
Implementing New Veto Analysis Methods in the
PyCBC Search for Compact Binary Coalescences

LIGO Caltech SURF Program 2020, Mentor: Derek Davis

Brina Martinez1

1University of Texas Rio Grande Valley, Brownsville, TX 78520, USA

E-mail: brina.martinez@ligo.org

Abstract. The PyCBC search pipeline has been used since the first detection
made by LIGO and continues to be used today in the search for gravitational
waves. PyCBC runs a matched-filtering and chi-squared (χ2) test to determine
significant signal-to-noise ratios and compares triggers to previously modeled
templates. With current methods of veto analysis which aim to remove and
mitigate the effects of glitches with terrestrial origin in the PyCBC search
for gravitational waves the possible removal of a hidden signal, a decrease in
significance of signals, and a decrease in volume of searches from both strong
and weak signals can be seen. To tackle these issues we will be testing veto
methods based on multiple tools which include Gravity Spy, Hveto, and iDQ.
We will analyze how simulated signals are recovered and calculate the change in
background and sensitivity of the search. At this stage of our work we have focused
on understanding how a few parts of PyCBC work, likelihood probabilities,
reading in data and interpreting the results of our plots.



2

1. Introduction/Background

The Laser Interferometer Gravitational-Wave Observatory (LIGO) [1] discovered gravita-
tional waves (GW) with the first detection of a binary black hole (BBH) collision, GW150914
[2]. Since then, there have been three separate observing runs along with detector improve-
ments that have increased the rate of detections to multiple times per week in the third
observing run (O3). So far, 14 confident detections have been announced [3][4][5].

The PyCBC pipeline has been used since the first detection made by LIGO [6].
PyCBC identifies GW events that are produced by compact binary coalescences (CBCs)
and determines how significant each event is as compared to the noise in the detectors.
PyCBC uses matched filtering to compare the data against templates that model what GW
detection should look like and re-weighs the relationship with the estimated power spectral
density (PSD) of the detectors involved. Matched filtering also calculates the signal-to-noise
ratio (SNR) of our templates. PyCBC then uses a χ2 test to filter our SNR and remove
triggers that do not match our templates very well. PyCBC also uses gating, coincidence
tests, and measures the false alarm rate (FAR) of recorded events [7]. PyCBC’s time-slides
method identifies and compares triggers from the two detectors. A detection seen by both
LIGO detectors can help us calculate a network SNR in which we can determine our FAR.
A significant FAR can help us determine the likelihood of seeing our detection again within
the same network SNR, so if our FAR is decreased the less chance our detection is due to
terrestrial noise.

With the amount of triggers that are produced by matched filtering, we can sometimes
find loud glitches that are short in duration sneak across data quality tests. This results
in a decrease in search sensitivity through two mechanisms, dead-time and ringing of the
match filter [7][8]. As detections become more frequent, the quality and confidence of these
detections needs to increase. This project, if successful, will be automated and implemented
in the PyCBC search pipeline along future observation runs by LIGO as a data quality tool
to improve the search for GWs.

2. Objectives

The goals for this project in assessing Data Quality (DQ) flags include:

• Producing a veto analysis method to remove as many glitches as possible from the data
to increase the significance of signals.

• Making sure to remove as little time (data) as possible to reduce the chance of
accidentally removing a gravitational wave signal.

• Be able to apply the new veto methods to PyCBC triggers and calculate an improved
change in background and sensitivity of the search.

We will evaluate how the probability and distribution of triggers change with respect to
time and how we can focus on the times that are interesting to improve PyCBC. We will
also analyze how the PyCBC search responds to different configurations and DQ flags. This
includes working with tools which include Gravity Spy [9], Hveto [10], and iDQ [11] to develop
data quality flags and vetoes. Once we see an improvement in searches, we will know which
direction we should continue to follow.

3. Work Plan/Schedule

From the beginning of this project until now a few changes in the timeline have occurred
regarding steps we will take to tackle our goals and when we will take them and that is due
to a better understanding of where we are currently with investigations and how they are
flowing.



3

Before official start date: Watch videos and read papers to familiarize myself with the
background of PyCBC, Hveto, data quality, and anything pertaining to our main goal.

Weeks 1-2: Become familiar with using PyCBC and importing data and learn to
recognize first hand how to analyze plots, and figure out what needs to be improved when
necessary. We will work on tutorials regarding the parameters PyCBC works with such as
likelihood, FAR, and SNR significance.

Weeks 3-4: We will continue to work on tutorials to understand data and begin practicing
the use of DQ flags. We will produce plots needed to analyze results and work on the interim
report.

Weeks 5-6:We will begin to develop vetoes, both source-specific and non-binary. We will
begin working more directly with the PyCBC pipeline.

Weeks 7-8: We will begin to evaluate our VT and implement iDQ. We will utilize work
from previous weeks and decide whether or not techniques were effective and continue to
apply methods and run tests.

Weeks 9-10: I will produce a final report that includes the nature of our project and
its objectives, the methods we implemented, any figures that are related to our testing and
results followed by references and acknowledgements. Produce a final presentation that will
be 15 minutes and includes information on the project and why it is important, methods
we implemented and how we did them, and finally the results obtained and ideas for future
work. Acknowledgements included at the end.

4. Progress/current work

The first few weeks of the SURF program I worked on becoming familiar with PyCBC,
statistics, data quality, and other parameters that relate to our goals. This includes learning
how to understand the data I produce such as plots and how to apply small details into the
overall project.

4.1. Understanding PyCBC time-slides and Data Quality flags

Before my official start date in June I familiarized myself with PyCBC by practicing a tutorial
that uses match-filtering, DQ flags, and time slides to remove glitches and reveal hidden
signals. Time-slides work by sliding data from one detector against data of the other in our
case the Hanford (H1) and Livingston (L1) detectors. We check for coincidences between the
two. If a gravitational wave is present in both detectors our time-slides would help in finding
detector specific glitches and coincident data that would occur at different times at both
detectors, helping us make sure we do not remove our signal. DQ flags are segments of time
singled out that contain glitches we do not want. When we identify these glitches we are then
able to reduce their impact on the search and make our signal more significant. There are
different ways we can set up a DQ flag and choose how we want to single them out but in this
investigation we will be looking at our whitened auxiliary data above a threshold and within
windows of time segments to identify our peaks. In this investigation I am analyzing a data
set that includes simulated random Gaussian noise that is recolored to mimic noise properties
we could find in either one of the LIGO detectors. The data includes three different types of
injections to analyze:

• Simulated sine-Gaussian bursts, which are similar to common, short duration glitches
present in LIGO data.

• Simulated gravitational-wave signals with a limited bandwidth, to represent a ’worst
case scenario’ glitch.

• Simulated gravitational-wave signal, which we will be trying to identify from our filtering
and DQ flags.



4

In this tutorial we want to not only calculate a significant signal but also calculate a significant
FAR.

Figure 1 shows whitened auxiliary data which include our signal along with glitches
that have very high significance and loud SNR’s. From the time series, we are able to pick
a threshold and window size we believe will identify peaks and correlate them with our DQ
flags. Once we apply our DQ flags, threshold, and windows to the time series we are able to
generate time-slides, re-plot our original data, and compare it to the original curve that does
not contain our DQ flags. After applying our DQ flag, we can see our signal becomes louder

Figure 1: In the plot we are able to see a time series containing data with glitches
and a signal which we are not able to tell apart. To help our signal SNR
become more significant than the SNRs of our glitches we applied DQ flags
and used time-slides that PyCBC uses to find coincidences between the data
from our two detectors H1 and L1. We then established a threshold where
the whitened auxiliary data is above the value we choose, and we establish
windows to highlight those peaks, making sure not to highlight our signal. Our
results compare our data before and after using the DQ flags and time slides
and we can see a significant increase in significance for our signal compared to
the background. In the time series we can see blue bars highlighting the peaks
we want to remove without highlighting our signal which is also a significant
peak. In the SNR vs FAR plot we can see our original background in orange
that was extremely loud compared to our signal and our new background in
black that significantly reduced and made our signal the loudest part of our
data. Our original FAR was 0.3526 per hour. After applying our time-slides
and DQ flags our FAR is now 0.0319 per hour, significantly lower.

than any of the glitches and background.

4.2. Understanding Likelihood

In my first week of SURF I ran an investigation to familiarize myself with how likelihood
functions work and how it looks given PyCBC data. Likelihood shows us the probability of



5

how often an outcome, which we can label x, is expected to occur in a given model, which
we can label θ.

L(θ | x) = pθ(x) (1)

This outcome can occur frequently given our model, giving us a high likelihood or can be
very unlikely to occur, giving us a low likelihood. Likelihood is important for determining the
odds of our data. When we know the odds we can further use them to determine the ranking
statistic and calculate the FAR as an output. For this investigation we wanted to compare
the likelihood of astrophysical vs random noise at a given SNR. We begin by plotting our
two data sets and making sure they are normalized and carry the same SNR model, we then
calculate them against each other as pictured in Figure 2 revealing the SNRs that are more
likely to contain astrophysical or random noise. As our SNR increases, we begin to see our
astrophysical noise is more likely to occur.

Figure 2: In the plot we are able to see areas where our astrophysical data which is shown
in blue or random noise data which is shown in orange has more likelihood
of occurring depending on the SNR. We are able to see that above log SNR2

= 1.2 our likelihood ratio is in favor of being astrophysical. In between log
SNR2 0.5 and 1.0 we see that our random noise has a higher likelihood.

4.3. Understanding how to work with hdf5 files

In my second week of SURF I worked on a learning to read data from Hdf5 files. Hdf5 files are
great for holding large amounts of data and store the data in a hierarchical format which uses
folders in folders and layers like a directory. In this investigation I looked at data from L1
containing different parameters such as SNR, template duration, end times, and χ2 degrees
of freedom, to name a few. With hdf5 files you can read into what are called different keys
or folders until you reach the end of a folder that contains no more groups of sub folders and
only contains data sets and we are able to work with the data sets by converting them into
a numpy array. For our first plot we wanted to analyze an interesting region of end times vs
SNR. We filtered our data sets by zooming into regions that most of our triggers were located
and SNR was significant. In Figure 3’s right plot we can see there are interesting triggers
located below the SNR = 5.25 threshold and different time periods with varying amounts of
triggers. A reason we might see this threshold is due to our pipeline: certain consistency tests
only focus on triggers with SNR > 5.25, which is why only those below that value remain.
To further evaluate the triggers we applied a χ2 filter which works as a consistency test to



6

Figure 3: In the plots above we accessed data from an hdf5 file containing triggers from
L1. In the left plot the first thing we noticed was the defined threshold line
created by our pipeline showing us which SNRs carry more triggers. In the
plot we can see that SNRs > 5.25 contain a majority of the triggers we want
to look at. We are able to analyze how different variations among these SNRs
vs time contain more or fewer triggers and use this to understand our data
better. In the right plot we used a χ2 filter to measure which SNRs fit our
model well and down weighed SNRs that did not fit well. We can see this
gave us a better view of our triggers and we can evaluate them even further
by applying more filters and use our new SNR to rank significance.

measure how well our data fits with our model. This results in a re-weighted SNR that down
weighs the triggers that are labeled as a bad fit. The right plot in Figure 3 shows us that
after applying the χ2 filter, we are able to zoom in and view more significant triggers and
how they vary across time. We can further evaluate the brighter spots and why more triggers
are found in certain time segments than others.

4.4. Learning to submit a workflow

For this project we will be working with many triggers from different observing run periods
and I will need to produce files containing large quantities of data which can normally take
very long to produce. To help make the process of gathering data go faster I learned how to
submit a workflow in PyCBC to the clusters from my laptop which reduced what normally
would take a long time to only a day. To practice submitting a workflow we chose to gather
data we believed would be interesting to evaluate and eventually filter and analyze with our
hdf5 file notebook. For this task we made use of the LIGO data grid and Pegasus (Planning
for Execution in Grids) which works to generate an executable workflow.

5. Challenges

One of the challenges I faced when completing the tutorials was learning how to interpret
what the plots were showing me and determining which ones were significant enough to look
further into. Since I have not worked previously with likelihood, filtering, and PyCBC I
struggled to interpret the data and sometimes even manipulate the data to create values to
plot. Learning to take a step back and look at the overall picture of what I was working with
is something I could further improve on. Another challenge I faced was doing unnecessary
work, sometimes values for my plots did not match and I spent quite a while trying to figure
out the problem with the data myself before realizing I was working with it wrong on my
end, whether it was from missing a filter or forgetting to normalize data.

Potential challenges I believe I will encounter as I move along are understanding which



7

methods are more useful than others. This includes quickly realizing which results need to
change and finding useful solutions quickly.

6. Acknowledgments

Computing support for this project was provided by the LDAS computing cluster at the
California Institute of Technology. LIGO was constructed by the California Institute of
Technology and Massachusetts Institute of Technology with funding from the National
Science Foundation, and operates under cooperative agreement PHY-0757058. This work
carries LIGO Document number T2000349-v2.

References

[1] J. Aasi et al. Advanced LIGO. Class. Quant. Grav., 32:074001, 2015.
[2] B.P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys.

Rev. Lett., 116(6):061102, 2016.
[3] B.P. Abbott et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary

Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys.
Rev. X, 9(3):031040, 2019.

[4] B.P. Abbott et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass
∼ 3.4M�. Astrophys. J. Lett., 892:L3, 2020.

[5] R. Abbott et al. GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric
Masses. 4 2020. arXiv:2004.08342.

[6] B.P. Abbott et al. GW150914: First results from the search for binary black hole coalescence
with Advanced LIGO. Phys. Rev. D, 93(12):122003, 2016.

[7] Samantha A. Usman et al. The PyCBC search for gravitational waves from compact binary
coalescence. Class. Quant. Grav., 33(21):215004, 2016.

[8] B P Abbott et al. Effects of data quality vetoes on a search for compact binary coalescences in
Advanced LIGO’s first observing run. Class. Quant. Grav., 35(6):065010, 2018.

[9] Michael Zevin et al. Gravity Spy: Integrating Advanced LIGO Detector Characterization,
Machine Learning, and Citizen Science. Class. Quant. Grav., 34(6):064003, 2017.

[10] Joshua R. Smith, Thomas Abbott, Eiichi Hirose, Nicolas Leroy, Duncan Macleod, Jessica McIver,
Peter Saulson, and Peter Shawhan. A Hierarchical method for vetoing noise transients in
gravitational-wave detectors. Class. Quant. Grav., 28:235005, 2011.

[11] Reed Essick, Patrick Godwin, Chad Hanna, Lindy Blackburn, and Erik Katsavounidis.
iDQ: Statistical Inference of Non-Gaussian Noise with Auxiliary Degrees of Freedom in
Gravitational-Wave Detectors. 5 2020. arXiv:2005.12761.


	Introduction/Background
	Objectives
	Work Plan/Schedule
	Progress/current work
	Understanding PyCBC time-slides and Data Quality flags
	Understanding Likelihood
	Understanding how to work with hdf5 files
	Learning to submit a workflow

	Challenges
	Acknowledgments

