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Gravitational waves passing through a region of spacetime leave behind a permanent distortion, with strain
typically on the order of one tenth the peak strain of the wave—the so-called memory effect. Linear and
nonlinear components exist in gravitational wave memory, the latter appearing as a non-oscillatory, cumulative
signal. Current gravitational wave detectors have not yet been able to reliably detect and isolate this low-
frequency, nonlinear component which skews the numerical inferences of gravitational wave source parameters.
Because this effect is cumulative, it is non-negligible, and its non-oscillatory nature distinguishes it from the
rest of the waveform, making it detectable, in theory. Though previous studies have quantified and suggested
improvements for the detectability of nonlinear memory, more templates and new data are available than ever
before. In this project, we apply Bayesian parameter estimation to simulated gravitational waves from compact
binary coalescences with memory to determine nonlinear memory detectability.

I. INTRODUCTION

Although all accelerating masses radiate gravitational
waves, compact binary coalescences – binary systems con-
sisting of black holes and/or neutron stars – are especially
interesting because they emit the most detectable gravita-
tional wave signals and many of their properties are known
[1–3]. The amplitude and phase of a gravitational wave en-
codes source features such as mass, spin, and location [4].
A typical gravitational wave sourced from a compact binary
coalescence is an oscillatory traveling wave with increasing
frequency and momentary peak corresponding to the merger
phase. As it propagates through spacetime, this waveform dis-
torts surrounding mass arrangements in an oscillating pattern,
but afterwards each arrangement returns to its original geom-
etry. However, general relativity predicts that after a gravita-
tional wave passes a truly free-falling arrangement of masses,
a memory effect occurs in which a permanent nonzero differ-
ence in deformation is observable [5–7].

All gravitational waves produce both linear and nonlinear
memory. Linear memory arises from non-oscillating masses
and, thus, usually appears only in systems with hyperbolic
orbits, neutrino ejection, or gamma-ray bursts [8]. Nonlin-
ear memory arises from the signal contribution of secondary
gravitational waves sourced by the initial wave emission. Un-
like non-oscillating masses, secondary gravitational wave pro-
duction occurs in many compact binary coalescences, mak-
ing nonlinear memory especially prominent. Also, nonlin-
ear memory accumulates over time because it is hereditary
– depends on the entire past motion of the source. The
non-oscillating and cumulative nature of nonlinear memory
should, in theory, make it easy to distinguish from the primary
component of a gravitational wave signal [9]. In practice this
is not the case.

There is one reason why nonlinear memory is, in fact, hard
to detect in a gravitational wave signal. As seen in Figure
(1), the noise curves for the Livingston and Hanford detectors
are minimized between 20–1000-Hz, the typical operating fre-
quency of these detectors. However, nonlinear memory is all
below this frequency band, where seismic, control, and quan-

Figure 1. Noise curves beginning at 20 Hz for the LIGO Livingston,
LIGO Hanford, and VIRGO detectors during the second observing
run. Below 20 Hz, realistic signals cannot be detected because the
noise increases many orders of magnitude over the noise shown in
this figure.

tum radiation pressure noises dominate. This has long been
thought to lower the single-to-noise ratio (SNR) of the mem-
ory effect below the resolution of the detectors, rendering it
undetectable.

Even in higher frequency bands detector data are very
noisy. The primary goal of gravitational wave signal analysis
is to distinguish actual signals from this background noise. All
phases of compact binary coalescence-sourced waveforms are
well modeled using numerical simulations, allowing a tem-
plate library to be constructed over a broad range of binary
component masses and spins. Matched filtering can then be
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used to compare these templates with the data and determine
the best fit. When nonlinear gravitational wave memory enters
the picture, this same process can also be used to determine
the detectability of the memory contribution by comparing the
memory component in the template with the observed signal
in the detectors.

From here, we discuss the theoretical background behind
gravitational waves, matched filtering, nonlinear memory, and
parameter estimation in Section II. In Section III, we sum-
marize the procedure involved in determining memory de-
tectability. In Section IV, we conclude with a brief discussion
of results and future work. Finally, in Section V, we acknowl-
edge the various supporters of this project.

II. BACKGROUND

A. Gravitational Wave Theory and Detection

An implication of Einstein’s general relativity is that black
holes, neutron stars, and other massive objects accelerating
in spacetime generate traveling ripples known as gravitational
waves [10]. Here we will discuss the speed and polarizations
of gravitational waves as well as instruments and methods
used to detect them.

1. Speed of gravity

General relativity predicts that gravitational waves propa-
gate at the speed of light, c, [10], and several measurements
have been made to confirm this prediction using astrophysi-
cal observations. Most notably, Velten, Jimenez, and Piazza
[11] used twenty-five years of orbital decay measurements for
the Hulse-Taylor binary, and Abbott et al [12] used the dif-
ference in arrival time between GW170817 and GRB170817,
both sourced from the same binary neutron star merger. The
first experimenters were able to constrain gravity’s speed to
within 1% of c and the second were able to constrain it to
within only 10−13% of c.

2. Gravitational wave polarizations and detectors

Another prediction of general relativity is that passing
spacetime ripples distort an arrangement of test masses in an
oscillatory manner. The frequency and amplitude of the oscil-
lations are related to the angular momentum and mass of the
ripple’s source, respectively [4]. A Michelson-Morley inter-
ferometer may be used to record these variations in spacetime
strain: two arms are set perpendicular to one another, and a
laser and beamsplitter are arranged at the intersection point as
shown in Figure (2). The laser is directed through the beam-
splitter, creating two beams which travel along each arm and
return after reflecting from mirrors placed at the end of each
arm. Both beam paths are aligned to recombine at a photo-
diode located at the output port of the beamsplitter. Before a
gravitational wave passes through, the only phase difference

Figure 2. Simplified diagram of a standard LIGO detector. A gravita-
tional wave traveling into the page is incident on the detector, chang-
ing each arm length by an amount hL (h is gravitational wave strain).

which exists between both beams arises from the difference in
arm length, which is carefully adjusted to produce destructive
interference at the photodiode.

However, both arm lengths are changed oppositely to one
another by a passing gravitational wave, altering the phase dif-
ference and, thus, combined intensity of the light incident on
the photodiode. This intensity information may be translated
to strain information which is given in Equation (1)

hi j(t, r) = ∑
A=+,×

eA
i j(n̂)

∫ +∞

−∞

hA( f )e−i2π f (t− n̂·r
c ) d f , (1)

where hi j is the strain tensor, n̂ is the wave’s propagation di-
rection, and t − n̂·r

c is the retarded time tracking the wave’s
passage across the detector. In general relativity, the space-
time metric is transverse-traceless gauge invariant, implying
that free-falling test masses are at rest in spacetime. Although,
the test masses (mirrors) in a given detector are supported by
external forces, these are applied at low-frequencies (below
10−20-Hz), and are thus negligible at the operating frequen-
cies of ground-based detectors. So, for these detectors, Equa-
tion (1) is independent of position r, which may thus be set
to 0 for a single detector (but will differ for other, non-co-
located detectors). Recognizing the resulting integral as an
inverse Fourier transform, this yields the expression given in
Equation (2)

hi j(t) = ∑
A=+,×

eA
i j(n̂)hA(t), (2)

which clearly expresses the total strain as a sum of two po-
larization states, h+ (plus) and hx (cross). Both polarization
states are transverse to the direction of propagation and are
oriented 45° relative to one another as shown in Figure (3).
Plus-polarized gravitational waves are a quarter-wave out of
phase with cross-polarized gravitational waves, and, gener-
ally, incident gravitational waves are a linear combination of
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these two polarization states. Thus, gravitational waves may
have linear, circular, or elliptical polarizations.

3. The Antenna Pattern

Here, we will address the fact that ground-based gravi-
tational wave detectors have variable sensitivity to incident
waves sourced from differing sky locations and of differing
polarization angles. We will use a reference frame centered
on a given detector with its z-axis normal to the detector’s
plane and the x- and y-axes aligned along the detector’s arms.
Further, we will use θ and φ to label the polar and azimuthal
angle respectively.

The sensitivity map for a given detector is known as its an-
tenna pattern. This pattern is encoded by the detector response
function, FA, which may be separated into plus (x,y-aligned)
and cross components and is, as will be shown, a function of
θ and φ . A plus-polarized wave incident at θ = 0, oppositely
alters the length of both arms, producing maximum detector
strain. If this same wave were instead incident at θ = π/2 and
φ = 0, it would leave one arm unaltered, producing half the
detector strain as in the previous case. Finally, if this wave is
shifted to φ = π/4, it alters the x and y arms’ lengths equally
and oppositely, producing zero net strain. With little work, a
subtly different pattern is seen with a cross-polarized wave.

Formally, we define Di j, a constant tensor describing the
geometry of the detector, and the detector response function
as in Equation (3)

Di j =
h(t)

hi j(t)

FA(θ ,φ) = Di j êA
i j(θ ,φ) (3)

Combining Equations (2) and (3) yields Equation (4)

h(t) = Di jhi j(t)

= Di j
∑

A=+,×
eA

i j(n̂)hA(t)

= ∑
A=+,×

[Di jeA
i j(n̂)]hA(t) (4)

= F+h++F×h×.

Equation (5) gives F+ and F× consistent with our observations
above

F+ =
1
2

cos(2φ)(cos2
θ +1)

F× = cosθsin(2φ). (5)

Plugging these results into Equation (4), we have an expres-

sion which gives noiseless time series data as a function of sky
position

h(θ ,φ , t) =
1
2

h+cos(2φ)(cos2
θ +1)+h×cosθsin(2φ). (6)

4. Signal types

There are multiple, known gravitational wave types includ-
ing continuous, stochastic, burst, and compact binary coales-
cence gravitational waves [13–15]. Continuous gravitational
waves are radiated by spinning neutron stars and thus main-
tain constant frequency and amplitude. Stochastic gravita-
tional waves likely come from especially distant sources and
thus arrive from all directions, at all frequencies, and at all
times. Burst gravitational waves have waveforms that are dif-
ficult to predict in advance but nevertheless exist as short du-
ration pulses. Relevant to this paper, compact binary coales-
cence gravitational waves are sourced from inspiraling com-
pact objects, such as binary black holes and/or neutron stars,
and thus vary in frequency and amplitude over time. Com-
pact binary coalescences consist of three phases, including an
inspiral, merger, and ringdown as shown in Figure (4). In
the inspiraling stage, the separation distance and orbital pe-
riod of the binary components decay due to radiated energy
in the form of gravitational waves. This portion of the sig-
nal increases in frequency and amplitude as the merger ap-
proaches. In the merger phase, the signal’s amplitude briefly
peaks as the binary components combine. In the ringdown
stage, the resulting merged black hole (or heavy neutron star)
stabilizes, producing a signal with exponentially decreasing
amplitude. Among these four types of gravitational waves,
compact binary coalescence gravitational waves have the most
well-modeled waveforms and are the only gravitational wave
sources detected by LIGO-VIRGO thus far [1–3].

5. Detection methods

Increased detector sensitivity is achieved by equally extend-
ing both beam paths through the careful arrangement of mir-
rors which allow multiple reflections to take place before the
beams are recombined. As a result, typical detector sensitiv-
ity allows for measurements of strain on the order of 10−23.
Even if a given gravitational wave signal is louder than this,
background noise, both local and non-local, can mask or even
mimic the signal [16]. Random noise, such as quantum and
thermal noise, are often due to local causes and is thus uncor-
related among an array of distant detectors, whereas a pass-
ing gravitational wave is incident on every point of the earth
nearly simultaneously. So, using the coincidence criterion,
comparison of data among multiple detectors may be used to
distinguish real signals from random signals. The coincidence
criterion may also be used to identify non-local noise such as
earthquakes and other seismic waves (e.g. those caused by
ocean waves colliding with the continental plates). During
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Figure 3. Linear polarizations of a gravitational wave illustrated over a complete phase cycle. Each dot represents a distinct test mass and the
wave propagates into the plane of the paper.
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Figure 4. Compact binary coalescence gravitational-wave strain am-
plitude that shows the full bandwidth of a typical waveform. The in-
set labels indicate the inspiral, merger, and ringdown phases of two
coalescing black holes.

periods of low seismic activity, gravitational wave candidates
may still be trusted; however, during periods of intense seis-
mic activity, any gravitational wave candidate is often untrust-
worthy and may be rejected outright. Methods to reduce noise
and increase detector sensitivity are shown in Figure (5). Iden-
tifying gravitational waves is further improved by comparing

data to numerical templates constructed according to general
relativity. This process, known as matched filtering, is ex-
plained in the next section.

B. Matched Filtering

Matched filtering plays an important role in identifying
gravitational waves and determining memory detectability
through parameter estimation. Here we will start by describ-
ing matched filtering without memory and then include mem-
ory afterwards.

The ability to extract a signal from background noise is
given by the SNR, ρ , which is typically between 5 and 25
in an Advanced LIGO detector for realistic, detectable com-
pact binary coalescences, and matched filtering is a process by
which it may be computed [18]. In matched filtering, gravita-
tional wave templates are cross-correlated with observed data
in the frequency domain by sliding template waveforms along
the data until a maximum correlation value is reached. This
requires us to introduce a filter kernel, K̃( f ), which is related
to the template in some way to be determined as described
below.

First, the correlation value, ŝ, is related to the strength of
the signal, 〈S〉, according to Equation (7)

〈S〉= 〈ŝ〉=
∫ 〈

s̃( f )K̃( f )
〉

d f

=
∫

h̃( f )K̃∗( f )d f , (7)

where s̃( f ) = h̃( f )+ ñ( f ) is the data in the frequency domain,
h̃( f ) is the signal’s waveform, ñ( f ) is the background noise,
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Figure 5. More detailed diagram of an Advanced LIGO detector.
The annotations show the optical power in use during the first LIGO
observing run. The Nd:YAG laser, with wavelength λ = 1064-nm, is
capable of producing up to 120-W, but only 22-W were used. A
suspended, triangular Fabry-Perot cavity serves as an input mode
cleaner to clean up the spatial profile of the laser beam, suppress
input beam jitter, clean polarization, and help stabilize the laser fre-
quency. The Michelson interferometer is enhanced by two 4-km-long
resonant arm cavities, which increase the optical power in the arms
by roughly a factor of 270. Since the Michelson interferometer is op-
erated near complete destructive interference, all but a small fraction
of the light is directed back towards the laser. The power recycling
mirror resonates this light again to increase the power incident on the
beamsplitter by a factor of nearly 40, improving the quantum Pois-
son noise sensing limit and filtering laser noises. An output mode
cleaner is present at the antisymmetric port to reject unwanted light
components before the signal is detected by the main photodetectors.
Retrieved from Martynov et al [17].

and K̃( f ) is the filter function. The second line is obtained by
assuming ñ( f ) is random, making

〈
ñ( f )K̃( f )

〉
= 0.

Second, let the one-sided power spectral density of the
data’s noise, Sn( f ), be defined as

〈
|ñ( f )|2

〉
. Then, if no signal

is present, h̃( f ) = 0 and the root mean square of the noise, N,
is given by

N =

√
|
〈
ŝ2〉-〈ŝ〉2|

h̃=0

=

√∫ 〈
ŝ2〉d f

=

√∫ 〈
ñ( f )ñ( f ′)

〉
K̃( f )K̃( f ′)d f d f ′ (8)

=

√
1
2

∫
Sn( f )|K̃( f )|2 d f .

Thus, ρ = 〈S〉
N may be written as

ρ =

∫
h̃( f )K̃∗( f )d f√

1
2
∫

Sn( f )|K̃( f )|2 d f
, (9)

or, defining the inner product between x̃ and ỹ as

〈x̃, ỹ〉= R

(∫ x̃( f )ỹ∗( f )
1
2 Sn( f )

d f

)
, (10)

ρ can be simplified, yielding

ρ =

〈 1
2 SnK̃, h̃

〉√〈
h̃, h̃
〉 . (11)

It is readily seen that Equation (11) is maximized when SnK̃∝

ĥ, or, equivalently, when

K̃( f ) ∝
h̃( f )
Sn( f )

. (12)

If we redefine ρ as the time series S(t)/N by applying a fast
Fourier transform to the combination of Equations (7) and
(12), we have

ρ(t) =
1
N

∫ s̃( f )
Sn( f )

h̃( f )ei2π f t d f , (13)

from which we can see that K̃( f ) has the effect of suppressing
frequencies where the Gaussian noise is high, allowing signal
frequencies to be heard more easily.

Whitening is a process in which a spectrum is divided by√
Sn( f ). With this in mind, Equation (13) tells us that we

must first whiten the data and our selected template, only af-
terward cross-correlating the two. The result is interpreted as
an SNR time series which only achieves large values if a sig-
nal is present and agrees closely with the template.

Matched filtering can be performed for a network of detec-
tors with the network SNR given in Equation (14)

ρnet =
√

∑
i

ρ2
i , (14)

where i runs over each detector and ρnet is referred to as the
network SNR. Typically, signals must have ρnet & 10 to be
detected, but both signals and glitches can satisfy this require-
ment, introducing the significant possibility of false detection.
We can drastically reduce the likelihood of false detection by
requiring each ρi to be above a certain threshold within 11-
ms between the Hanford and Livingston detectors or 25-ms
between the Hanford and VIRGO detectors; this is the coinci-
dence criterion mentioned above.
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Matched filtering can also be used with templates having a
memory contribution, allowing the detectability of memory to
be calculated. If the output of the matched filter using a tem-
plate containing memory yields a significantly higher SNR
from the data than the output using a template without mem-
ory, the memory is detectable. The mathematical details in-
volve parameter estimation and computation of a Bayes’ fac-
tor, which will be explained after a discussion of nonlinear
memory.

C. Nonlinear Memory Theory

The nonlinear (Christodoulou) gravitational wave memory
is a permanent strain in spacetime due to the passage of grav-
itational waves [8, 9]. According to general relativity, a post-
Newtonian expansion exists in which nonlinear memory is de-
scribed by terms which immediately follow the primary wave-
form and linear memory. However, far from being negligi-
ble, these terms accumulate memory over the duration of the
signal, increasing most rapidly during the merger as seen in
Figure (6). These increasing terms arise from the signal con-
tribution of secondary gravitational waves sourced by the pri-
mary waveform, and can thus be viewed as linear memory
from waves which began from an arbitrary point in spacetime.
Nonlinear memory is shown in Figure (7) for a plus polarized
signal. The non-linear component is readily seen to be sub-
stantial.

The strength of nonlinear memory depends on incident an-
gle in much the same way as the primary waveform (see Equa-
tion (6)) and, as just mentioned, changes monotonically over
time. It is clear, then, that nonlinear memory has an angu-
lar and temporal dependence which vary independent of one
another, suggesting separation of variables. Indeed, through
an application of separation of variables and projection of the
linear polarizations of the waveform onto the spherical har-
monics, one obtains

δhlm =
R

4πc
Γ

l1l2m1m2
lm (Ω)Hl1l2m1m2(T0,TF), (15)

where l and m designate a spherical harmonic mode for each
binary component, δhlm is the overall non-linear memory for
a given mode, R is the distance to the source, Γ

l1l2m1m2
lm (Ω)

encodes the angular dependence of the memory as a func-
tion of radiation direction angles, Ω, relative to the source,
and Hl1l2m1m2(T0,TF) encodes the memory’s growth over the
duration of the signal (Figure 7) (also H � 1/R2, thus mak-
ing δhlm proportional to 1/R like the oscillatory compo-
nent). Γ

l1l2m1m2
lm (Ω) is a geometry factor closely related to

the spherical harmonics and independent of the oscillatory
waveform, and may thus, in part, be tabulated and inserted in
advance before any waveform-specific calculations are made.
Hl1l2m1m2(T0,TF) is closely related to the total intensity of the
secondary waveforms and thus must be computed after each
signal is collected and processed. Using Equation (15), a tab-
ulation of the spherical harmonics, and a properly chosen re-
gion of interest in an incident signal, the general relativity-

predicted nonlinear memory may be calculated as is done in
Talbot et al [19].

A simple estimate of the memory suggested by Garfinkle
[20] is given here. Consider two freely falling test masses
separated by a distance r. An inverse relationship between the
non-linear memory strain and r suggests a form for memory,
M ha

b, given by Equation (16)

M ha
b =−

ma
b

r
, (16)

where ma
b denotes the memory tensor. It can be shown that the

memory tensor is related to the total radiated energy, E, and
emission direction (θ̂ ,φ̂ ) according to Equation (17)

ma
b =−

5
14c2 Esin2

θ(θ a
θb−φ

a
φb). (17)

Combining Equations (16) and (17), we have

M ha
b =−

5
14c2

E
r

sin2
θ(θ a

θb−φ
a
φb), (18)

or, in scalar form,

M h =− 5
14c2

E
r

sin2
θ . (19)

Applying this result to GW150914 (E = 3.0M�· c2, r = 410
Mpc, and θ = 150°), we find M h ≈ 3.0× 10−23, which is
roughly 3% of the oscillatory waveform’s maximum ampli-
tude.

Accurate identification and measurement of nonlinear
memory will serve as a powerful test of general relativity.
With the recent conclusion of the third LIGO observing run,
much data are now available, allowing for the detectability of
non-linear memory to be determined. From such a determi-
nation, the magnitude and nature of sensitivity improvements
for each detector may be evaluated so non-linear memory can
be effectively detected in future observing runs.

D. Bayesian Parameter Estimation

In order to quantify our ability to detect and measure grav-
itational wave memory, we make use of standard techniques
in Bayesian inferencing, as described in the following discus-
sion.

Let the hypothesis H be the statement, “non-linear memory
is present in the detector’s data” and, further, let D be the de-
tector’s data. Then, P(H | D) is the probability that nonlinear
memory is present in the data given the data we have at hand,
P(D | H) is the likelihood that we will detect nonlinear mem-
ory given that nonlinear memory is, in fact, present, P(H) is
the belief we have in the presence of nonlinear memory on
the basis of prior information (or lack of information) alone,
and P(D) is the evidence offered by the data independent of
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Figure 6. An example of a plus-polarized gravitational waveform with memory. The waveform approximant used is NRSur7dq2 and the
source parameters include a total mass of 60M�, mass ratio of 2, and 0 spin for both components. (TOP) Inclusion of early inspiraling shows
that most memory accumulates during the merger phase. (BOTTOM) Excluded inspiral stage with superposed waveforms, with and without
memory, to illustrate the memory effect on waveforms.
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Figure 7. Time domain memory generated using the approximant
NRSur7dq2, nonspinning components, a total mass of 60M�, and a
mass ratio of 1.

the hypothesis under consideration. Bayes’ Theorem relates
these four quantities as shown in Equation (20).

P(H | D) =
P(D | H) × P(H)

P(D)
(20)

Equation (20) is used in Bayesian inferencing to update P(H |
D) as more data becomes available, and we would like to sat-
isfy Equation (20) by determining P(H | D) and P(∼ H | D)
and computing the associated posterior odds. This process
may be used to estimate pre-known parameter values and rea-
sonable, or even improved, estimations with memory included
in the model indicates a high likelihood of memory detectabil-
ity.

However, in parameter estimation we would like to know
how much memory is present. The first step is to present H as
in Equation (21)

htot = h+λhmem, (21)

where htot is the total signal, h is the non-memory portion of
the signal, and hmem is nonlinear memory. Then, for the in-
jected template with known memory, λ = 1 but for the pur-
poses of parameter estimation can take on any value. A poste-
rior distribution for λ , given in Equation (22), consistent with
a value of 1 indicates a high likelihood of memory detection
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Table I. Meanings for key symbols found in this section

Symbol Meaning

Mtot Total Mass

q Mass Ratio (m2/m1)

dL Luminosity Distance

ψ Polarization Angle

φc Coalescence Phase

ι Inclination Angle

α Right Ascension

δ Declination

P(λ | D,H) =
P(D | λ ,H) × P(λ )

P(D)
. (22)

III. PROCEDURE

In this project, we assess the detectability of memory
in gravitational waves and subsequently search for methods
to improve it. To achieve this goal, sufficient mastery of
Bayesian parameter estimation, signal simulation, and python
coding is needed. Here we will discuss the stages of this mas-
tery, early experiments, experiments involving a bimodal dis-
tribution for λ , and a real-data experiment using GW150914.
A legend for key symbols used throughout this section is given
in Table I.

A. Summary and Preliminary Work

I will first begin with a brief outline of the project thus far.
(i) I first became familiar with python and PyCBC [21], a

python package containing algorithms that can detect coalesc-
ing compact binaries and measure gravitational wave parame-
ters. Garnering general python competency equipped me with
the required coding skills that I used throughout the project,
and PyCBC acquainted me with the general shape of gravita-
tional waveforms and how to generate them.

(ii) I then became familiar with the python package
GWmemory [19], which calculates and constructs nonlinear
memory waveforms from selected gravitational signals. Gain-
ing familiarity with this package improved my understanding
of memory effects on gravitational wave signals and memory-
laden waveform generation.

(iii) Directly afterward, I acquired a better understanding
of Bayesian inference and became familiar with BILBY [22],
a python package which consists of inferencing tools for pa-
rameter estimation.

(iv) At this point, I was well equipped to begin work on
our primary goal. Equation (21) presents an all-or-nothing

waveform model for templates, where λ represents the mem-
ory constant. From the beginning, we planned to superpose a
signal with memory (i.e. λ = 1) on a typical noise distribu-
tion, and then apply matched filtering to measure the signal
and infer the value of the memory constant. This inferred
value would then represent the memory detectability, and a
value close to 1 would mean that we are likely able to identify
memory in a given signal. An outline of our process is given
in Figure (8). Relevant experiments ensued.

(v) Following various experiments with simulated data, we
then applied our approach to real data.

I will now discuss, in greater detail, points (i) - (iii) and
cover points (iv) and (v) in the next two sections.

I attended SURF lectures on gravitational wave theory,
noise and signal patterns, Bayesian inferencing, and detec-
tor geometry. I also completed theory and programming tu-
torials, which covered simulation of gravitational waves in
the time and frequency domains. Transformation of signals
between the time and frequency domains and worked exam-
ples of the matched filtering process were also included. Texts
on Bayesian inferencing and practice with parameter estima-
tion using various models, prior restrictions, and samplers im-
proved my application ability and understanding of Bayes’
rule. Because I used PyCBC and BILBY to complete many
of these tutorials, I also acquired familiarity with these pro-
grams. Figures (1) and (4) show noise curves and a time-
domain waveform that I generated during this time.

Multi-parameter estimation takes a long time to execute
and, thus, preparations were made to work on the LIGO com-
puting cluster. I began by installing a Linux virtual ma-
chine on my personal computer with python fully configured.
BILBY, PyCBC, and GWMemory were then downloaded and
installed. From here on, programs were written using VIM
[23] to transition easily to the computing cluster later in the
project. I then made frequency- and time-domain plots with
GWMemory, familiarizing myself with memory waveforms.
Several of these plots are given in Figures (6), (7), and (9).

Before moving into the Bayesian approach to parameter es-
timation, I began with a frequentist approach which handles
1- and 2-dimensional parameter estimation more efficiently
than the Bayesian approach, but is not well optimized for
higher-dimensional parameter spaces and disregards preexist-
ing beliefs regarding the data’s probability distribution func-
tion (PDF) because priors are nonexistent. In the frequentist
approach, the location in parameter space for which a statis-
tical index, χ2, is at a minimum marks the most likely values
for each inferred parameter. The link between χ2 and Gaus-
sian likelihood is given in Equation (23)

log(P(Di, f i|λ ,H))

= −
1
2

[
n

∑
i=1

(
|Di− (hi +λhmem)|2

σ2
i

+2log(2πσ
2
i )

)]
, (23)

where P(Di, f i|λ ,H) is the likelihood associated with the
data, Di, and frequencies, fi, given λ and the hypothesis, H,
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Figure 8. Flow chart which outlines our inferencing process.

Figure 9. Waveforms in the frequency domain superposed with noise curves from the second observing run. It should be noted that the
oscillatory waveform is generated from 20-Hz upward and is thus incorrect below this frequency. Since the memory contributed by a 20-Hz
signal exists at far lower frequencies, the memory is correct over each of these plot’s domain, and clearly shows dominant power at sub-20-Hz
frequencies. (LEFT) Source parameters are those of GW150914. Here, the predicted nonlinear memory (blue) cannot be detected in the
data. (RIGHT) Both components are nonspinning with Mtot = 80M�, q = 1, and dL = 20Mpc. If a signal sourced from a system with these
parameters were incident on the detectors, the accompanying memory would likely be detectable.

that memory exists in the signal. χ2 is the summation term
on the right hand side of the equation. Clearly, if the goal is
to find the location in parameter space for which χ2 is at a
minimum, then we could accomplish this goal by finding the
location at which the likelihood is at a maximum. Figures (10)
and (11) illustrate this approach graphically and analytically.

B. Early Experiments

Following preliminary work, we completed a rudimentary
version of our BILBY parameter estimation code which fea-
tures a gravitational wave model with memory and uniform
priors for all inferred parameters. At first, we only examined
simulated data with high SNR (≈ 1000) to debug the code, run
simple experiments, and observe output effects when settings
are varied. Figures (12) - (15) show sample corner plots for
1-, 2-, and 3-dimensional parameter estimation. In all cases,
the high SNR allows for accurate parameter estimation, yet

the low-level noise still allows for differences in standard de-
viation between posterior distributions when, say, distance is
varied. In all 1-dimensional probability distribution functions
(PDFs), the orange vertical line demarcates the given param-
eter’s actual (simulated) value and the dotted, blue, vertical
lines subtend the 1σ confidence interval. In all 2-dimensional
contour plots, the three regions in order of decreasing bright-
ness are the 1σ , 2σ , and 3σ regions. Median values for the
distributions are given above each inset plot.

C. Lambda Bimodality Experiments

Lasky et al [24] predicts that a double degeneracy exists
for the (2, 2) mode in polarization angle, ψ , and coalescence
phase, φc, leading to a bimodal distribution for λ . This bi-
modality arises because a (2, 2)-only oscillatory waveform
with parameters (ψ, φc) is unchanged by the transformation
(ψ + 2π, φc + 2π), but, under the same transformation, the
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Figure 10. Plot of P(D|λ ) vs. λ obtained by raising 10 to the power
given in Equation (23). The injected waveform used to generate this
likelihood distribution is sourced by non-spinning components with
Mtot = 60M� , q = 1, dL = 100 Mpc, ι = π/2, ψ = 0, φc = 0, α = 0,
δ = 0. The red dot is the peak value and location computed through
scipy.optimize.

Figure 11. The injected waveform used to generate this likelihood
distribution is sourced by non-spinning components with Mtot =
60M�, q = 1, dL = 100 Mpc, ι = π/2, ψ = 0, φc = 0, α = 0,
δ = 0. The red dot is the peak value and location computed through
scipy.optimize.

memory constant changes sign. Including higher order modes
breaks this degeneracy. Using Bayesian parameter estimation,
we empirically prove this effect as shown in Figure (16).

Next, we found the distance at which the bimodality of λ ’s
PDF can be resolved and noted an interesting phenomenon
which arises at dL = 735 Mpc when all modes are included.
These observations, a discussion of this interesting feature,
and the accompanying plots are all given in Figure (17).

From here, we also inferred the source’s inclination angle,
ι . Working with only the (2, 2) mode, we compared noise-
less and noisy data and found an, as yet, unexplained feature.
The relevant plots and a discussion of this feature are given in

Figure (18).
Finally, we added in all modes and examined the results for

noisy data at various distances. Corner plots for two distances
and the accompanying observations are given in Figure (19).

D. GW150914

Finally, we applied our approach to GW150914 and found
that λ = −0.65± 2.25,which does not exclude zero. Thus,
LIGO cannot detect memory for this event. The corner plot is
given in Figure (20).

IV. CONCLUSION

To determine the detectability of memory across the LIGO-
VIRGO network, we built a model htot = hosc +λhmem, des-
ignating λ as the memory constant. We then used Bayesian
parameter estimation to infer λ from simulated and real data
over various SNR values. After completing several simple ex-
periments involving simulated, noiseless data, we confirmed
the prediction by Lasky et al that λ switches parity under the
transformation ( ψ → ψ + π/2, φ → φ + π/2) only when
higher-order modes are absent. We conclude that, in such
cases, λ should be defined as positive, and the associated prior
interval for λ should be bound on the left by 0. Finally, we
applied our approach to GW150914 and found that memory
is not detectable for this event.

From here, we would like to make the NRSur7dq4 approx-
imant compatible with GWMemory, which will allow us to
extend the upper mass ratio limit from 2 to 4, which is becom-
ing more important as higher mass ratio binaries are being
discovered [25]. We would also like to apply our approach
to the remaining O1 and O2 events, and, later, all O3 events.
Among these events, many promising candidates for memory
detectability still remain. Even for GW150914, we can still
improve analysis by using the method suggested in Hubner et
al [26]. In short, we would use all of GW150914’s memory-
less posterior samples in our approach, averaging the final re-
sults to obtain a final posterior for λ . Our code has been im-
proved greatly since its inception and is now able to handle
a wider variety of source parameters. Also, average runtimes
have been reduced by nearly 90%. However, further optimiza-
tion in utility and efficiency is still worth investigating.

In the future, we wish to investigate a technique called event
stacking which may be allow us to detect memory for events
with currently non-detectable memory. Using this technique,
we would combine multiple, similar merger events, increas-
ing λ and, thus, the statistical precision with which we can
measure λ . How many events and how similar they must be
for the method to be successful is a matter for further investi-
gation, and will likely require the use of our approach in this
project to answer.
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Figure 12. Standard deviation increases with distance, indicating that the data gives diminishing information for how to correct the prior. The
injected waveform used to generate each plot is sourced by non-spinning components with Mtot = 60M� , q = 1.5, ι = π/2, ψ = 0, φc = 0,
α = 0, δ = 0. (Left) dL = 100 Mpc, (Center) dL = 500 Mpc, and (Right) dL = 1000 Mpc.

Figure 13. Both q and λ ’s PDF widen with distance. The scales indicate that, unsurprisingly, q, is measured more accurately than λ at each
distance. The injected waveform used to generate each plot is sourced by non-spinning components with Mtot = 60M� , q = 1.5, ι = π/2,
ψ = 0, φc = 0, α = 0, δ = 0. (Left) dL = 100 Mpc, (Center) dL = 500 Mpc, and (Right) dL = 1000 Mpc.

Figure 14. The posterior for dL remains unchanged for each q value, but λ ’s posterior increases in width for increasing q. The injected
waveform used to generate each plot is sourced by non-spinning components with Mtot = 60M�, dL = 100 Mpc, ι = π/2, ψ = 0, φc = 0,
α = 0, δ = 0. (Left) q = 1, (Center) q = 1.5, and (Right) q = 2.
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Figure 15. 3-dimensional parameter estimation for dL, q, and λ . The injected waveform used to generate each plot is sourced by non-spinning
components with Mtot = 60M�, q = 1.5, dL = 100 Mpc, ι = π/2, ψ = 0, φc = 0, α = 0, δ = 0.

Figure 16. (Left) Inferring ψ , φc, and λ for a (2, 2) mode-only injected signal introduces bimodality in λ ′s PDF. (Right) The bimodality is
absent when higher order modes are introduced. The injected waveform used to generate each plot is sourced by non-spinning components
with Mtot = 60M�, q = 1, dL = 100 Mpc, ι = π/2, ψ = 0, φc = 0, α = 0, δ = 0.

Figure 17. (Left) The distance is increased such that the (2, 2) mode-only peaks are non-resolvable. (Right) When higher order modes are
added at this distance, an interesting phenomenon occurs: ψ and φc become degenerate as the 1σ line for λ ’s PDF sweeps past λ = 0. At this
point, non-trivial evidence is given for λ = −1, indicating (incorrectly) a bimodal distribution. The injected waveform used to generate each
plot is sourced by non-spinning components with Mtot = 60M�, q = 1, dL = 735 Mpc, ι = π/2, ψ = 0, φc = 0, α = 0, δ = 0.
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Figure 18. Both plots include (2, 2) mode-only waveform information and differ only in SNR. (Left) Noiseless data includes unequally-sized
peaks in λ ’s PDF. (Right) At this same distance, noisy data includes equally-sized peaks. The unequal peaks suggest greater evidence for
negative memory in disagreement with Lasky et al’s prediction. This effect is present in every posterior sample of this kind generated, so
sampling error is unlikely. At present, we are unable to explain why this effect occurs. The injected waveform used to generate each plot is
sourced by non-spinning components with Mtot = 60M�, q = 1, dL = 280 Mpc, ι = π/2, ψ = 0, φc = 0, α = 0, δ = 0.

Figure 19. Plots include noisy, all-mode waveform information. (Left) dL = 280 Mpc. (Right) Increasing dL to 950 Mpc causes the formation
of a second peak in λ ’s PDF for λ < 0 and thus introduces degeneracy in ψ and φc. The original peak has also shifted rightward, indicating
that BILBY is unable to completely distinguish the waveform from the noise. The injected waveform used to generate each plot is sourced by
non-spinning components with Mtot = 60M�, q = 1, ι = π/2, ψ = 0, φc = 0, α = 0, δ = 0.
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Figure 20. Strain data comes from GW150914. Non-inferred priors were retrieved from posterior samples obtained by memory-less parameter
estimation. These values correspond to the maximum likelihood and are M = 70.4 M�, q = 1.1, dL = 342.2 Mpc, ι = 2.5, ψ = 0, φc = 0,
α = δ = 1.2. As seen, memory cannot be detected for this event. Parameter values are retrieved from Abbott et al. [4].
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