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Abstract

Gravitational wave detectors are extremely sensitive instruments, as gravita-
tional waves provide very subtle effects. Due to this sensitivity, the detectors
are very sensitive to environmental noise, including magnetic noise. This the-
sis investigates the effects of magnetic field noise in the LIGO detectors, as
measured by magnetometers located close to the LIGO observatories. In this
analysis, we conduct broken power law fits to the coupling (transfer function) of
the magnetic field to the LIGO detector’s strain channel and track the behavior
of the fits over time, during the LIGO third observation run.



1 Introduction

A gravitational wave far from its source can be approximated as a time-
dependent perturbation of the space-time metric. These perturbations can be
expressed as a pair of dimensionless strain polarization h+ and h×. The Ad-
vanced LIGO detectors are multi-kilometer Michelson-based interferometers,
and act as a transducer to convert the space-time perturbations into measur-
able signals. The mirrors in the interferometer act as ’freely falling’ test masses.
The Advanced LIGO detectors measure linear differential displacement along
the arms, which is proportional to the gravitational-wave strain amplitude [1].
The differential displacement is defined by

∆L = δLx − δLy (1)

where Lx = Ly = L are the lengths of two orthogonal interferometer arms. The
gravitational-wave strain and the displacement in the interferometer arms are
related by

∆L = hL (2)

where h is a linear combination of h+ and h× [1].
Figure 1 shows a schematic of the Advanced LIGO interferometers. To

measure the distortion of space-time between the interferometer arms, the test
masses are used as coordinate reference points. Since gravitational waves pro-
duce very small displacements in the interferometer, it is necessary for the mir-
rors to be free from environmental disturbances [1].Of particular interest to this
paper is the magnetic noise, which is the most relevant at frequencies below
100Hz. [1].

2 Schumann Resonances and Magnetic-Field Noise

In order to reject transient environmental disturbances, coincident detection
between the LIGO detectors is used. One interesting source of environmental
noise is created by magnetic noise transients caused by electromagnetic dis-
charges in the Earth’s atmosphere [2] which can induce correlations between
geographically displaced locations, such as the LIGO observatories in Hanford,
WA and Livingston, LA. These correlated magnetic noises, such as the Schu-
mann resonances, induce forces on the magnetically susceptible materials in the
test mass suspension system, and over time, can create systematic errors in the
Stochastic Gravitational Wave Background (SGWB) search. [2] [3].

The Schumann resonances are characteristic structures in the Earth’s elec-
tromagnetic spectrum [2]. These resonances are extremely low frequency (ELF)
electromagnetic waves propagating around the Earth and can create globally
coherent magnetic fields. This can lead to correlated noise in the LIGO detec-
tors, leading to a systematic error in the SGWB search.

The main source of ELF waves in the Earth-ionsphere waveguide are nega-
tive cloud-to-ground lightning discharges. On Earth, about one thousand storm
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Figure 1: Schematic of the Advanced LIGO detector’s interferometer.[1]
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Figure 2: Locations of the magnetometers across the detectors. V1 is the
Virgo detector, and its coordinates in the (x,y) interferometer system are (80,-
72)m. L1 and H1 are the Livingston and the Hanford detectors, respectively at
(120,3000)m and (1030,195)m. Lastly, K1 is the KAGRA detector, located at
(400,-600)m[3].

cells are constantly active, and generate around 50 negative cloud-to-ground
discharges per second. The lightning discharge radiates electromagnetic waves
which propagate around the world and interfere with each other. This results
in the atmospheric noise spectrum having a resonant character. This was first
predicted by W. O. Schumann in 1952. He solved the field equations in the
spherical Earth-ionsphere cavity built of the perfectly conducting ground and
the ionsphere. He obtained certain eigenfrequencies, which were later measured
for the first time in 1960 [2]. The Schumann resonance peaks are relatively
wide, and occur at at 8, 14, 21, 27 and 32 Hz [3], frequencies in (or near) the
most sensitive band of LIGO detectors. We must then study the effect of the
Schumann resonances in gravitational wave detectors.

With that in mind, LIGO, VIRGO and KAGRA scientists placed magne-
tometers at strategic locations around their observatory sites. Figure 2 shows
the locations of the magnetometers with respect to their observatories [3]. The
magnetometers are located in strategic places around the observatory sites, and
are close to the test-masses. The magnetic-field measurements are made in
the three Cartesian directions, with x and y being defined by the interferometer
arms, and the z-direction is normal to the Earth’s surface. The presence of metal
in the buildings that house the detectors distorts the field direction and allows
for observation of the Schumann magnetic field in the z directed magnetometers
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as well [2].
Both the LIGO and Virgo magnetometers are broadband induction coil mag-

netometers, and are designed to measure the variations of the Earth’s magnetic
field. They are placed close enough to measure the same Schumann resonances
the detectors do, but are far enough that they are not sensitive to local magnetic
noise. With that said, it is easy to see the importance of computing magne-
tometer correlations with gravitational-wave detector data to measure the effect
from Schumann resonances [3].

3 Measuring the Historical Values of the Mag-
netic Coupling Functions

To estimate how magnetic fields couple into the interferometers, we can per-
form ”physical environmental monitoring injections” (PEM injections). Such
coupling estimates can be combined with measurements of the correlation of
the magnetic fields on long distance scales to give an idea of the correlated
strain noise level expected between widely separated interferometers [4].

The magnetic coupling measurements are made by LIGO commissioners on
site by generating large magnetic fields in various locations around the interfer-
ometers. These fields can couple into the strain channel. According to Meyers
[4], there are two coupling mechanisms that are likely to happen:

1. Coupling to the magnets on the second-to-last stage of the quadrupole
pendulum suspensions for the test masses.

2. Coupling through electronics.

The large magnetic fields are generated at a specific set of frequencies, which
allow us to measure the coupling. The fields then couple into the strain channel
and can be seen as lines in the strain spectrum. The magnetic coupling can then
be calculated by taking the ratio of the peak seen in the strain channel with the
peak seen in a magnetometer inside the building where the injection was made.
Several magnetometers will observe the peak, and the magnetometer which sees
the largest peak is the one used for the coupling measurements of the injection
[4].

This gives a coupling ratio between the the magnetic field and the detector,
which is the coupling/transfer function. In this thesis, we aimed to measure the
power-law index of the magnetic coupling functions. Since we only had data
from the Hanford observatory (LHO), we set to determine the broken power-law
indexes α1 and α2 from the following model:

T (f) = a
( f
f1

)α1

for f < fknee (3)

T (f) = b
( f

fknee

)α2

for f > fknee (4)
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where α1 is the power-law index of the first slope, α2 is the power-law index of
the second slope, f is the frequency, f1 is an arbitrary frequency, fknee is the
frequency in which the power-law breaks and both a and b are normalization
factors. We then set out to create a python code which would estimate three
different parameters α1, α2 and fknee. The parameters will be described below
in more detail, as well the process of conducting the broken power-law fit. Addi-
tionally, it is important to point out that the broken power-law is a continuous
function, and both fits must agree at fknee.

The first step in the analysis is to remove the large spectral features of the
magnetic spectrum. Once the large spectral features are removed, we check
if there were any glitches in the data. To do that, background data is taken
before and after the PEM injections. Since the injection in the gravitational
wave channel is visible only below 100Hz, there should not be large changes at
frequencies above 100 Hz. Therefore, in the bands above 100Hz, we check if the
added noise is above the statistical fluctuations of the detector noise. If there
is no elevated noise at frequencies above 100Hz, then this indicates there is no
glitch in the data.

Once those two steps are done, we conduct two least-squares fits to obtain
the transfer function. The first fit finds parameters for the normalization factor
a, the power-law index α1 and the breaking frequency fknee. The normalization
factor a is defined as the value of the transfer function at f1. The transfer
function itself is independent of the frequency we choose for f1, so we can pick
any arbitrary frequency. In this analysis, we chose f1 to be 20Hz. Once that is
done, we write the normalization factor b as a function of the other variables.
By doing this, we ensure that the transfer function is continuous and that both
fits agree at the fknee value. The second fitting finds the values of α2 and fknee.
Essentially, fknee is found by the joint fit of both equations. The residuals are
then calculated, allowing us to find which parameter value produces the smallest
residual between the fit and the data. We end up minimizing the residuals given
by

R =
∑
i

(
Tfit(fi) − Tdata(fi)

Tdata(fi)

)2

(5)

where R is the residual value, Tfit the transfer function values obtained using
Eqs. 3 and 4, Tdata is the measured transfer function during a PEM injection,
and fi is is the frequency. We used scipy’s function least squares() which chi-
squared minimization routine that allow us to find the parameter combination
that minimizes R. Once such parameters are found, we produce a plot of the all
data from previous injections, up to the date being analyzed. This allows us to
check if the fitting is also a good estimate for other PEM injections. Figure 3
shows the least squares fit done on the transfer function of the injection done on
03/09/2019. On top of showing the fit, Figure 3 also shows the data collected
from all other injections done up until 03/09/2019. The first slope is α1, and
the second slope is α2. The frequency in which the slope changes its value is
what we call fknee. The large spectral peaks seen under 100Hz, are the peaks we
remove before fitting the data. It is important to note that the fit is done only
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Figure 3: Plot of the weekly magnetic coupling measurement of the LVEA
broad injection on 09/03/19. The plot shows the least squares fit as well the
measurements from previous weeks.

on the data of the injection being analyzed (in this case, this was the injection
done on 03/09/2019).

4 Results and Conclusion

After analyzing over 25 dates, we obtained that the mean value for α1 was
of -3.4 ± 0.2. Meyers [4] estimated that the power-law index value α1 would be
-3.55, which is within 0.74σ of the value we obtained. The mean value for α2

obtained was of 2.5 ± 2.2, and the mean value of fknee was (62.5 ± 8.63) Hz.
Figures 4, 5 and 7 show the historical values of α1, α2 and fknee respectively. By
looking at Figure 4 we can see that the α1 values increased over time, but stayed
in a range between -3.77 and -3.14. In Figure 5, we see that the values for α2

had a slight increase and its values were between -0.14 and 8.62. Additionally,
by looking at Figure 5 we can see that only a few of the injections had an α2

value above 4. Figure 6 is a plot of the magnetic coupling vs. frequencies for a
date in which α2 was 8.62. It appears that the fit at high frequencies was not
very good. Therefore large values of α2 should be used with caution. Lastly, as
shown in Figure 7, the fknee values also increased over time, and stayed in the
range between 46.7 Hz and 77.6 Hz.

Going forward, it will be important to conduct Lorentzian fits of the large
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Figure 4: Historical values of α1.
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Figure 5: Historical values of α2.
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Figure 6: Plot of the weekly magnetic coupling measurement of the LVEA
broad injection on 02/04/20. The plot shows the least squares fit as well the
measurements from previous weeks.
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Figure 7: Historical values of the frequencies in which the power-law broke.
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spectral features of the magnetic spectrum, so that we can obtain their am-
plitude, quality factor, and central frequency. Once this is obtained, we can
include narrow band features of the transfer function in the fit in addition to
the broken power-law. Moreover, it will be extremely important to conduct
PEM injections in the other gravitational-wave observatories, so we can obtain
more accurate results of the power-law indices of the coupling functions. This
will be crucial to determine the influence of the Schumann resonances in the
LIGO, VIRGO and KAGRA detectors.
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