
Effects of Different Data Quality Veto Methods in
the PyCBC Search for Compact Binary
Coalescences

LIGO Caltech SURF Program 2020, Mentor: Derek Davis

Brina Martinez1

1University of Texas Rio Grande Valley, Brownsville, TX 78520, USA

E-mail: brina.martinez@ligo.org

Abstract. The PyCBC search pipeline has been used since the first
gravitational wave detection made by Advanced LIGO and continues to be used
today in the search for gravitational waves. To identify gravitational waves from
compact binary coalescences, PyCBC runs a matched filtering and chi-squared
(χ2) consistency test to determine significant signal-to-noise ratios and compares
triggers to previously modeled templates. To confidently detect gravitational
waves, we need to mitigate noisy data, which in return improves the sensitivity of
searches. Current veto methods use data quality flags to veto and remove triggers
in LIGO data that are believed to have terrestrial origin, though these methods
risk accidentally removing signals and must be finely tuned to prevent a decrease
in the search sensitivity. In this investigation, we test different veto methods
based on the current set of data quality flags and detector characterization tools.
We analyze how simulated signals are recovered by the PyCBC pipeline and the
overall change in the sensitivity of the pipeline. Our results show an improved
veto method that increases the significance of signals and the overall number of
detectable signals without removing data. The results of this investigation can
be implemented in the PyCBC search pipeline in future observation runs held by
LIGO as a data quality tool to improve the search for gravitational waves from
compact binary coalescences.

2

1. Introduction and Background

The Laser Interferometer Gravitational-Wave Observatory (LIGO) [1] discovered gravita-
tional waves (GW) with the first detection of a binary black hole (BBH) collision, GW150914
[2]. Since then, there have been three separate observing runs along with detector improve-
ments that have increased the rate of detections to multiple times per week in the third
observing run (O3). So far, 14 confident detections have been announced [3][4][5][6].

The PyCBC [7][8][9][10][11][12] pipeline has been used since the first detection made by
Advanced LIGO [13]. PyCBC identifies GW events that are produced by compact binary
coalescences (CBCs) and determines how significant each event is as compared to the noise
in the detectors. PyCBC uses matched filtering to compare the data against templates that
model what GW detection should look like and re-weighs the relationship with the estimated
power spectral density (PSD) of the detectors involved. Matched filtering calculates the
signal-to-noise ratio (SNR) of our templates and PyCBC then uses a χ2 test to filter our
SNR and remove triggers that do not match our templates very well. PyCBC uses gating and
coincidence tests to measure the false alarm rate (FAR) of recorded events [11]. PyCBC’s time
slides method is used to generate simulated background data with the two LIGO detectors.
A detection seen by both LIGO detectors can help us calculate a network SNR in which
we can determine a FAR. A significant FAR helps us determine the likelihood of seeing our
detection again with the same network SNR, so if our FAR is low or decreased the less chance
our detection is due to terrestrial noise.

With the amount of triggers that are identified using matched filtering, we sometimes
find loud, short duration glitches sneak across data quality tests. This results in a decrease
in search and ringing of the match filter [11][14]. As detections become more frequent, the
quality and confidence of detections need to increase. In this investigation I am analyzing veto
analysis methods that will remove or re-rank as many glitches as possible from the data using
data quality (DQ) flags to increase the significance of signals. This investigation analyzes the
aspects of removing as little data as possible to reduce the chance of accidentally removing a
gravitational wave signal. These methods will be applied to PyCBC triggers and be used to
calculate the change in background and sensitivity of the search. We will evaluate how the
probability and distribution of triggers change with respect to time and how we can focus on
times that are interesting to improve PyCBC. We will also analyze how the PyCBC search
responds to different configurations and DQ flags. Once we see an improvement in searches,
we will know which direction we should continue to follow. This project, if successful, will
be automated and implemented in the PyCBC search pipeline along future observation runs
by LIGO as a data quality tool to improve the search for GWs.

2. Work Plan/Schedule

From the beginning of this project until recently, a few changes in the timeline have occurred
regarding steps we will take to tackle our goals and when we will take them and that is due
to a better understanding of where we stand currently with investigations and how they are
flowing.

Before official start date: I watched videos and read papers to familiarize myself with
the background of PyCBC, Hveto, data quality, and anything pertaining to our main goal.

Weeks 1-2: I Became familiar with using PyCBC and importing data and learned to
recognize first hand how to analyze plots, and figure out what needs to be improved when
necessary. I worked on investigations regarding the parameters PyCBC works with such as
likelihood, FAR, and SNR significance.

Weeks 3-4: I continued to work on investigations to understand the data I work with
and began practicing the use of DQ flags. I produce plots needed to analyze results and work
on the first interim report.

3

Weeks 5-6: I took what I had previously investigated and used that information together
to develop vetoes and generate time slides to analyze the change in background.

Weeks 7-8: I am continuing to run tests of how our veto methods affect the background,
ratios of distance, ratios of time, and ratios of volume*time (VT). I am producing plots and
gathering information for the second interim report.

Weeks 9-10: I will produce a final report that includes the nature of our project and its
objectives, the methods we implemented, any figures that are related to our investigations
and results followed by references and acknowledgements. Produce a final presentation that
will be 15 minutes and includes information on the project and why it is important, methods
we implemented and how we utilized them, and finally the results obtained and ideas for
future work. Acknowledgements included at the end.

3. Progress

The first few weeks of the SURF program, I worked on becoming familiar with PyCBC,
statistics we would need to use, data quality terms and flags, and other parameters that
relate to our goals. This included learning how to understand the data I produced, such as
plots, and how to apply small details from different investigations into the overall project.

3.1. PyCBC time-slides and Data Quality flags

Before my official start date in June I familiarized myself with PyCBC by investigating
matched filtering, DQ flags, and time slides to remove glitches and reveal hidden signals with
simulated data. Time slides work by sliding data from one detector against data of the other,
in our case the Hanford (H1) and Livingston (L1) detectors. Time slides is an efficient method
to generate background data between the two detectors since we understand glitches occur at
different times which shows us they cannot be from a GW signal. DQ flags are segments of
time singled out that contain glitches we do not want since they correlate with problematic
noise in the detector. Problematic noise makes it difficult to run analysis on signals and
decreases their significance. When we identify these glitches, we are able to reduce their
impact on the search and make our signal more significant. There are different ways we can
set up a DQ flag and choose how we want to single them out, but in this investigation we will
be looking at whitened auxiliary data above a threshold and with specified windows of time
segments to identify our peaks. In this investigation, I am analyzing a data set that includes
simulated random Gaussian noise that is recolored to mimic noise properties we could find
in either one of the LIGO detectors. The data includes three different types of injections to
analyze:

• Simulated sine-Gaussian bursts, which are similar to common, short duration glitches
present in LIGO data.

• Simulated gravitational-wave signals with a limited bandwidth, to represent a ’worst
case scenario’ glitch.

• Simulated gravitational-wave signal, which we will be trying to identify from our filtering
and DQ flags.

In this investigation we want to not only calculate and recover a significant signal but also
calculate a significant FAR.

Figure 1 shows whitened auxiliary data which include our signal along with glitches that
have very high significance and loud SNR’s. From looking at the time series, we are able
to pick a threshold and window size we believe will identify peaks and generate a DQ flag.
Once we apply our DQ flag to the time series we are able to generate time slides, re-plot
our original data, and compare it to the original curve that does not contain our DQ flag.
After applying our DQ flag, we can see our signal becomes louder than any of the glitches
and background.

4

85 90 95 100 105 110 115 120
Time (s)

0

2

4

6

8

10

12

14

Si
gn

al-
to-

no
ise

 (S
NR

)

L1
H1

5 10 15 20 25 30 35
Signal-to-noise

0.01

0.1

1

10

100

FA
R

(p
er

 ho
ur

)

On-source
Off-source (Noise Background)
Off-source (Noise Background, with flag)

Figure 1: In the plot we are able to see a time series containing data with glitches and
a signal which we are not able to tell apart. To help our signal SNR become
more significant than the SNRs of our glitches, we applied DQ flags and used
time slides to find coincidences between the data from our two detectors H1
and L1. We then established a threshold where the whitened auxiliary data
is above the value we choose, and we establish windows to highlight those
peaks, making sure not to highlight our signal. Our results compare our data
before and after applying the DQ flag. We can see a significant increase in
significance for our signal compared to the background. In the time series
we can see blue bars highlighting the peaks that fall into our DQ flag which
we want to remove without highlighting our signal which is also a significant
peak. In the SNR vs FAR plot we can see our original background in orange
that was extremely loud compared to our signal and our new background in
black that significantly reduced and made our signal the loudest part of our
data. Our original FAR was 0.3526 per hour. After applying our time-slides
and DQ flags our FAR is now 0.0219 per hour, significantly lower.

5

3.2. Likelihood

In my first week of SURF I ran an investigation to familiarize myself with how likelihood
functions work and how they are used in PyCBC. Likelihood shows us the probability of how
often an outcome, which we can label x, is expected to occur in a given model, which we can
label θ.

L(θ | x) = pθ(x) (1)

This outcome can occur frequently given our model, giving us a high likelihood or can be
very unlikely to occur, giving us a low likelihood. Likelihood is important for determining
the odds of our data, we use our calculated noise likelihood to re-rank glitch SNRs where ρ̃ is
our re-ranked SNR, ρ is our original glitch SNR, and L is the likelihood ratio of our glitches.

ρ̃ =
√
ρ2 − 2lnL (2)

When the likelihood we calculate is ln(L) >1, we should see some improvement for our
background compared to the new glitch SNRs. When the likelihood we calculate is ln(L)
≤ 0, it results in our background becoming worse as these likelihoods have less impact at
higher SNRs and causes glitches to increase in SNR when re-ranked. When we know the
likelihood odds of our data we can further use them to determine the ranking statistic and
calculate the FAR as an output. For this investigation, we wanted to compare the likelihood
of astrophysical vs random noise at a given SNR. We began by simulating astrophysical and
random noise. We then normalized the data and checked that they carried the same SNR
model and calculated them against each other, as pictured in Figure 2, revealing the SNRs
that are more likely to contain astrophysical or random noise. As our SNR increases, we
begin to see our astrophysical noise is more likely to occur.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
log SNR*SNR

10 5

10 4

10 3

0.01

0.1

lik
eli

ho
od

 ra
tio

astrophysical
random

Figure 2: In the plot we are able to see areas where our astrophysical data which is shown
in blue or random noise data which is shown in orange has more likelihood
of occurring depending on the SNR. We are able to see that above log SNR2

≈ 1.2 our likelihood ratio is in favor of being astrophysical. In between log
SNR2 0.5 and 1.0 we see that our random noise has a higher likelihood.

6

4. Current work

With the understanding of how our data’s likelihood and noise background changes with flags,
we continued onto analyzing a larger data set of glitches from the second observing run (O2)
in which we applied flags and analyzed how the glitches ranking statistic and background
are affected when flagged sections are removed completely or re-ranked using likelihood. In
our current investigations, we take a look at a segment of data from both LIGO detectors
(H1, L1) during O2. We begin by filtering our data to look at SNRs above 6.25 and applied
a simple χ2 consistency test to the data. We then generated simulated background data
between the two detectors which is seen in Figure 3. Next we produced a second time slide
with the data that had a CAT2 flag (flags that correspond to some physical coupling) applied
to each data set and removed glitches that fell into the flags. The DQ flags removed 149 of
the 799 times. When re-ranking flagged glitches instead of removing them completely, we
keep all of the 799 times but still see a change in background.

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5
Ranking statistic

10 2

10 1

100

101

FA
R

(p
er

 y
ea

r)

Off-source (Noise Background)
Off-source (Noise Background, with flagged data removed)
Off-source (Noise Background, with reranked flagged data)

Figure 3: In the plot we can see how the glitches change in the background when
applying different veto methods. In the orange we can see the SNRs and
FAR of the original glitches. In the black we have our glitches with flagged
data removed, which resulted in less data points because they fell with the
flags that were applied. This method gave us a VT ratio of 1.27. This led to
our background improving but if there was a possible signal in our flag and we
removed it, it could affect the search negatively. So, instead of removing the
flagged times completely we re-ranked them instead using their likelihood. In
the blue we have our glitches with flagged data re-ranked, this method also
helped our background improve significantly giving us a VT ratio of 1.07.
From this plot we can see our re-rank method works well in reducing the
ranking statistic of glitches in the data.

7

After applying our flagged glitches removal method, we get the ratio of distance to be
1.09, and ratio of time to be 0.99. When applying our flagged glitches re-ranked method, we
get the ratio of distance to be 1.02 and a ratio of time to be 1.00. When comparing the ratios
of our flags removed versus flags re-ranked methods, we get a ratio of distance to be 0.94,
ratio of time to be 1.01 and VT ratio of 0.84. Though there is almost no change between
the flags removed and re-rank methods in ratio of distance, ratio of time and ratio of VT,
the re-rank method will help us lower the ranking statistic of glitches and make loud signals
more significant instead of possibly removing them.

5. Future work

As these methods are simplified prototype versions of tests that PyCBC can run we plan to
further investigate tools that could be implemented to improve our statistics such as Gravity
Spy [15], Hveto [16], and iDQ [17] to develop data quality flags and vetoes.

6. Acknowledgments

Computing support for this project was provided by the LDAS computing cluster at the
California Institute of Technology. LIGO was constructed by the California Institute of
Technology and Massachusetts Institute of Technology with funding from the National
Science Foundation, and operates under cooperative agreement PHY-0757058. This work
carries LIGO Document number T2000349-v2.

References

[1] J. Aasi et al. Advanced LIGO. Class. Quant. Grav., 32:074001, 2015.
[2] B.P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys.

Rev. Lett., 116(6):061102, 2016.
[3] B.P. Abbott et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary

Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys.
Rev. X, 9(3):031040, 2019.

[4] B.P. Abbott et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass
∼ 3.4M�. Astrophys. J. Lett., 892:L3, 2020.

[5] R. Abbott et al. GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric
Masses. 4 2020. arXiv:2004.08342.

[6] R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, R. X. Adhikari, V. B.
Adya, C. Affeldt, M. Agathos, and et al. Gw190814: Gravitational waves from the coalescence
of a 23 solar mass black hole with a 2.6 solar mass compact object. The Astrophysical Journal,
896(2):L44, Jun 2020.

[7] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton. FINDCHIRP:
An algorithm for detection of gravitational waves from inspiraling compact binaries. Phys.
Rev. D, 85:122006, 2012.

[8] Bruce Allen. A chi**2 time-frequency discriminator for gravitational wave detection. Phys.
Rev. D, 71:062001, 2005.

[9] Alexander H. Nitz, Thomas Dent, Tito Dal Canton, Stephen Fairhurst, and Duncan A. Brown.
Detecting binary compact-object mergers with gravitational waves: Understanding and
Improving the sensitivity of the PyCBC search. Astrophys. J., 849(2):118, 2017.

[10] Tito Dal Canton et al. Implementing a search for aligned-spin neutron star-black hole systems
with advanced ground based gravitational wave detectors. Phys. Rev. D, 90(8):082004, 2014.

[11] Samantha A. Usman et al. The PyCBC search for gravitational waves from compact binary
coalescence. Class. Quant. Grav., 33(21):215004, 2016.

[12] Alexander H. Nitz, Tito Dal Canton, Derek Davis, and Steven Reyes. Rapid detection
of gravitational waves from compact binary mergers with PyCBC Live. Phys. Rev. D,
98(2):024050, 2018.

[13] B.P. Abbott et al. GW150914: First results from the search for binary black hole coalescence
with Advanced LIGO. Phys. Rev. D, 93(12):122003, 2016.

8

[14] B P Abbott et al. Effects of data quality vetoes on a search for compact binary coalescences in
Advanced LIGO’s first observing run. Class. Quant. Grav., 35(6):065010, 2018.

[15] Michael Zevin et al. Gravity Spy: Integrating Advanced LIGO Detector Characterization,
Machine Learning, and Citizen Science. Class. Quant. Grav., 34(6):064003, 2017.

[16] Joshua R. Smith, Thomas Abbott, Eiichi Hirose, Nicolas Leroy, Duncan Macleod, Jessica McIver,
Peter Saulson, and Peter Shawhan. A Hierarchical method for vetoing noise transients in
gravitational-wave detectors. Class. Quant. Grav., 28:235005, 2011.

[17] Reed Essick, Patrick Godwin, Chad Hanna, Lindy Blackburn, and Erik Katsavounidis.
iDQ: Statistical Inference of Non-Gaussian Noise with Auxiliary Degrees of Freedom in
Gravitational-Wave Detectors. 5 2020. arXiv:2005.12761.

	Introduction and Background
	Work Plan/Schedule
	Progress
	PyCBC time-slides and Data Quality flags
	Likelihood

	Current work
	Future work
	Acknowledgments

