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Abstract. The PyCBC search pipeline has been used since the first
gravitational wave detection made by Advanced LIGO and continues to be
used today in the search for gravitational waves. To identify gravitational
waves from compact binary coalescences, PyCBC runs a matched filtering and
chi-squared (X2) consistency test to determine significant signal-to-noise ratios
and compares triggers to previously modeled templates. To confidently detect
gravitational waves, we need to mitigate noisy data, which in return improves
the sensitivity of the search. Current veto methods use data quality flags to veto
and remove triggers in LIGO data that are believed to have terrestrial origin,
though these methods risk accidentally removing signals and must be finely tuned
to prevent a decrease in the search sensitivity. In this investigation, we test
different veto methods based on the current set of data quality flags and detector
characterization tools. We analyze how simulated signals are recovered by the
PyCBC pipeline and the overall change in the sensitivity of the pipeline. Our
results show an improved veto method that increases the significance of signals
and the overall number of detectable signals without removing data. The results
of this investigation can be implemented in the PyCBC search pipeline in future
observation runs held by LIGO as a data quality tool to improve the sensitivity
of the search for gravitational waves from compact binary coalescences.



1. Introduction

The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) [1] discovered
gravitational waves (GW) with the first detection of a binary black hole (BBH) collision,
GW150914 [2]. Since then, there have been three separate observing runs along with detector
improvements that have increased the rate of detections to multiple times per week in the
third observing run (O3). With the increase in sensitivity multiple confident GW detections
have been announced so far [3, 4, 5, 6].

The PyCBC [7, 8, 9, 10, 11, 12] search pipeline has been used since the first detection
made by aLIGO [13]. PyCBC identifies GW events that are produced by compact binary
coalescences (CBCs), which are when two compact objects such as black holes or neutron
stars coalesce and experience an inspiral, merger, and ringdown. PyCBC uses matched
filtering to compare signals against waveform templates that model what a GW event should
look like and distinguishes triggers and potential signals. With the amount of triggers that
are identified using matched filtering, loud, short duration glitches are found to sneak across
data quality tests. This results in a decrease in search sensitivity and ringing of the match
filter [11, 14]. As detections become more frequent, the quality and confidence of detections
need to increase. To increase confidence in the search for GWs veto methods need to target
glitches that can greatly affect the analysis of a gravitational wave search pipeline such as
PyCBC.

In this investigation two different veto methods are analyzed. One veto method will
remove triggers and the other will re-rank triggers from data that are coincident with data
quality (DQ) flags to increase the significance of signals. This investigation analyzes the
aspects of removing as little data as possible to reduce the chance of accidentally removing a
gravitational wave signal. The follow up of how the probability and distribution of triggers
change with respect to time will highlight how the veto methods adjusted the triggers to
improve PyCBC. The new veto method will also analyze how the PyCBC search responds
to different configurations and DQ flags. This paper presents results using O2 data [3] which
dates from April 14, 2017 to April 23, 2017 and investigates how triggers are affected with
previous and new data quality veto methods by comparing the change in background and
sensitivity of the search. In Section 2 the PyCBC pipeline is described in more detail and
the issues PyCBC faces with its’ current DQ veto method are highlighted. In Section 3 the
type of data quality flags used in this prototype are described. In Section 4 the methods
used to calculate the likelihood ratios and how the ratios vary with different triggers for the
prototype are explained. Section 5 outlines how the new veto method completely removes
the possibility of removing a signal by the method of re-ranking triggers. In Section 6 the
results of the different veto methods are explained. The results of the new veto method
in this investigation can be implemented in the production PyCBC search pipeline in future
LIGO observing runs as a new data quality tool to improve the search for gravitational waves
from compact binary coalescences.

2. The PyCBC search pipeline

The PyCBC search pipeline determines how significant an event is as compared to noise in the
detectors. PyCBC uses modelled CBC templates to identify potential GW events in matched
filtering to match signals against waveform templates and re-weighs the relationship with the
estimated power spectral density (PSD) of the detectors involved. PyCBC also uses a time
slides method, described in Section 2.3, to create a background distribution and measure
the false alarm rate (FAR) of recorded events [11]. The detection statistic for triggers and
signals is represented by Equation 1 where p? is the ranking statistic of triggers, log p® (5) is
the signal distribution, and log p™ (5) is the noise distribution.

= —

P x 2 [logps( ) — logpn(e)] + constant. (1)



2.1. Matched filtering

In order for PyCBC to search for CBCs with confidence, matched filtering uses a template
bank which holds a library of GW templates that are made of modelled CBC waveforms.
Matched filtering calculates the signal-to-noise ratio (SNR) of the templates and PyCBC
then uses a x? signal consistency test to filter the SNRs and remove triggers that do not
match the templates very well. The matched filter is expressed by Equation 2 below where
§ is the data, h represents the template, and S is the PSD.

I(to) - 4R/0°° §(f) [hreg:l(a}; (f)]t[):o eQWiftOdf. (2)

2.2. Chi-square method used to calculate a new ranking statistic

The (x?) signal consistency test weighs the SNR of triggers identified by the matched filtering.
The output of this test is a new ranking statistic based on the re-weighted SNR. In Equation
3 the x? is given where the frequency bins (p) in each template each have their own SNR
(ps) and equal amount of power in the template calculated by the matched filter. Here P20s
and pZ;,, are the SNRs of the matched filter [11]. In Equation 4 larger values of x? indicate
a higher likelihood of a noise instead of a signal. For signals, the reduced chi-squared is x2

=x*/(2p-2) [11].
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2.3. Time slides

PyCBC’s time slides method is used to generate simulated background data by sliding data
from one detector against data of the other, in this case the Hanford (H1) and Livingston
(L1) detectors. The background distribution generated is useful in determining the statistical
significance, also known as the FAR, of triggers. A significant FAR helps determine the
likelihood of seeing a detection again with the same network SNR. If the FAR is low the less
chance our detection is due to terrestrial noise [14].

3. Data quality flags

Data quality flags are produced to correlate transient noise with disturbances in or around
the LIGO detectors. The type of data quality flags used for these disturbances are classified
as ”category 2 flags” (CAT2), these flags are correlated with some type of physical coupling
[15, 14]. The systems that monitor these disturbances are called witness channels which
contain sensors such as microphones, accelerometers, and seismometers [16]. Before being
used to generate a DQ veto, scientists need to ensure witness channels are sensitive enough to
capture noise and not mistake a signal for a glitch. Scientists at the detectors run injections
that simulate a GW to test whether or not these systems react to signals efficiently [15]. If
a witness channel picks up an injected signal, the channel would not be considered a good
witness. When the system is cleared to be a witness channel, it is used to produce DQ vetoes.
DQ vetoes produced by DQ flags indicate times that contain problematic noise which can be
removed from analysis. Figure 1 shows have an example of a witness channel that produced
a DQ veto and efficiently captured a glitch due to noise from a thunderclap. Current veto
methods in the production PyCBC utilize DQ flags to veto problematic noise in the data that
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Figure 1: This plot shows an example of an effective data quality flag. This flag was
produced from a witness sensor at the corner station containing a microphone.
The glitch shown is produced from a thunderclap near the Livingston detector.
The color bar at the bottom of the plot shows that the flag became active
throughout the duration of the glitch.

make it difficult to run an analysis on potential signals. The current veto method PyCBC
runs has experienced problems with removing too much data with DQ flags which has caused
the removal of a signal when a glitch is too close or on top of the signal. When ineffective
flags are used loud glitches can be missed, especially short duration glitches in the data we
look at, causing a decrease in sensitivity. This especially hurts low mass templates, which do
not benefit from DQ products.

4. Calculating likelihood ratios to measure a new ranking statistic

Though the x? signal consistency test does a significant job at down ranking triggers with
the matched filter, when combined with DQ flags they can effectively target a wider range
of problematic triggers than on their own. For this prototype x* and DQ flags are combined
to produce a new distribution of triggers that fall inside the flags. This distribution is
represented by a likelihood ratio. A likelihood ratio is given by Equation 5.

L(0 | ) = po(z) = Po(X = ). (5)

Here 6 is the model or expectation of the ’likelihood function’ and x is the measured outcome
of the random variable X. The probability of the value x of X for the parameter value 0 is
written as P(X = z | 0) or P(X = x;0). The likelihood is equal to the probability that an
outcome x is observed within the parameter model 6 and it is equal to a probability density
over the outcome x, not over the parameter model 6. If = is very likely in a given model
it has a high likelihood. If z is very unlikely to happen it will have a low likelihood. For
the new veto method the likelihood ratios of the triggers are calculated inside and outside of
vetoed time as seen in Equation 6. This displays how much more likely a trigger would show



up during a flagged (or vetoed) time vs all time.

L(flag time)

£(19) = L(total time)

(6)
Equation 6 shows us the trigger rate for vetoed time versus all time by taking the likelihood of
seeing a flagged trigger and the likelihood of seeing a trigger in the entire data set. Equation
7 and Equation 8 show how the two individual trigger rate likelihoods are calculated.

. triggers flagged 1
lagt =
£(flag time) flagged duration * triggers total’ (7)

triggers total 1

L(total time) = % — .
total duration  triggers total

(8)

As template parameters can vary with triggers, they can be accounted for when calculating
the likelihood ratios by using templates such as the chirp masses. In Figure 2 a visualization
of how likelihood ratios of triggers change as their chirp mass changes is shown.
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Figure 2: Likelihood ratio of triggers as compared to their chirp mass. The plot shows us
as chirp mass increases the likelihood ratio of seeing a trigger inside a flagged
time with that chirp mass also increases. Knowing the different likelihoods
across the template will be useful in re-ranking triggers more efficiently.

5. Re-ranking triggers

To re-rank flagged triggers the likelihood ratio(s) calculated previously are plugged into
Equation 10 where p is the new ranking statistic, p is the original ranking statistic, and £ is
the likelihood ratio(s) of a data quality flag [17] .

p=+/p*—2log L(flag). (10)
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The likelihood ratio in Equation 10 should be greater than or equal to 1 because of the
natural logarithm in the equation. If the likelihood ratio is equal to 1 there will be no change
in the noise ranking statistic after calculation. If the likelihood ratio returns a negative value
it would increase the ranking statistic of triggers which would impact the search negatively.
If the likelihood were to be zero an error would be returned due to the logarithm. When the
likelihood calculations are applied to Equation 9 the original trigger ranking statistics would
experience a significant down rank as seen in Figure 3.
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Figure 3: The plot shows how triggers are ranked before and after applying re-ranking.
The blue histogram shows the original triggers highlighted during matched
filtering, the orange histogram shows the same triggers after applying the
new veto method. Using the method described in Section 5 the range of the
triggers’ detection statistic moves from 6.25 through 10.4 to 5.5 through 10.
Also, there is a redistribution of the triggers’ counts to group more towards
the lower statistics.

6. Results

6.1. Comparing search backgrounds

In the analysis of the different veto methods it is assumed that all injected signals are perfectly
recovered and their performance is based off of the background distribution. When the old
method and new method are applied to the data the two are compared against the original
background to see how effective they are. In Figure 4 the original noise background has
triggers with a ranking statistic ranging between 8.8 and 12.3. When the original veto
method PyCBC runs is applied there is a change in the triggers’ FAR, a removal of some
triggers, and the same range of ranking statistics between 8.8 and 11.3 remain. When the
new veto method is applied there is also a significant change in the triggers’ FAR, but now
there is no removal of triggers, and the ranking statistics of triggers range between 8.3 and
11.8. In Table 1 the VT ratios for the original background, old veto method, and new veto
method are shown. Looking at the values the VT ratios for both the old and new method



7

are pretty similar and the new method makes up in time for loss in distance. Overall the VT
is the same. Since there was no removal of any originally vetoed data this means the new
veto method can catch far more signals and this method will always be a positively effective
one no matter the flag used.
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Figure 4: The original ranking statistics for the glitches is represented by the blue curve.
The orange curve indicates how glitches were effected with the new method,
and the black curve indicates the original method of removing flagged data.
The larger groups of glitches highlight how the new method did really well in
matching what the original PyCBC veto method did in terms of improving
the background and glitch significance.

7. Conclusions

The new veto method re-ranks flagged data instead of removing flagged data completely,
assuring no signals can be accidentally removed. The new method increases the significance
of signals and reduces the amount of time lost due to flags. With this an increase in the
overall number of detectable signals is expected.

As these methods are simplified prototype versions of tests that PyCBC can run further
investigations include implementing tools that could improve our statistics. A few extensions
to this prototype include expanding on the amount of flags applied, expanding to different
DQ products such as Gravity Spy [18], Hveto [19], and iDQ [17] to develop data quality flags
and vetoes, and expanding to the updated PyCBC ranking statistic.



Original data vs vetoed: Ratio of distance: 1.02
Ratio of time: 0.99

Ratio of volume x time: | 1.04

Original data vs re-ranked: Ratio of distance: 1.01
Ratio of time: 1.00

Ratio of volume x time: | 1.04

Vetoed vs re-ranked: Ratio of distance: 1.00
Ratio of time: 1.01

Ratio of volume x time: | 1.00

Table 1: In the table the volume and time ratios for the original data, the old veto
methods, and the new veto are all compared to each other. The first row
shows the comparison between the original data and the old veto method. The
second row shows the comparison between the original data and the new veto
method. The last row shows the comparison of the old veto method and new
veto method. These ratios are based off the background distribution.
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