and y:

 𝑃(𝑥̃, 𝑦)𝑑𝑥̃𝑑𝑦 =
1

√2𝜋
𝑒−𝑥

2/2
1

√2𝜋
𝑒−𝑦

2/2𝑑𝑥̃𝑑𝑦 (Eqn. 13)

 ñ = 𝑥̃ + 𝑖𝑦 (Eqn. 11)

23

Let 𝑥̃ = 𝑟 𝑐𝑜𝑠(𝜃), 𝑦 = 𝑟 𝑠𝑖𝑛(𝜃), 𝑑𝑥̃𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃 and integrate over 0 < 𝜃 <
𝜋

2
 to find

the Rayleigh distribution,

 𝑃(𝑟)𝑑𝑟 = 𝑟𝑒−𝑟
2/2𝑑𝑟 (Eqn. 14)

which converts to a χ2 distribution for ρ with 2 degrees of freedom with the substitutions

𝜌 = 𝑟2 and 𝑑𝜌 = 2𝑟𝑑𝑟:

 𝑃(𝜌)𝑑𝜌 =
1

2
𝑒−𝜌/2𝑑𝜌 (Eqn. 15)

This derivation generalizes to the case where more than one SFT is contributing to a

spectrum. With n-many SFTs, each SFT has a real and complex part contributing 2

degrees of freedom. Then the probability as a function of power takes on the form of the

χ2 distribution for ρ with 2n degrees of freedom:

 𝑃(𝜌)𝑑𝜌 =
1

2(
𝑛
2
) 𝛤(𝑛/2)

𝜌(
𝑛
2
−1)𝑒−𝜌/2𝑑𝜌 (Eqn. 16)

 This line of reasoning is employed in fscan_lines.py to decide what the

constitutes a high-power spectral line. A probability is supplied to the script as a

command line argument (say a 1 in a million chance, or 1×10-6). This is the probability of

a line being above the power threshold. A chosen month is also supplied to the script by

the command line. The script examines each daily Fscan output for all days in the chosen

month for which data is available. For each available day, the script finds how many

SFTs were used in the Fscan strain spectra processing from that day. It then calculates the

inverse survival function of the χ2 distribution using the supplied probability and degrees

of freedom equal to twice the number of SFTs. Because Fscan spectra power values are

normalized to a median value of 1, the power supplied by the inverse survival function is

normalized and then used as a threshold for deciding if a frequency bin has a significantly

24

high power associated with it. For example, in Appendix G, the sample output for

February 2020 data shows that on February 28 the normalized threshold power was ~2.05

and there were 1012 frequency bins with powers higher than the threshold.

The fscan_lines.py script computes the average number of daily high-power

lines for the month, and then the standard deviation of the number of daily high-power

lines. The script lists which days in the month had the worst outliers (two standard

deviations or more above the average daily high-power line density), providing an

objective metric for evaluating what days the forest of lines is appreciably worse than

usual. Based on several months of O3 data, the average daily line density is on the order

of hundreds, typically ranging between 500-2000 high-power lines in the Hanford strain

spectrum per day.

Now that the infrastructure for this tool is in place, there are a number of ways in

which it could be utilized for future Fscan data mining. For the time being, it is an easily

accessible and human-legible snapshot into the varying messiness of noise in the strain

data. But in the future, this code could easily be adapted to examine particular trends,

such as which days (if any) of the typical Sunday-Saturday week tend to have worse

forests of lines, for example.

One particularly exciting potential avenue for future investigation of lines could

be the application of a machine learning algorithm to the daily plots of strain spectra.

Machine learning applications to detector characterization activities are active areas of

investigation [23]. In particular, the GravitySpy citizen science project has seen

tremendous success in image-based training of “deep learning” algorithms with

convolutional neural network layers to classify different morphologies of glitches in the

25

LIGO data, using citizen scientist assistance in developing training sets of images [24].

An application of image analysis-based machine learning algorithms to the strain spectra

produced by Fscan would certainly be more modest in scope than the GravitySpy project,

but nonetheless could potentially yield insight into more subtle variations in the forest of

lines at Hanford over time.

26

Appendix A: fscan_coherence_analyzer.py

1. #!/usr/bin/env python2

2. # -*- coding: utf-8 -*-

3. """

4. @author: Thomas Harris <harristr@whitman.edu>

5. """

6.

7. __author__ = 'Thomas Harris <harristr@whitman.edu>'

8.

9. #Importing useful tools

10.

11. import argparse

12. import sys

13. import os

14. import glob

15. import subprocess

16. from datetime import datetime

17.

18. #############

19. # Functions #

20. #############

21.

22. """

23. Ideas for future:

24. - Integrate frequency bands greater than 100 Hz into script analysis.

25. - Cut off at exactly 7 significant figures in frequency list (instead of 6 after decimal)

26. """

27.

28. def get_channel_list(targetpath):

29. """

30. :param targetpath: The path to the folder containing channels for analysis

31. :return: List containing strings of channel names

32. """

33. os.chdir(targetpath) # Going to the target directory

34. current_chan_path = subprocess.check_output("pwd").rstrip()

35. print("Current working directory: " + current_chan_path)

36.

37. channel_list = subprocess.check_output("ls -

1 | cat", shell=True).rstrip().split("\n")

38.

39. for name in channel_list[:]:

40. if name == "fscanChannels.html" or name == "H1_GDS-CALIB_STRAIN":

41. channel_list.remove(name)

42.

43. print("Number of channels: " + str(len(channel_list)))

44.

45. return channel_list

46.

47. def find_fscan_date(chan_path):

48. """

49. :param chan_path: The path to the channel being analyzed

50. :return: date_string: Returns the string of the channel date.

51. """

52. date_found = False

53. counter1_found = False

54. date_syntax_counter = 1

27

55. while not date_found:

56. slash_check = chan_path[-date_syntax_counter]

57. if slash_check == "/" and counter1_found == False:

58. counter1 = date_syntax_counter

59. counter1_found = True

60. elif slash_check == "/":

61. counter2 = date_syntax_counter

62. date_found = True

63. date_syntax_counter += 1

64.

65. date_string = chan_path[1 - counter2: -counter1]

66. return date_string

67.

68. def get_chan_name(file):

69. """

70. :param file: Name of the file containing high-coherence data for a channel

71. :return: chan_name: name of the channel

72. """

73. chan_name = file.split("_and_")[0].split("_coherence_")[1]

74. return chan_name

75.

76. def write_dict_entry(outputfile, templist, include_60Hz_band, include_integer, channel_inf

o_dict):

77. """

78. :param outputfile: file where dictionary output for bands is being written

79. :param templist: list of information for a specific band

80. :param include_60Hz_band: boolean for including 60Hz band or not

81. :param include_integer: boolean for including integer frequencies or not

82. :param channel_info_dict: {get_chan_name(coherencefilename): [signifcoherence, signifc

ohlist], ... }

83. :return: None

84. """

85. if include_60Hz_band or not (templist[0] <= 60.0 <= templist[1]): #If shortened output

, ignore band with 60 Hz

86. if include_integer or int(templist[0]) == int(templist[1]):

87. outputfile.write("\n# {0:6f} {1:6f} {2:6f}\n".format(templist[0], templist[1],

 templist[1] - templist[0]))

88. for index in range(2, len(templist)):

89. #Getting the max coherence value for given channel in given band

90. coherence_list = []

91. for triplet in channel_info_dict[templist[index]][1]:

92. if templist[0] <= triplet[1] <= templist[1]:

93. coherence_list.append(triplet[2])

94. outputfile.write(" {0} {1}\n".format(templist[index], max(coherence_lis

t)))

95.

96. def analyze_channel(chanpath, outputpath, duration, significance_coefficient, include_inte

ger, freq_cutoff):

97. """

98. :param chanpath: path to channel for analysis

99. :param outputpath: where to write outputs

100. :param duration: string (monthly_), (weekly_), or (daily_)

101. :param significance_coefficient: positive float for use in significant coherence calcu

lation

102. :param include_integer: boolean for including integer frequencies or not

103. :param freq_cutoff: float value of max difference between frequencies for them to be c

onsidered in the same band

104. :return: {get_chan_name(coherencefilename): [signifcoherence, signifcohlist]}

105. """

106. os.chdir(chanpath) # Going to the target directory

107. current_chan_path = subprocess.check_output("pwd").rstrip()

28

108. print("\nCurrent working directory: " + current_chan_path)

109.

110. # Find number of SFTs used in coherence calculations:

111. # First check that the coherence data exists in this frequency range, fail if not.

112. prelim = subprocess.check_output(

113. "cat logs/runCoherence*.out | grep 'Coherence Completed' | awk '{print $NF}'", she

ll=True).rstrip()

114. if prelim == None or prelim == "":

115. print("\n## ## ## COHERENCE ANALYSIS FAILED FOR THIS CHANNEL. ## ## ##\n")

116. return 1

117. numSFTs = int(prelim)

118. print("Number of SFTs: " + str(numSFTs))

119.

120. # Find coherence data file

121. coherencefilename = subprocess.check_output("ls -

1 spec_0.00_100.00*coherence*.txt", shell=True).rstrip()

122. print("Coherence file name: " + coherencefilename)

123.

124. # Get number of coherence data points in file

125. numcoherences = int(

126. subprocess.check_output("cat -n " + coherencefilename + " | tail -

1 | awk '{print $1}'", shell=True).rstrip())

127. print("Number of coherences: " + str(numcoherences))

128.

129. signifcoherence = 1.0 - ((1.0 / ((10 ** significance_coefficient) * float(numcoherence

s))) ** (1.0 / float(numSFTs - 1)))

130. print("Significant Coherence: " + str(signifcoherence))

131.

132. # Acquiring list of highly coherent data from current channel

133. signifcohlist = []

134. chdata = open(coherencefilename, "r")

135. line_index = 0

136. for line in chdata:

137. pair = line.split()

138. pair = [float(value) for value in pair]

139. if pair[1] >= signifcoherence:

140. signifcohlist.append([line_index, pair[0], pair[1]]) #line index, frequency, c

oherence

141. line_index += 1

142. chdata.close()

143.

144. if not include_integer: # Abbreviating the output to have no integer frequencies if de

sired

145. for set in signifcohlist:

146. if set[1].is_integer():

147. signifcohlist.remove(set)

148.

149.

150. print("Number of significant coherences: " + str(len(signifcohlist)))

151. if len(signifcohlist) == 0:

152. print("\nNo significant coherences for this channel.\n")

153. return 0

154. """

155. for demo in range(len(signifcohlist)):

156. if demo < 8 or demo > len(signifcohlist) - 9:

157. print(signifcohlist[demo])

158. """

159.

160. # Finding bands of interest in highly coherent data

161. bandsignifcohlist = [] # Initialize list of bands of coherent frequencies

162. templist = [] # Initialize list for given band

29

163. #print("\nCoherence band (templist) format: [freqmax] [cohmax] [freqlo] [freqhi]")

164.

165. for row in range(len(signifcohlist) - 1):

166. if row == 0: # First row

167. currline = signifcohlist[row]

168. nextline = signifcohlist[row + 1]

169. templist.extend(currline[1:3] + [currline[1]] + [currline[1]])

170.

171. else: # Any intermediate row

172. currline = nextline

173. nextline = signifcohlist[row + 1]

174.

175. if nextline[1] - currline[1] <= (freq_cutoff + 0.0001): # If next line is within

same frequency band

176. if templist[1] < nextline[2]: # Compare coherence of current line to max cohe

rence

177. templist[0] = nextline[1]

178. templist[1] = nextline[2]

179. templist[3] = nextline[1]

180. if row == len(signifcohlist) - 2: # Handle case where next row is last row

181. #print("#### New BAND ####")

182. #print(templist)

183. bandsignifcohlist.append(templist)

184.

185. else: # If not within same band

186. #print("#### New BAND ####")

187. #print(templist)

188. templist[3] = currline[1]

189. bandsignifcohlist.append(templist)

190. templist = [nextline[1], nextline[2], nextline[1], nextline[1]] # Prep templi

st for new band

191. if row == len(signifcohlist) - 2: # Handle case where next row is last row

192. bandsignifcohlist.append(templist)

193.

194. #print(bandsignifcohlist)

195.

196. os.chdir(outputpath) # Going to the output directory

197. print("\nCurrent working directory: " + subprocess.check_output("pwd").rstrip())

198.

199. fscan_date = find_fscan_date(current_chan_path)

200.

201. #Writing the analysis output for this channel

202. with open("signif_coherences_" + duration + fscan_date + "_" + coherencefilename, "w")

 as outputfile:

203. outputfile.write("Significantly Coherent frequencies in " + coherencefilename + "\

n")

204. outputfile.write("Date of fscans: " + fscan_date + "\n")

205. outputfile.write("Criteria for significant coherence: coherence >= " + str(signifc

oherence) + "\n")

206. outputfile.write("Number of significantly coherent frequencies: " + str(len(signif

cohlist)) + "\n")

207. if not include_integer:

208. outputfile.write("This output is REDUCED to have no integer frequencies (argum

ent include_integer == 'n')\n")

209. else:

210. outputfile.write("This output is FULL and includes integer frequencies (argume

nt include_integer == 'y')\n")

211.

212. # Write a list of highly coherent frequency bands and their max coherences

213. outputfile.write("\n## High coherence frequency bands ##\n"

30

214. "## Format: [most coherent frequency in band] [highest coherence

in band] "

215. "[lowest band freq] [highest band freq] ##\n")

216. for list in bandsignifcohlist:

217. outputfile.write("{0:.6f} ".format(list[0]) +

218. "{0:.4f} ".format(list[1]) +

219. "{0:.6f} ".format(list[2]) +

220. "{0:.6f}\n".format(list[3]))

221.

222. # Write list of highly coherent frequencies and their coherences

223. outputfile.write("\n## High coherence frequencies ##\n"

224. "## Format: [frequency] [coherence] ##\n")

225. for frequency in signifcohlist:

226. outputfile.write("{0:.6f} ".format(frequency[1]) +

227. "{0:.4f}\n".format(frequency[2]))

228.

229. outputfile.close()

230.

231. print("Highly coherent channel data recorded.")

232.

233. return {get_chan_name(coherencefilename): [signifcoherence, signifcohlist]}

234.

235. def makedict(outputpath, duration, output_cutoff, freq_cutoff, band_cutoff, include_60Hz_b

and, include_integer, channel_info_dict):

236. """

237. :param outputpath: Where to write dictionary for set of channels

238. :param duration: string (monthly_), (weekly_), or (daily_)

239. :param output_cutoff: boolean for abbreviating data output or not

240. :param freq_cutoff: float value of max difference between frequencies for them to be c

onsidered in the same band

241. :param band_cutoff: max whole number of frequency bins between frequencies for them to

 be considered in the same band

242. :param include_60Hz_band: whether or not to include a 60Hz band in the dictionary band

 summary

243. :param include_integer: boolean for including integer frequencies or not

244. :param channel_info_dict: {get_chan_name(coherencefilename): [signifcoherence, signifc

ohlist], ... }

245. :return: None

246. """

247. print("\nMaking frequency dictionary in: " + outputpath)

248. os.chdir(outputpath) # Going to the output directory

249. print("Current working directory: " + subprocess.check_output("pwd").rstrip())

250.

251. # Getting channel list

252. channel_list = subprocess.check_output("ls -

1 | cat | awk '{print $NF}'", shell=True).rstrip().split("\n")

253. # Checking for non-empty list of output files

254. if len(channel_list) == 0:

255. print("\n## No output files at this path; unable to create frequency dictionary. #

#\n")

256. return 0

257. # Check for pre-existing dictionary file or other non-

coherence data files and remove them from list

258. excise_list = []

259. for channel in channel_list:

260. if "dictionary_signif_coherences_" in channel:

261. excise_list.append(channel)

262. print("Pre-existing dictionary file found. This file will be over-

written:" + channel +"\n")

263. elif channel[0:18] != "signif_coherences_":

264. excise_list.append(channel)

31

265. print("Non-

coherence data file found, removing from analysis: " + channel + "\n")

266. for channel in excise_list:

267. channel_list.remove(channel)

268. print("Number of channels in dictionary: " + str(len(channel_list)))

269.

270. # Initialize frequency dictionary

271. dict = {}

272.

273. for file in channel_list[:]: #Iterating over every file in directory to get coherence

data

274. print("Adding to dictionary: " + file)

275. #Finding high-coherence data

276. freqdataline = subprocess.check_output('grep -

n "## Format: \[frequency\] \[coherence\] ##" ' + file

277. + " | awk '{print $1}'", shell=True).rstrip

()

278. freqdataline = int(freqdataline[:-3])

279.

280. chdata = open(file, "r")

281. line_index = 0

282. for line in chdata:

283. if line_index >= freqdataline:

284. pair = line.split()

285. pair = [float(value) for value in pair]

286. freq = pair[0]

287.

288. if freq not in dict: #Add new frequency to dictionary

289. dict[freq] = [file]

290.

291. elif freq in dict: #Add this channel to list value for this frequency key

in dictionary

292. getlist = dict[freq]

293. getlist.append(file)

294. dict.update({freq: getlist})

295.

296. line_index += 1

297. chdata.close()

298.

299. freqlist = dict.keys()

300. freqlist.sort()

301.

302. # Finding date of fscan via output files this function has been directed to look for

303. fscan_date = subprocess.check_output('grep -n "Date of fscans: " ' + channel_list[0]

304. + " | awk '{print $4}'", shell=True).rstrip()

305.

306. # Writing the dictionary output file for this channel

307. with open("dictionary_signif_coherences_" + duration + fscan_date + ".txt", "w") as ou

tputfile:

308. outputfile.write("Frequency dictionary for significantly coherent channels\n")

309. outputfile.write("Type of fscans: " + duration[:-1] + "\n")

310. outputfile.write("Date of fscans: " + fscan_date + "\n")

311. outputfile.write("Dictionary generated from output path: " + outputpath + "\n")

312. outputfile.write("Number of unique channels in dictionary: " + str(len(channel_lis

t)) + "\n")

313. outputfile.write("\nBased on provided arguments, this dictionary output:\n")

314. if output_cutoff:

315. outputfile.write("- only lists band information, and does NOT contain a full \

n"

316. " frequency dictionary below the list of bands (argument out

put_cutoff == 'y')\n")

32

317. else:

318. outputfile.write("- contains more detailed frequency dictionary information\n"

319. " below the list of bands (argument output_cutoff == 'n')\n"

)

320. if not include_60Hz_band:

321. outputfile.write("- WILL NOT list the 60Hz band, even if it was significant (a

rgument include_60Hz_band == 'n')\n")

322. else:

323. outputfile.write("- WILL list the 60Hz band, if it was significant (argument i

nclude_60Hz_band == 'y')\n")

324. if not include_integer:

325. outputfile.write("- WILL NOT list bands containing integer frequencies,\n"

326. " even if those bands were significant (argument include_int

eger == 'n')\n")

327. else:

328. outputfile.write("- WILL list bands containing integer frequencies,\n"

329. " if those bands were significant (argument include_integer

== 'y')\n")

330.

331. outputfile.write("\nCriteria for two frequencies to be considered in a band is f1

- f2 <= {0} Hz.\n"

332. "This corresponds to a maximum of {1} frequency bins apart (argum

ent band_cutoff == {1})."

333. "\n".format(freq_cutoff, band_cutoff))

334.

335. #For reference: channel_info_dict = {get_chan_name(coherencefilename): [signifcohe

rence, signifcohlist], ...}

336. threshold_list = []

337. for channel in channel_info_dict:

338. threshold_list.append(channel_info_dict[channel][0])

339.

340. outputfile.write("\nThe average significant coherence threshold for these channels

 was {0}.\n"

341. "The lowest significant coherence threshold was {1}.\n"

342. "The highest significant coherence threshold was {2}.\n"

343. "".format(sum(threshold_list)/len(threshold_list), min(threshold_

list), max(threshold_list)))

344.

345. # Write out the band summary of the frequency dictionary

346. # Possible future idea: [channel 1] [number of high-

coherence frequencies of channel 1 within band]

347.

348. outputfile.write("\n## Frequency Dictionary Band Summary ##\n"

349. "## Format: ##\n"

350. "# [lowest band frequency] [highest band frequency] [bandwidth]\n

"

351. " [channel 1] [max channel 1 coherence in band]\n"

352. " [channel 2] [max channel 2 coherence in band]\n"

353. " (etc.)\n")

354.

355. # Finding bands of interest in highly coherent data

356. templist = [] # Initialize list for given band

357. # print("\nCoherence band (templist) format: [freqlo] [freqhi] [chan1], [chan2], .

..")

358.

359. for row in range(len(freqlist) - 1):

360. freq = freqlist[row]

361. nextfreq = freqlist[row + 1]

362.

363. if row == 0: # Initialize first frequency in band summary

33

364. templist = [freq, freq]

365. for file in dict[freq]:

366. templist.append(get_chan_name(file))

367.

368. if nextfreq - freq <= (freq_cutoff + 0.0001): # If next line is within same f

requency band

369. for file in dict[nextfreq]:

370. if get_chan_name(file) not in templist:

371. templist.append(get_chan_name(file))

372.

373. if row == len(freqlist) - 2: # Handle case where next row is last row

374. templist[1] = nextfreq

375. #print("#### FINAL NEW BAND ####")

376. #print(templist)

377. write_dict_entry(outputfile, templist, include_60Hz_band, include_inte

ger, channel_info_dict)

378.

379. else: # If not within same band

380. templist[1] = freq

381. #print("#### NEW BAND ####")

382. #print(templist)

383. write_dict_entry(outputfile, templist, include_60Hz_band, include_integer,

 channel_info_dict)

384.

385. templist = [nextfreq, nextfreq] # Prep templist for new band

386. for file in dict[nextfreq]:

387. if get_chan_name(file) not in templist:

388. templist.append(get_chan_name(file))

389.

390. if row == len(freqlist) - 2: # Handle case where next row is last row

391. write_dict_entry(outputfile, templist, include_60Hz_band, include_inte

ger, channel_info_dict)

392.

393. if not output_cutoff:

394. # Write out the full dictionary one frequency at a time

395. outputfile.write("\n## Frequency Dictionary ##\n"

396. "## Format: ##\n"

397. "# [frequency]\n"

398. " [channel 1]\n"

399. " [channel 2]\n"

400. " (etc.)\n")

401. for freq in freqlist:

402. outputfile.write("\n# {0:6f}\n".format(freq))

403. for file in dict[freq]:

404. chan_name = get_chan_name(file)

405. outputfile.write(" " + chan_name + "\n")

406.

407. outputfile.close()

408.

409. print("\nDictionary complete.")

410.

411. return None

412.

413. #############

414. # Main Code #

415. #############

416. def main():

417. initpath = subprocess.check_output("pwd").rstrip()

418. print("\n## Starting execution at: " + str(datetime.now())[0:19] + " ##")

419. print("Start working directory: " + initpath + "\n")

420.

34

421. parser = argparse.ArgumentParser(

422. description = "Find Fscan coherence data and identify unusually high coherences. \

n"

423. "Complexity of output remains under construction.")

424.

425. parser.add_argument("targetpath", type=str,

426. help="the path of the directory of the fscan coherence data to be

analyzed")

427. parser.add_argument("outputpath", type=str,

428. help="the output directory path, where results will be written to"

)

429. parser.add_argument("fscantype", type=str,

430. help="type of fscan: m (monthly), w (weekly), or d (daily)")

431. parser.add_argument("dodict", type=str,

432. help="make a freq range dictionary, y (yes) or n (no)")

433. parser.add_argument("output_cutoff", type=str,

434. help="cut out certain data to abbreviate output, y (yes) or n (no)

")

435. parser.add_argument("include_integer", type=str,

436. help="include integer frequencies in the output, y (yes) or n (no)

")

437. parser.add_argument("include_60Hz_band", type=str,

438. help="include any frequency band containing 60 Hz in the dictionar

y, y (yes) or n (no)")

439. parser.add_argument("significance_coefficient", type=float,

440. help="whole number on the order of 1-

10 to use in calculation of significant coherence; \n"

441. "denotes the power of 10 to use for the coefficient; \n"

442. "standard is 1 (makes coefficient 10 ** 1 = 10); \n"

443. "higher values generate higher significant coherences and sho

rter outputs; \n"

444. "smaller values generate lower significant coherences and lon

ger outputs")

445. parser.add_argument("band_cutoff", type=int,

446. help="a whole number that denotes the max number of frequency bins

 between "

447. "highly coherent frequencies to place them in the same freque

ncy band")

448.

449. args = parser.parse_args() #Getting the paths, double-check their validity

450. targetpath = args.targetpath.rstrip()

451. outputpath = args.outputpath.rstrip()

452. fscantype = args.fscantype.rstrip()

453. dodict = args.dodict.rstrip()

454. output_cutoff = args.output_cutoff.rstrip()

455. include_integer = args.include_integer.rstrip()

456. include_60Hz_band = args.include_60Hz_band.rstrip()

457. significance_coefficient = float(args.significance_coefficient)

458. band_cutoff = args.band_cutoff

459.

460. assert os.path.exists(targetpath), "Unable to locate target path."

461. assert os.path.exists(outputpath), "Unable to locate output path."

462. assert fscantype == "m" or fscantype == "w" or fscantype == "d", "Must specify type of

 fscan: " \

463. "m (monthly), w (weekly),

or d (daily)."

464. assert dodict == "y" or dodict == "n", "Must specify if doing a dictionary: y (yes) or

 n (no)."

465. assert output_cutoff == "y" or output_cutoff == "n", "Must specify if abbreviating out

put: y (yes) or n (no)."

35

466. assert include_integer == "y" or include_integer == "n", "Must specify if including in

teger frequencies: y (yes) or n (no)."

467. assert include_60Hz_band == "y" or include_60Hz_band == "n", "Must specify if includin

g 60Hz band: y (yes) or n (no)."

468. assert type(band_cutoff) == int, "Band cutoff criteria must be a whole number of frequ

ency bins"

469. assert band_cutoff > 0, "Band cutoff criteria must be a whole number of frequency bins

"

470.

471. if fscantype == "d":

472. duration = "daily_"

473. elif fscantype == "w":

474. duration = "weekly_"

475. elif fscantype == "m":

476. duration = "monthly_"

477. assert duration == "monthly_" or duration == "weekly_" or duration == "daily_", \

478. "Error in recognizing fscan type (daily, weekly, monthly)"

479.

480. if output_cutoff == "y":

481. output_cutoff = True

482. else:

483. output_cutoff = False

484.

485. if include_integer == "y":

486. include_integer = True

487. else:

488. include_integer = False

489.

490. if include_60Hz_band == "y":

491. include_60Hz_band = True

492. else:

493. include_60Hz_band = False

494.

495. channel_list = get_channel_list(targetpath)

496.

497. """

498. Note: the default SFT length for Fscans is T = 1800 seconds.

499. The frequency resolution is 1/T = 1/1800 Hz =(rounded) 0.0005555 Hz = 5.5555*10^(-

4) Hz.

500. So at the most granular level, frequency bins are separated by 0.0005555 Hz.

501. """

502. # band_cutoff specifies number of frequency bins, freq_cutoff translates this into a f

requency bandwidth

503. freq_cutoff = (1.0/1800.0 * float(band_cutoff))

504. #print(band_cutoff)

505. #print(freq_cutoff)

506. channel_info_dict = {}

507.

508. for channel in channel_list:

509. chanpath = targetpath + "/" + channel

510. attempt = analyze_channel(chanpath, outputpath, duration, significance_coefficient

, include_integer, freq_cutoff)

511. if type(attempt) == dict:

512. channel_info_dict.update(attempt)

513.

514. if dodict == "y":

515. makedict(outputpath, duration, output_cutoff, freq_cutoff, band_cutoff, include_60

Hz_band, include_integer, channel_info_dict)

516.

517. endpath = subprocess.check_output("pwd").rstrip()

518. print("\nEnd working directory: " + endpath)

36

519. print("## Ending execution at: " + str(datetime.now())[0:19] + " ##\n")

520.

521. if __name__ == "__main__":

522. main()

37

Appendix B: script_modmultidayfscan.py

1. #!/usr/bin/env python2

2. # -*- coding: utf-8 -*-

3. """

4. @author: Thomas Harris <harristr@whitman.edu>

5. """

6.

7. __author__ = 'Thomas Harris <harristr@whitman.edu>'

8.

9. """

10. This script has two immediately related purposes:

11. - write .rsc files for running Fscan using a modified form of multiFscanGenerator.tcl

12. (multiFscanGenerator.tcl takes its parameters from specified .rsc file)

13. - run command line arguments at various time intervals to gradually create batches of Fsca

n jobs

14. """

15.

16. #Importing useful tools

17.

18. import os

19. import subprocess

20. from datetime import datetime

21. import re

22. import time

23.

24. #############

25. # Functions #

26. #############

27.

28. def make_new_rsc_file(rscname, rsc_lines, gpsstart, gpsend):

29. """

30. Makes a new .rsc file using an open file object as a template.

31. Replaces the start and end GPS times in the .rsc with new times.

32. :param rscname: string name of the template .rsc file being opened

33. :param rscfile: list of lines of template .rsc file for Fscans to use

34. :param gpsstart: starting GPS time of Fscans

35. :param gpsend: ending GPS time of Fscans

36. :return:

37. """

38.

39. #setting up to search for start and end GPS times in the template .rsc file

40. re_start = re.compile('set startTime "\d{10}";')

41. start_found = False

42. re_end = re.compile('set endTime "\d{10}";')

43. end_found = False

44. line_number = 0

45.

46. #Checking to see if GPS start and end times are properly set in template .rsc file

47. for line in rsc_lines:

48. #if 25 < line_number < 29:

49. # print(line.rstrip())

50. if re_start.match(line):

51. start_found = True

52. #print("Start GPS time on line number " + str(line_number))

53. elif re_end.match(line):

54. end_found = True

38

55. #print("End GPS time on line number " + str(line_number))

56. line_number += 1

57.

58. assert start_found, "Starting GPS time not properly found in template .rsc file"

59. assert end_found, "Ending GPS time not properly found in template .rsc file"

60.

61. #Creating name and file for new .rsc file based on template

62. new_rsc_name = "{0}_{1}_{2}.rsc".format(rscname[:-4], gpsstart, gpsend)

63. with open(new_rsc_name, "w") as new_rsc:

64. for line in rsc_lines:

65. if re_start.match(line):

66. new_rsc.write('set startTime "{0}";\n'.format(gpsstart))

67. elif re_end.match(line):

68. new_rsc.write('set endTime "{0}";\n'.format(gpsend))

69. else:

70. new_rsc.write(line)

71.

72. return new_rsc_name

73.

74. #############

75. # Main Code #

76. #############

77.

78. def main():

79. initpath = subprocess.check_output("pwd").rstrip()

80. print("\n## Starting execution at: " + str(datetime.now())[0:19] + " ##")

81. print("Start working directory: " + initpath + "\n")

82.

83. subprocess.check_output("cd /home/thomas.harris/public_html/fscan/test", shell=True).r

strip()

84. print("Now in directory: " + subprocess.check_output("pwd", shell=True).rstrip() + "\n

")

85.

86. rscname = "myFscansH1L1.rsc"

87.

88. seconds_per_day = 86400

89. start_time = 1261875620

90. sleep_time = 3600 #Number of seconds to sleep for between starting Fscan jobs on diffe

rent days

91. number_days = 31 #Number of days to run Fscans on following start_time

92.

93. assert type(start_time) == int, "Starting GPS time must be an integer"

94. assert type(number_days) == int, "Must use integer number of days"

95. assert rscname[-4:] == ".rsc", "Resource file name must end in extension '.rsc'"

96.

97. gps_day_list = []

98. day_start = start_time

99.

100. #Making a list of GPS time pairs for writing new .rsc files with these GPS times

101. for day in range(number_days):

102. day_end = day_start + seconds_per_day

103. gps_day_list.append([day_start, day_end])

104. day_start = day_end

105.

106. rsc_list = []

107.

108. #Generate all of the .rsc files and put their names into a list

109. with open(rscname, "r") as rsc_file:

110. rsc_lines = rsc_file.readlines()

111. for day in gps_day_list:

112. rsc_list.append(make_new_rsc_file(rscname, rsc_lines, day[0], day[1]))

39

113.

114. print("New .rsc files generated:")

115. for file_name in rsc_list:

116. print(file_name)

117. print("\n")

118.

119. if os.path.exists("./lastTimeUsedByH1FscanCoherenceGeneratorAuto.txt"):

120. print("Removing previous lastTimeUsedByH1FscanCoherenceGeneratorAuto.txt file.")

121. print(subprocess.check_output("rm lastTimeUsedByH1FscanCoherenceGeneratorAuto.txt"

, shell=True).rstrip())

122.

123. #Run Fscans using the .rsc files and delay between starting each Fscan generation

124. for file_name in rsc_list:

125. run_fscan_command = "./modH1L1_multiFscanGenerator.tcl ./{0} -

R".format(file_name)

126. print("Running Fscans using " + file_name + " at " + str(datetime.now())[0:19] + "

.")

127. #print(run_fscan_command)

128. print(subprocess.check_output(run_fscan_command, shell=True).rstrip())

129.

130. if file_name != rsc_list[-1]:

131. print("Current time is " + str(datetime.now())[0:19] + ".")

132. print("Sleeping for {0} seconds.\n".format(sleep_time))

133. time.sleep(sleep_time)

134. if os.path.exists("./lastTimeUsedByH1FscanCoherenceGeneratorAuto.txt"):

135. print("Removing previous lastTimeUsedByH1FscanCoherenceGeneratorAuto.txt f

ile.")

136. print(subprocess.check_output("rm lastTimeUsedByH1FscanCoherenceGeneratorA

uto.txt", shell=True).rstrip())

137.

138. endpath = subprocess.check_output("pwd").rstrip()

139. print("\nEnd working directory: " + endpath)

140. print("## Ending execution at: " + str(datetime.now())[0:19] + " ##\n")

141.

142. if __name__ == "__main__":

143. main()

40

Appendix C: segment_intersector.py

1. #!/usr/bin/env python2

2. # -*- coding: utf-8 -*-

3. """

4. @author: Thomas Harris <harristr@whitman.edu>

5. """

6.

7. __author__ = 'Thomas Harris <harristr@whitman.edu>'

8.

9. #Importing useful tools

10.

11. import argparse

12. import sys

13. import os

14. import glob

15. import subprocess

16. from datetime import datetime

17.

18. #############

19. # Functions #

20. #############

21.

22. def get_segments(ifo, gpsstarttime, gpsendtime):

23. """

24. Uses ligolw_segment_query_dqsegdb to get DMT-ANALYSIS_READY segments

25. :param ifo: H1 or L1

26. :param gpsstarttime: int to go after --gps-start-time

27. :param gpsendtime: int to go after --gps-end-time

28. :return:

29. """

30. print("Retrieving " + ifo + " segments.")

31. tempsegfile = "{0}segs_{1}_{2}.txt".format(ifo, gpsstarttime, gpsendtime)

32. print("Name of temporary segment file: {0}".format(tempsegfile))

33. subprocess.check_output('ligolw_segment_query_dqsegdb --segment-

url=https://segments.ligo.org --query-segments '

34. '--include-segments {0}:DMT-ANALYSIS_READY:1 --gps-start-

time {1} --gps-end-time {2} '

35. '| /bin/grep -v "0, 0" | /usr/bin/ligolw_print -

t segment:table -c start_time -c end_time '

36. '-

d " " > {3}'.format(ifo,gpsstarttime,gpsendtime,tempsegfile), shell=True).rstrip()

37. return tempsegfile

38.

39. #############

40. # Main Code #

41. #############

42. def main():

43. initpath = subprocess.check_output("pwd").rstrip()

44. print("\n## Starting execution at: " + str(datetime.now())[0:19] + " ##")

45. print("Start working directory: " + initpath + "\n")

46.

47. parser = argparse.ArgumentParser(

48. description = "This script is used by a modified version of the multiFscanGenerato

r.tcl \n"

49. "to generate Fscan outputs between interferometers (H1 and L1).\n"

50. "Intersects the DMT-ANALYSIS_READY:1 segments from H1 and L1.")

41

51.

52. parser.add_argument("gpsstart", type=int,

53. help="starting GPS time")

54. parser.add_argument("gpsend", type=int,

55. help="ending GPS time")

56.

57. args = parser.parse_args() #Getting the paths, double-check their validity

58. gpsstart = args.gpsstart

59. gpsend = args.gpsend

60.

61. assert type(gpsstart) == int, "Starting GPS time must be an integer"

62. assert type(gpsend) == int, "Ending GPS time must be an integer"

63.

64. #Demo GPS times: (1265331620, 1265418019)

65. h1segs = get_segments("H1", gpsstart, gpsend)

66. l1segs = get_segments("L1", gpsstart, gpsend)

67. #print(h1segs)

68. #print(l1segs)

69.

70. print("Intersecting H1:DMT-ANALYSIS_READY:1 and L1:DMT-ANALYSIS_READY:1 segments.")

71.

72. pwd = subprocess.check_output("pwd", shell=True).rstrip()

73. #h1Segfile = "{0}/{1}".format(pwd, h1segs)

74. #l1Segfile = "{0}/{1}".format(pwd,l1segs)

75. #intersectOutputfile = "{0}/H1L1Intersectedsegs_{1}_{2}.txt".format(pwd, gpsstart, gps

end)

76. #h1Segfile = "H1segs_1265331620_1265418019.txt"

77. #l1Segfile = "L1segs_1265331620_1265418019.txt"

78. h1Segfile = h1segs

79. l1Segfile = l1segs

80. intersectOutputfile = "{0}/H1L1Intersectedsegs_{1}_{2}.txt".format(pwd,gpsstart, gpsen

d)

81. segexprCommand = "segexpr \"intersection(%s,%s)\" %s" %(h1Segfile, l1Segfile, intersec

tOutputfile)

82. subprocess.check_output(segexprCommand, shell=True).rstrip()

83. print("Intersected segment file: " + intersectOutputfile)

84.

85. endpath = subprocess.check_output("pwd").rstrip()

86. print("\nEnd working directory: " + endpath)

87. print("## Ending execution at: " + str(datetime.now())[0:19] + " ##\n")

88.

89. if __name__ == "__main__":

90. main()

42

Appendix D: fscan_lines.py

1. #!/usr/bin/env python2
2. # -*- coding: utf-8 -*-
3. """
4. @author: Thomas Harris <harristr@whitman.edu>
5. """
6.
7. __author__ = 'Thomas Harris <harristr@whitman.edu>'
8.
9. #Importing useful tools
10.
11. import argparse
12. import sys
13. import os
14. import subprocess
15. from datetime import datetime
16. from scipy import stats
17. import numpy
18.
19. #############
20. # Functions #
21. #############
22.
23. def get_channel_list(date):
24. """
25. :param date: string saying what dates to focus on
26. :return: List containing strings of directory names for analysis
27. """
28. channel_list = subprocess.check_output("ls | grep 'fscans_{0}_.*' | cat".format(date),

 shell=True).split()
29. #print("Number of days included in this analysis: {0}\n".format(str(len(channel_list))

))
30. return channel_list
31.
32. def analyze_channel(chanpath, probability_cutoff):
33. """
34. :param chanpath: path to channel for analysis
35. :param outputpath: float cutoff probability criteria for high-power lines
36. :return:
37. """
38. os.chdir(chanpath) # Going to the target directory
39. print("Current directory: " + subprocess.check_output("pwd").rstrip() + "")
40.
41. # Find power spectrum data file
42. spectrumfile = subprocess.check_output("ls -1 spec_0.00_100.00*.txt | grep -v -

E '*combs*|*sorted*'", shell=True).rstrip()
43. #print("Spectrum file name: {0}".format(spectrumfile))
44.
45. with open(spectrumfile, "r") as file:
46. data = file.readlines()
47.
48. data = data[1:]
49. for line in range(len(data)):
50. data[line] = float(data[line].split()[1])
51. print("Spectrum data obtained from {0}.".format(spectrumfile))
52.
53. """
54. print(len(data))
55. for i in range(10):
56. print(data[i])
57. print(type(data[i]))

43

58. """
59. # Find number of averages used in coherence calculations:
60. # First check that the coherence data exists in this frequency range, fail if not.
61.
62. prelim = subprocess.check_output("ls -

l logs/MakeSFTs*.out | awk '{print $NF}'", shell=True).rstrip()
63. if prelim == None or prelim == "":
64. print("\n## ## ## LINE ANALYSIS FAILED FOR THIS DAY. ## ## ##\n")
65. return 1
66. prelim = prelim.split()
67. deg_of_freedom = len(prelim) * 2
68. print("Degrees of freedom = 2 * number of SFTs = 2 * number of averages : {0}".format(

deg_of_freedom))
69. #NOTE: Degrees of freedom = 2 * numSFTs = 2 * number of averages
70.
71. #print(stats.chi2.isf(probability_cutoff, deg_of_freedom))
72. cutoff = float(stats.chi2.isf(probability_cutoff, deg_of_freedom)) / float(deg_of_free

dom)
73. print("Normalized threshold power = {0}".format(cutoff))
74. count = 0
75. for num in data:
76. if num >= cutoff:
77. count += 1
78. print("Number of high power lines: {0}\n".format(count))
79. return count
80.
81. #############
82. # Main Code #
83. #############
84. def main():
85. print("\n## Starting execution at: " + str(datetime.now())[0:19] + " ##")
86. print("Start working directory: " + subprocess.check_output("pwd").rstrip() + "\n")
87.
88. parser = argparse.ArgumentParser(
89. description = "Find lines in Fscan spectrum data. \n"
90. "Uses chi2 statistics to find a threshold for statistically signific

ant "
91. "power levels in the spectra, and identifies days with unusually hig

h number of lines.")
92.
93. parser.add_argument("targetpath", type=str,
94. help="the path of the directory of daily fscan coherence data to b

e analyzed, e.g. "
95. "'/home/pulsar/public_html/fscan/H1/daily/H1Fscan_coherence/H

1Fscan_coherence'")
96. """
97. parser.add_argument("outputpath", type=str,
98. help="the output directory path, where results will be written to"

)
99. """
100. parser.add_argument("date", type=str,
101. help="month to be analyzed, formatted as yyyy_mm (e.g. '2020_02')"

)
102. parser.add_argument("probability_cutoff", type=float,
103. help="cutoff probability criteria for high-power lines")
104.
105. args = parser.parse_args() #Getting the paths, double-check their validity
106. targetpath = args.targetpath.rstrip()
107. #outputpath = args.outputpath.rstrip()
108. date = args.date.rstrip()
109. probability_cutoff = args.probability_cutoff
110.
111. print("Fscan spectra line finding script with chi2 statistics\n"
112. "Date target for this line counter: {0}\n"
113. "Cutoff probability criteria for high-

power lines: {1}\n".format(date, probability_cutoff))
114.
115. os.chdir(targetpath) # Going to the target directory
116. current_chan_path = subprocess.check_output("pwd").rstrip()

44

117. print("Current working directory: {0}\n".format(current_chan_path))
118.
119. date_list = get_channel_list(date)
120.
121. if targetpath[-1] == "/":
122. targetpath = targetpath[:-1]
123.
124. total_list = []
125. for day in date_list:
126. try:
127. total_list.append([day, analyze_channel("{0}/{1}/H1_GDS-

CALIB_STRAIN".format(targetpath,day), probability_cutoff)])
128. except:
129. print("## LINE ANALYSIS FAILED FOR: {0} ##\n".format(day))
130.
131. count_list = []
132. for pair in total_list:
133. count_list.append(pair[1])
134.
135. stdev = numpy.std(count_list)
136.
137. print("\nNumber of days with available data: {3}"
138. "\nAverage number of daily high-power lines in H1_GDS-

CALIB_STRAIN during {0}: {1}"
139. "\nStandard deviation in number of daily high-power lines: {2}"
140. "".format(date, numpy.mean(count_list), stdev, len(total_list)))
141.
142. print("\nHigh line density days during {0}:".format(date))
143. for pair in total_list:
144. if pair[1] >= numpy.mean(count_list) + 2 * stdev:
145. print("{0}, number of high-power lines = {1}".format(pair[0], pair[1]))
146.
147. print("\nEnd working directory: " + subprocess.check_output("pwd").rstrip())
148. print("## Ending execution at: " + str(datetime.now())[0:19] + " ##\n")
149.
150. if __name__ == "__main__":
151. main()

45

Appendix E: Sample Coherence Dictionary

Frequency dictionary for significantly coherent channels
Type of fscans: monthly
Date of fscans: fscans_2020_03_01_04_00_03_PST_Sun
Dictionary generated from output path:
/home/thomas.harris/public_html/fscan/sample_outputs/script_v4_samples/short_full_month_sample_202
0_03/
Number of unique channels in dictionary: 42

Based on provided arguments, this dictionary output:
- only lists band information, and does NOT contain a full
 frequency dictionary below the list of bands (argument output_cutoff == 'y')
- WILL NOT list the 60Hz band, even if it was significant (argument include_60Hz_band == 'n')
- WILL NOT list bands containing integer frequencies,
 even if those bands were significant (argument include_integer == 'n')

Criteria for two frequencies to be considered in a band is f1 - f2 <= 0.00277777777778 Hz.
This corresponds to a maximum of 5 frequency bins apart (argument band_cutoff == 5).

The average significant coherence threshold for these channels was 0.0186103583995.
The lowest significant coherence threshold was 0.0186103583995.
The highest significant coherence threshold was 0.0186103583995.

Frequency Dictionary Band Summary ##
Format: ##
[lowest band frequency] [highest band frequency] [bandwidth]
 [channel 1] [max channel 1 coherence in band]
 [channel 2] [max channel 2 coherence in band]
 (etc.)

0.599444 0.600556 0.001112
 H1_PEM-EX_MAG_EBAY_SEIRACK_X_DQ 0.0393
 H1_PEM-EY_MAG_EBAY_SEIRACK_X_DQ 0.0388
 H1_PEM-EY_MAG_EBAY_SEIRACK_Y_DQ 0.0342
 H1_PEM-EY_MAG_EBAY_SEIRACK_Z_DQ 0.0308
 H1_PEM-EY_MAG_EBAY_SUSRACK_Y_DQ 0.0324
 H1_PEM-EX_MAG_EBAY_SEIRACK_Y_DQ 0.0255
 H1_PEM-EX_MAG_EBAY_SEIRACK_Z_DQ 0.0251
 H1_PEM-EY_MAG_EBAY_SUSRACK_Z_DQ 0.0205

1.600000 1.600556 0.000556
 H1_PEM-EX_MAG_EBAY_SEIRACK_X_DQ 0.019

1.900000 1.900000 0.000000
 H1_PEM-EX_MAG_EBAY_SEIRACK_X_DQ 0.0235

3.235000 3.235000 0.000000
 H1_PEM-EX_MAG_EBAY_SUSRACK_Y_DQ 0.0192

3.260000 3.260000 0.000000
 H1_PEM-EX_MAG_EBAY_SUSRACK_Y_DQ 0.021

3.264444 3.268333 0.003889
 H1_PEM-EX_MAG_EBAY_SUSRACK_Y_DQ 0.0213

3.274444 3.274444 0.000000
 H1_PEM-EX_MAG_EBAY_SUSRACK_Y_DQ 0.0238

3.283333 3.283889 0.000556
 H1_PEM-EX_MAG_EBAY_SUSRACK_Y_DQ 0.0233

3.289444 3.290556 0.001112
 H1_PEM-EX_MAG_EBAY_SUSRACK_Y_DQ 0.0265

46

3.293889 3.333333 0.039444
 H1_PEM-EX_MAG_EBAY_SUSRACK_Y_DQ 0.0408
 H1_PEM-CS_MAG_EBAY_LSCRACK_X_DQ 0.0214

3.336667 3.662222 0.325555
 H1_PEM-EX_MAG_EBAY_SUSRACK_Y_DQ 0.0511
 H1_PEM-CS_MAG_EBAY_LSCRACK_X_DQ 0.2604
 H1_PEM-EX_MAG_EBAY_SUSRACK_X_DQ 0.028
 H1_PEM-CS_MAG_EBAY_LSCRACK_Y_DQ 0.0208
 H1_PEM-CS_MAG_EBAY_LSCRACK_Z_DQ 0.0441
 H1_PEM-EY_MAG_EBAY_SUSRACK_Y_DQ 0.0216
 H1_PEM-EX_SEIS_VEA_FLOOR_Z_DQ 0.0253

3.666667 3.674444 0.007777
 H1_PEM-EX_MAG_EBAY_SUSRACK_Y_DQ 0.0187
 H1_PEM-CS_MAG_EBAY_LSCRACK_X_DQ 0.037

[FILE BREAK INSERTED]

11.370560 11.370560 0.000000
 H1_PEM-EX_MAG_EBAY_SUSRACK_Z_DQ 0.0218

11.380560 11.386110 0.005550
 H1_PEM-EX_MAG_EBAY_SUSRACK_Z_DQ 0.0252

11.393890 11.395560 0.001670
 H1_PEM-EX_MAG_EBAY_SEIRACK_X_DQ 0.0509
 H1_PEM-EX_MAG_EBAY_SEIRACK_Z_DQ 0.0547
 H1_PEM-EX_MAG_EBAY_SUSRACK_X_DQ 0.0263
 H1_PEM-EX_MAG_EBAY_SUSRACK_Y_DQ 0.0546
 H1_PEM-EX_MAG_EBAY_SUSRACK_Z_DQ 0.0436
 H1_PEM-EX_MAG_VEA_FLOOR_Y_DQ 0.034
 H1_PEM-EX_TILT_VEA_FLOOR_T_DQ 0.0608
 H1_PEM-EX_MAG_EBAY_SEIRACK_Y_DQ 0.0213

11.422780 11.422780 0.000000
 H1_PEM-EX_MAG_EBAY_SUSRACK_Z_DQ 0.0198

11.436670 11.440000 0.003330
 H1_PEM-EX_MAG_EBAY_SUSRACK_Z_DQ 0.0197

[FILE BREAK INSERTED]

99.646670 99.646670 0.000000
 H1_PEM-EX_MAG_EBAY_SUSRACK_X_DQ 0.0222
 H1_PEM-EX_MAG_EBAY_SUSRACK_Z_DQ 0.0198

99.744440 99.744440 0.000000
 H1_PEM-EX_TILT_VEA_FLOOR_T_DQ 0.0225

99.958330 99.993330 0.035000
 H1_PEM-EY_MAG_EBAY_SEIRACK_Y_DQ 0.4767
 H1_PEM-EY_MAG_EBAY_SUSRACK_X_DQ 0.4749
 H1_PEM-EY_MAG_EBAY_SUSRACK_Y_DQ 0.4726
 H1_PEM-EY_MAG_EBAY_SUSRACK_Z_DQ 0.477
 H1_PEM-EY_MAG_EBAY_SEIRACK_X_DQ 0.4755
 H1_PEM-EY_MAG_EBAY_SEIRACK_Z_DQ 0.4721
 H1_PEM-EY_TILT_VEA_FLOOR_T_DQ 0.45
 H1_PEM-EX_MAG_EBAY_SEIRACK_X_DQ 0.8447
 H1_PEM-EX_MAG_EBAY_SEIRACK_Z_DQ 0.8375
 H1_PEM-EX_MAG_EBAY_SUSRACK_X_DQ 0.8148
 H1_PEM-EX_MAG_EBAY_SUSRACK_Y_DQ 0.8337
 H1_PEM-EX_MAG_EBAY_SUSRACK_Z_DQ 0.8433
 H1_PEM-EX_TILT_VEA_FLOOR_T_DQ 0.8386
 H1_PEM-EX_MAG_EBAY_SEIRACK_Y_DQ 0.5699
 H1_PEM-EX_MAG_VEA_FLOOR_Y_DQ 0.7116
 H1_PEM-EY_MAG_VEA_FLOOR_X_DQ 0.0996
 H1_PEM-EY_MAG_VEA_FLOOR_Z_DQ 0.0784
 H1_PEM-EY_TILT_VEA_FLOOR_Y_DQ 0.1661

47

 H1_PEM-EX_MAG_VEA_FLOOR_Z_DQ 0.5674
 H1_PEM-EX_MAG_VEA_FLOOR_X_DQ 0.4199

99.998330 99.998890 0.000560
 H1_PEM-CS_MAG_EBAY_LSCRACK_X_DQ 0.0707
 H1_PEM-CS_MAG_EBAY_LSCRACK_Y_DQ 0.0715
 H1_PEM-CS_MAG_EBAY_LSCRACK_Z_DQ 0.0712
 H1_PEM-CS_MAG_LVEA_VERTEX_Y_DQ 0.0703
 H1_PEM-CS_TILT_LVEA_VERTEX_T_DQ 0.0721
 H1_PEM-CS_TILT_LVEA_VERTEX_Y_DQ 0.0395
 H1_PEM-EX_MAG_EBAY_SEIRACK_Y_DQ 0.0529
 H1_PEM-EX_MAG_EBAY_SEIRACK_Z_DQ 0.0437
 H1_PEM-EY_MAG_EBAY_SEIRACK_Y_DQ 0.052
 H1_PEM-EY_MAG_EBAY_SEIRACK_Z_DQ 0.0633
 H1_PEM-CS_MAG_LVEA_VERTEX_Z_DQ 0.0195
 H1_PEM-CS_TILT_LVEA_VERTEX_X_DQ 0.0224
 H1_PEM-EX_MAG_EBAY_SEIRACK_X_DQ 0.0187
 H1_PEM-EY_MAG_EBAY_SEIRACK_X_DQ 0.0279

48

Appendix F: Sample H1L1 Coherence Data

Figure 14: Sample Hanford-Livingston daily coherence data; Feb. 5, 2020 [20]

Figure 15: Sample Hanford-Livingston daily coherence data; Feb. 10, 2020 [20]

49

Figure 16: Sample Hanford-Livingston daily coherence data; Feb. 27, 2020 [20]

Figure 17: Sample Hanford-Livingston monthly Fscan output page [20]

50

Appendix G: Sample Line Density Tracking Output

Start working directory: /home/thomas.harris

Fscan spectra line finding script with chi2 statistics
Date target for this line counter: 2020_02
Cutoff probability criteria for high-power lines: 1e-06

Current working directory:
/home/pulsar/public_html/fscan/H1/daily/H1Fscan_coherence/H1Fscan_coherence

Current directory:
/home/pulsar/public_html/fscan/H1/daily/H1Fscan_coherence/H1Fscan_coherence/fscans_2020_02_01_17_0
0_02_PST_Sat/H1_GDS-CALIB_STRAIN
Spectrum data obtained from spec_0.00_100.00_H1_1264554020_1264640420.txt.
Degrees of freedom = 2 * number of SFTs = 2 * number of averages : 86
Normalized threshold power = 1.8985771655
Number of high power lines: 1118

Current directory:
/home/pulsar/public_html/fscan/H1/daily/H1Fscan_coherence/H1Fscan_coherence/fscans_2020_02_02_17_0
0_02_PST_Sun/H1_GDS-CALIB_STRAIN
Spectrum data obtained from spec_0.00_100.00_H1_1264640420_1264726820.txt.
Degrees of freedom = 2 * number of SFTs = 2 * number of averages : 94
Normalized threshold power = 1.85204839777
Number of high power lines: 1381

Current directory:
/home/pulsar/public_html/fscan/H1/daily/H1Fscan_coherence/H1Fscan_coherence/fscans_2020_02_03_17_0
0_02_PST_Mon/H1_GDS-CALIB_STRAIN
Spectrum data obtained from spec_0.00_100.00_H1_1264726820_1264813220.txt.
Degrees of freedom = 2 * number of SFTs = 2 * number of averages : 86
Normalized threshold power = 1.8985771655
Number of high power lines: 1269

[FILE BREAK INSERTED]

Current directory:
/home/pulsar/public_html/fscan/H1/daily/H1Fscan_coherence/H1Fscan_coherence/fscans_2020_02_28_17_0
0_02_PST_Fri/H1_GDS-CALIB_STRAIN
Spectrum data obtained from spec_0.00_100.00_H1_1266886820_1266973220.txt.
Degrees of freedom = 2 * number of SFTs = 2 * number of averages : 66
Normalized threshold power = 2.05475058954
Number of high power lines: 1012

Current directory:
/home/pulsar/public_html/fscan/H1/daily/H1Fscan_coherence/H1Fscan_coherence/fscans_2020_02_29_17_0
0_02_PST_Sat/H1_GDS-CALIB_STRAIN
Spectrum data obtained from spec_0.00_100.00_H1_1266973220_1267059620.txt.
Degrees of freedom = 2 * number of SFTs = 2 * number of averages : 96
Normalized threshold power = 1.84143304522
Number of high power lines: 1089

Number of days with available data: 29
Average number of daily high-power lines in H1_GDS-CALIB_STRAIN during 2020_02: 1130.24137931
Standard deviation in number of daily high-power lines: 147.810376

High line density days during 2020_02:
fscans_2020_02_09_17_00_02_PST_Sun, number of high-power lines = 1492

End working directory:
/home/pulsar/public_html/fscan/H1/daily/H1Fscan_coherence/H1Fscan_coherence/fscans_2020_02_29_17_0
0_02_PST_Sat/H1_GDS-CALIB_STRAIN

51

Bibliography

[1] K. Riles, "Gravitational Waves: Sources, Detectors and Searches," Progress in Particle

and Nuclear Physics, vol. 68, 2013.

[2] W. R. Johnston, "Gravitational wave-related images," 1 April 2005. [Online].

Available: http://www.johnstonsarchive.net/relativity/pictures.html.

[3] K. S. Thorne, "Gravitational Radiation -- A New Window Onto the Universe," Reviews

in Modern Astronomy, vol. 10, 1997.

[4] LIGO Scientific Collaboration and Virgo Collaboration, "Observation of Gravitational

Waves from a Binary Black Hole Merger," Phys. Rev. Lett., vol. 116, 2016.

[5] LIGO Scientific Collaboration and Virgo Collaboration, "GWTC-1: A Gravitational-

Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo

during the First and Second Observing Runs," Phys. Rev. X, vol. 9, 2019.

[6] LIGO Scientific Collaboration and Virgo Collaboration, "GraceDB — Gravitational-

Wave Candidate Event Database," [Online]. Available: https://gracedb.ligo.org/latest/.

[Accessed 12 May 2020].

[7] S. Ghonge, K. Jani, LIGO, VIRGO and G. Tech, "O1/O2 Catalog," 2018. [Online].

Available: https://www.ligo.org/detections/O1O2catalog.php. [Accessed 8 May 2020].

[8] LIGO Scientific Collaboration, "Instrument Science White Paper," 6 November 2019.

[Online]. Available: https://dcc.ligo.org/LIGO-T1900409/public.

[9] J. Kissel, "aLIGO Seismic Isolation and Suspensions Cartoon," 13 November 2017.

[Online]. Available: https://dcc.ligo.org/LIGO-G1200071/public. [Accessed 8 May

2020].

[10] M. Tse, V. Roma, T. Hardwick and P. Nguyen, "PEM Channel Info," May 2019.

[Online]. Available: http://pem.ligo.org/channelinfo/index.php. [Accessed 8 May 2020].

[11] J. McIver and L. Nuttall, "2019-2020 LIGO DetChar white paper draft," 2019. [Online].

Available: https://dcc.ligo.org/LIGO-T1900369.

[12] G. Mendell, "Introduction To Signal Processing," 2012. [Online]. Available:

https://dcc.ligo.org/LIGO-G1200759.

[13] G. Mendell and M. Landry, "StackSlide and Hough Search SNR and Statistics," 2005.

[Online]. Available: https://dcc.ligo.org/LIGO-T050003/public.

[14] LIGO Scientific Collaboration and Virgo Collaboration, "Gravitational Wave Open

Science Center Plot Gallery," [Online]. Available: https://www.gw-

openscience.org/plot_gallery/. [Accessed May 2020].

[15] LIGO Scientific Collaboration, "Fscan Monthly Coherence Navigation," [Online].

Available: https://ldas-jobs.ligo-

wa.caltech.edu/~pulsar/fscan/H1/monthly/H1Fscan_coherence/fscanNavigation.html.

[Accessed 8 May 2020].

52

[16] LIGO Detector Characterization Working Group, "LIGO Channel Lists," 2019.

[Online]. Available: https://git.ligo.org/duncanmmacleod/ligo-channel-lists/-

/tree/master/O3.

[17] G. Mendell, "Significance of the Magnitude Squared Coherence," 4 March 2013.

[Online]. Available: https://dcc.ligo.org/LIGO-G1300070.

[18] E. Goetz et al., "aLIGO-lines-combs/O3," [Online]. Available:

https://git.ligo.org/CW/instrumental/aLIGO-lines-combs/-/tree/master/O3.

[19] G. Mendell and T. Harris, "Fscan H1L1 Daily Coherence," [Online]. Available:

https://ldas-jobs.ligo-wa.caltech.edu/~pulsar/fscan/H1/daily/H1L1Fscan_coherence/.

[20] G. Mendell and T. Harris, "Fscan H1L1 Monthly Coherence Navigation," [Online].

Available: https://ldas-jobs.ligo-

wa.caltech.edu/~pulsar/fscan/H1/monthly/H1L1Fscan_coherence/fscanNavigation.html.

[21] T. Harris, "Fscan," 12 May 2020. [Online]. Available: https://ldas-jobs.ligo-

wa.caltech.edu/~thomas.harris/fscan/.

[22] G. Mendell and T. Harris, "Fscan Coherence Report for O3," 8 May 2020. [Online].

Available: https://dcc.ligo.org/G2000677.

[23] E. Cuoco et al., "Enhancing Gravitational-Wave Science with Machine Learning,"

2020. [Online]. Available: arXiv:2005.03745.

[24] M. Zevin et al., "Gravity Spy: Integrating Advanced LIGO Detector Characterization,

Machine Learning, and Citizen Science," Classical and Quantum Gravity, vol. 34,

2017.

	Acknowledgements
	Abstract
	List of Figures
	Chapter 1 Introduction and Background
	Gravitational Waves
	The LIGO Detectors
	Signal Processing and Fscan

	Chapter 2 Data Mining Projects
	High Coherence Dictionary
	Hanford-Livingston Coherence Investigations
	High-Power Line Density Tracker

	Appendix A: fscan_coherence_analyzer.py
	Appendix B: script_modmultidayfscan.py
	Appendix C: segment_intersector.py
	Appendix D: fscan_lines.py
	Appendix E: Sample Coherence Dictionary
	Appendix F: Sample H1L1 Coherence Data
	Appendix G: Sample Line Density Tracking Output
	Bibliography

