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The detection of gravitational waves from compact binary coalescence by Advanced LIGO and
Advanced Virgo provides an opportunity to study the strong-field, highly-relativistic regime of grav-
ity. Gravitational-wave tests of General Relativity (GR) typically assume Gaussian and stationary
detector noise, thus do not account for non-Gaussian, transient noise features (glitches). We present
the false deviations from GR obtained by performing parameterized gravitational-wave tests on sim-
ulated signals from binary-black-hole coalescence overlapped with instrumental glitches. We then
separately apply three common glitch mitigation methods and evaluate their effect on reducing false
deviations from GR.

I. INTRODUCTION8

Over a century after its formulation in 1915, Einstein’s9

General Relativity (GR) remains as the accepted theory10

of gravity, passing all precision tests to date [1]. In the11

weak-field, slow-motion regime, where the effects of met-12

ric theories of gravity can be approximated as higher-13

order post-Newtonian (PN) corrections to the Newto-14

nian theory [2], GR lies within the stringent bounds set15

by solar-system tests and pulsar tests [3, 4]. Recent16

attention has turned to testing GR in the strong-field,17

highly-relativistic regime [3], which potentially suggests18

high-energy corrections to the Einstein-Hilbert action [5],19

making GR compatible with standard quantum field the-20

ory [1]. One approach to probe the strong-field regime21

is through the detection of gravitational waves (GWs),22

which propagates at the speed of light and carries infor-23

mation about its astrophysical origin [6].24

Since 2015, Advanced LIGO [7] and Advanced Virgo25

[8] have jointly announced 14 confident detections of26

GWs, all of which are generated by the coalescence of27

compact binaries [9–12]. The coalescence of BBHs be-28

gins as their orbital separation continuously decreases29

due to emission of GWs during the inspiral phase, until30

the point when the black holes are so close to each other31

they plunge together close to the speed of light and merge32

into a single black hole, which quickly settles down to a33

Kerr black hole during the ringdown phase [13, 14].34

Of all strong-field astrophysical events that could be35

probed, the coalescence of stellar-mass binary black holes36

(BBHs) plays a crucial role in testing GR [1]. Since the37

orbital separation of the BBH can reach far below the last38

stable orbit before merging, the gravitational field gen-39

erated can reach many order of magnitudes larger than40

other observed astrophysical events [14–16]. Moreover,41

GWs emitted by coalescing BBHs offers one of the clean-42
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est test of GR, as environmental effects such as accretion43

disks and electromagnetic fields are negligible for most44

sources [17], enabling precision tests of the strong-field45

dynamics of GR.46

Several generic tests of GR using coalescing BBHs are47

developed: consistency tests search for excess power after48

subtracting a best-fit GR waveform from the data [18], or49

compare the source parameters inferred using only high-50

frequency data to that inferred using only low-frequency51

data [18]; parameterized tests introduce parameterized52

deformations to waveform approximations to GR, which53

is in turn inferred using Bayesian parameter estimation54

[16]. To this date, no evidence for violations of GR has55

been identified using GWs emitted by coalescing BBHs56

[19].57

Aside from GWs, a GW detector output can be at-58

tributed to many independent sources of random noise59

[20]. In light of the central limit theorem, and by as-60

suming that noise characteristics remain stationary over61

timescales of observing GW signals from BBH coales-62

cence, noise in GW detectors are typically modeled to be63

stationary and Gaussian in tests of GR [21, 22]. How-64

ever, these assumptions cannot account for transient,65

non-Gaussian noise features which enter GW detectors,66

commonly referred to as glitches [23–25]. Four classes of67

commonly-seen glitches in the LIGO detectors during the68

O3 observing run are shown in Figure 1. If the presence69

of glitches were not accounted for, one may infer from70

the detected waveform that a deviation from GR has oc-71

curred. The extent to which glitches mimic the effects of72

a deviation of GR and the effecst of glitch mitigations to73

tests of GR deserve an investigation.74

This report is structured as follows: In Section II we75

introduce the typical data model used in GW data anal-76

yses [21, 22], which composes of a GW strain component77

and a stationary Gaussian noise component. In Section78

III we discuss the phase parameterization of an inspiral-79

merger-ringdown waveform model [26] and its connec-80

tion with tests of GR. In Section IV we introduce three81

commonly-used glitch mitigation measures. In Section82
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(a) Scattered-light glitch (b) Blip glitch

(c) Fast-scattering glitch (d) Tomte glitch

FIG. 1. Glitches with similar morphology are categorized into
different classes. Four spectrogram representations (Q-scans)
of commonly-seen classes of glitches in LIGO Hanford and
Livingston detector during the O3 observing run are plotted.
The colour represents the normalized energy of the signal at
each time-frequency bin [24].

V, we describe our methods of preparing data samples83

with glitches overlapping GW signals, applying mitiga-84

tion measures and performing parameterized tests of GR.85

II. DATA MODEL86

A GW detector is designed to respond linearly to the87

fractional change in arm length, or strain [20]. The time88

series of detector output data d, sampled at time tk at89

constant sampling interval ∆t, can thus be expressed as90

a linear superposition of a time series of the GW strain91

signal h and a time series of detector noise n:92

d(tk) = h(tk) + n(tk) . (1)

In Eq. (1) and in subsequent discussion, boldface denotes93

the matrix representation of the specified quantities.94

A. Gaussian Noise Model95

Assume that a large number of independent noise96

sources contributes linearly to the detector noise n. Un-97

der these assumptions, the central limit theorem states98

that the probability density distribution of attaining an99

output value of n(t0) at an arbitrary time t0 in the ab-100

sence of signal tends to be Gaussian [27]:101

P (n(t0)) =
1√

2πσ2
e(n−µ)

2/2σ2

, (2)

which is uniquely characterized by the mean µ and102

the variance σ2 at t0, defined as the ensemble average103

E[n(t0)] and E[(n(t0)−µ)2] respectively. The joint prob-104

ability density for N samples of noise collectively attain-105

ing values of n(t0), n(t1), ..., n(tN−1) is given by the mul-106

tivariate Gaussian distribution:107

P (n) =
1√

(2π)N |Σ|
e−

1
2 (n−µ)

TΣ−1(n−µ) , (3)

where Σij = E[(n(ti) − µ(ti))(n(tj) − µ(tj))] is the co-108

variance matrix and |Σ| denotes its determinant. The109

off-diagonal terms of the covariance matrix are measures110

of the correlations between data from different instances111

of time.112

In addition, the joint probability density distribution113

is assumed to be time-invariant, which is a reasonably114

good approximation for Gaussian noise over timescales115

of observing GW signals from coalescing BBHs [6]. Noise116

satisfying this assumption is said to be stationary. With-117

out loss of generality, we will henceforth set µ = 0. For118

stationary noise, the correlation between data sampled at119

time ti and tj only depend on the time lag τ ≡ |ti − tj |.120

We define the auto-correlation R(τ) as121

Σij = E[x(ti)x(tj)] = 〈x(t)x(t+ τ)〉 ≡ R(τ) , (4)

where 〈·〉 denotes the time average over many samples.122

If the number of samples N is large, it is undesirable to123

invert the N ×N covariance matrix in Eq. (3). Instead,124

we consider the joint probability density in Fourier do-125

main, which is a multivariate Gaussian distribution [27]126

with a covariance matrix which tends to be diagonalized127

as the discrete time series approach the continuum limit128

[28]. For even N , we define the one-sided power spectral129

density (PSD) from the real discrete Fourier transform130

(DFT) of the auto-correlation R(τ):131

Snj ≡ ∆t DFT[R(τ)] = 2∆t

N−1∑
k=0

R(τk)e−i2πjk/N , (5)

where j = 0, 1, ..., N/2 − 1 and the frequencies fj ≡132

j/N∆t are sampled from 0 up to the Nyquist frequency133

1/2∆t. Inverting Eq. (5) for the zero-lag case, we get134

N/2−1∑
j=0

Snj∆f = R(0) = 〈n2(t)〉 , (6)

where ∆f ≡ 1/T is the frequency resolution. Summing135

the PSD over frequency bins as in Eq. (6) returns the136

power of the time series. In terms of the PSD, the joint137
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probability density in Fourier domain is approximately138

[28]139

P (ñ) '
N/2−1∏
j=0

2∆f

πSnj
exp

(
−∆f

2|ñj |2

Snj

)
, (7)

where the frequency series ñ is similarly defined as140

ñj ≡ ∆t DFT[nk] = 2∆t

N−1∑
k=0

nke
−i2πjk/N . (8)

Eq. (7) is also known as the Whittle likelihood [29] in the141

context of statistical inference.142

B. Signal Model143

Since the two-body self-gravitating problem cannot be144

solved analytically in GR, we generate simulated GW145

strain signals from coalescing BBHs using the frequency-146

domain precessing inspiral-merger-ringdown waveform147

model IMRPhenomPv2 [26] in virtue of its good match148

with Numerical Relativity (NR) waveforms [30] and low149

computational costs.150

IMRPhenomPv2 is a phenomenological waveform model151

constructed by combining PN-like inspiral waveforms152

with NR merger-ringdown waveforms [31]. Its inspiral153

stage is modeled up to f ∼ 0.018/M in natural units,154

where M is the total mass of the system. The region with155

Mf ≥ 0.018 is subdivided into an intermediate stage156

with 0.018 ≥ Mf ≥ 0.5fRD, which bridges the inspiral157

stage to the merger-ringdown stage modeled above half158

the ringdown frequency fRD [31]. Fig. 2 illustrates the159

stages of coalescence of an example IMRPhenomPv2 GW160

strain and its frequency evolution over time.161

The phase of IMRPhenomPv2 composes of terms with162

known frequency dependence. The coefficients of these163

terms, denoted as the phase coefficients pi, are the sub-164

jects of parameterized tests of GR in Section III. The165

phase coefficients pi can be categorized into three groups,166

depending on the stages of coalescence in which they pre-167

dominantly assert their effect on [16, 31]: (i) the inspi-168

ral PN coefficients {ϕ0, ..., ϕ5, ϕ5l, ϕ6, ϕ6l, ϕ7} and phe-169

nomenological coefficients {σ0, ..., σ4}; (ii) the interme-170

diate phenomenological coefficients {β0, ..., β3}; (iii) the171

merger-ringdown phenomenological and black hole per-172

turbation theory coefficients {α0, ..., α5}.173

The phase coefficients pi depends only on the masses174

and spin angular momentum vectors of the component175

black holes [30], denoted as the intrinsic parameters. To176

determine the response of an Earth-based detector, we177

need to further specify the extrinsic parameters, includ-178

ing the sky location and distance, polarization angle, the179

spatial orientation of the BBH system with respect to the180

Earth at a reference frequency, and the orbital phase of181

the system at an arbitrary time.182

FIG. 2. An example GW strain (upper figure) generated with
the IMRPhenomPv2 approximant and the corresponding instan-
taneous frequency (lower figure) is plotted against time. The
two horizontal lines in the lower figure correspond to the fre-
quencies Mf = 0.018 (blue line) and fRD/2 (orange line),
which defines the boundaries of the inspiral (green curve),
intermediate (light blue curve) and merger-ringdown (dark-
orange curve) stages of coalescence for IMRPhenomPv2. This
figure is reproduced from Fig. 1 of Ref. [16].

III. PARAMETERIZED TESTS OF GR183

In this project, we will focus on a parameterized test184

of GR, which introduces fractional deviations δpi, also185

known as de-phasing coefficients, to IMRPhenomPv2 phase186

coefficients pi [16]:187

pi 7→ pi[1 + δpi] . (9)

In practice, we do not allow some of the IMRPhenomPv2188

phase coefficients to deviate from their prescribed values189

as they have large uncertainties or are degenerate with190

with other coefficients or physical parameters [16]. We191

therefore perform tests with the remaining 13 dephasing192

coefficients, henceforth denoted as the testing dephasing193

coefficients [16]:194

{δpi} = {δϕ0, ..., δϕ4, δϕ5l, δϕ6, δϕ6l, δϕ7,

δβ2, δβ3, δα2, δα3, δα4} .

The frequency dependence of the testing dephasing coef-195

ficients δpi is shown in Table I [18, 32].196

To quantify a deviation from GR, we can infer the197

most probable values of δpi through Bayesian parameter198

estimation, as discussed in the following subsection.199

A. Parameter Estimation200

Recall our data model d = h + n. Introducing pa-201

rameterized phase deviations to the signal h, we denote202

θ as the set of parameters generating the signal, which203

includes the testing dephasing coefficients δpi in addition204

to the intrinsic and extrinsic parameters discussed in Sec205

II B. In practice, the dephasing coefficients are introduced206
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Stage of

coalescence
δpi

f -

dependence

Inspiral δϕ0 f−5/3

δϕ1 f−4/3

δϕ2 f−1

δϕ3 f−2/3

δϕ4 f−1/3

δϕ5l log(f)

δϕ6 f1/3

δϕ6l f1/3 log(f)

δϕ7 f2/3

Intermediate δβ2 log f

δβ3 f−3

Merger- δα2 f−1

Ringdown δα3 f3/4

δα4 tan−1(af + b)

TABLE I. The frequency dependence of IMRPhenomPv2 de-
phasing coefficients used in parameterized tests of GR. The
table is reproduced from Table 1 of Ref. [18].

once at a time [18]. A total of 15 parameter estimation207

runs are thus performed on each data segment.208

Given the detector output d and prior information I,209

we wish to infer the conditional probability density of θ,210

referred to as the posterior, by invoking Bayes’ theorem211

P (θ|d, I) =
P (d|θ, I)× P (θ|I)

P (d|I)
, (10)

which relates the posterior to three probability densities:212

the likelihood P (d|θ, I), the prior P (θ|I) and the ev-213

idence P (d|I). During parameter estimation, the evi-214

dence, which do not depend explicitly on θ, can be seen215

as a proportionality constant since d and I are kept fixed.216

The likelihood and prior is separately discussed below.217

Given h(θ), the time series of the output data d218

uniquely defines a time series of the residual noise d−h,219

which is assumed to be Gaussian and stationary. As such,220

the likelihood is approximated by the Whittle likelihood221

in Eq. (7), written in logarithmic form:222

logP (d|θ, I) =

N/2−1∑
j=0

log

(
2∆f

πSnj

)
− 1

2
(d− h|d− h) ,

(11)
where (·|·) is the noise-weighted inner product [33]:223

(a|b) ≡
N/2−1∑
j=0

4<

(
ã∗j b̃j

Snj

)
∆f . (12)

In practice, the PSD Snj of the data segment of interest224

is typically estimated using adjacent data segments [22].225

The first term on the right side of Eq. (11) do not depend226

on h thus could be seen as a proportionality constant.227

Assuming that noise from multiple detectors, indexed l,228

are uncorrelated, the joint likelihood takes the form229

P (dl|θ, I) ∝ −1

2

∑
l

(dl − hl|dl − hl) . (13)

The prior P (θ)|I) incorporates our beliefs about θ230

prior to the observation. We follow the default choice of231

prior in LALInference [22], which include uniform priors232

for the component masses m1 and m2, with m2 < m1, a233

log-uniform prior for the luminosity distance, an isotropic234

prior for the sky location of the source and the spin an-235

gular momentum vectors of the component black holes,236

and uniform priors for the rest of the parameters. In237

LALInference, the uniform priors specified for compo-238

nent masses are transformed to non-uniform, correlated239

priors for the chirp massM≡ (m1m2)3/5(m1 +m2)−1/5
240

and the mass ratio q ≡ m2/m1 for more efficient sam-241

pling [22].242

In parameterized tests of GR, parameters of primary243

interest are the testing dephasing coefficients δpi, while244

the posterior distribution spans the full parameter space.245

We therefore compute the marginalized posterior distri-246

bution for the testing dephasing coefficient δpi which we247

introduced into the waveform:248

P (δpi|d, I) =

∫
P (θ|d, I)dθintdθext , (14)

where θint and θext denotes the intrinsic and extrinsic pa-249

rameters which generates the underlying IMRPhenomPv2250

waveform respectively.251

IV. GLITCHES AND THEIR MITIGATION252

Many efforts are made to develop algorithms that iden-253

tify glitches [34–37], which play an important role in254

gravitational-wave searches. Once a glitch is identified,255

the data around the glitch could be zeroed out either au-256

tomatically by search pipelines [38, 39] or manually by257

multiplying an inverse window function [38, 39]. This258

process, known as gating, is illustrated in Figure 3.259

A similar procedure can be done in the frequency do-260

main: if the glitch is localized in certain intervals of261

frequency, zeroing out the corresponding frequency bins262

through band-pass filtering would eliminate the glitch. In263

LALInference, data is high-passed at 20 Hz by default264

[22], which can be specified to a higher value to high-pass265

the frequency bins affected by the glitch.266

A more sophisticated approach introduced by267

BayesWave [40, 41] infers the most probable glitch268

model, constructed using a variable number of sine-269

Gaussian wavelets, using Bayesian inference. This270

glitch model is then subtracted from the data. This271

procedure, known as de-glitching, was employed for the272

glitch-contaminated GW170817 data [42] as illustrated273

in Figure 3.274275

In our study, we will separately apply the three miti-276

gation measures of 1) gating, 2) band-pass filtering and277

3) de-glitching to data samples.278



5

FIG. 3. The output data from the LIGO-Livingston detec-
tor during GW170817 is plotted over time in the bottom fig-
ure (orange curve). A glitch was identified around the time
t = −0.75 s to −0.5 s in the figure. To infer the sky location
of the event during rapid sky localization, data was multi-
plied by an inverse Tukey window function (black curve) [42].
To infer the source properties during parameter estimation,
a glitch model (blue curve) reconstructed with BayesWave is
subtracted from the data [42]. The upper figure shows a spec-
trogram of the raw LIGO-Livingston data. The figure is re-
trieved from Abbott et al. [42]

V. METHODOLOGY279

Our goals are to investigate the extent to which glitches280

mimic the effects of a deviation of GR in parameterized281

tests of GR, and evaluate the effect of common glitch282

mitigation methods on reducing false deviations from283

GR. To this end, we first prepare data samples by in-284

jecting simulated IMRPhenomPv2 signals coherently into285

Hanford (H1), Livingston (L1) and Virgo (V1) detector286

segments where glitches are present. We then perform287

gating, band-pass filtering, and de-glitching as outlined288

in Sec IV on the data samples. Lastly, we perform param-289

eter estimation on the mitigated and unmitigated data290

samples using LALInference, where the dephasing coef-291

ficients δpi are allowed to vary one at a time.292

A. Preparing Data Samples293

On the one hand, the simulated signals in all data294

samples are all chosen to be the maximum likelihood295

IMRPhenomPv2 waveform for the GW event S190828l,296

which is a BBH merger with total mass of ∼ 44M� and297

a low mass ratio of ∼ 0.4. A blop of excess power in L1298

overlapped the inspiral stage of the GW signal as shown299

in Fig 4. The mitigation of the excess power through300

band-pass filtering lead to pathological features in pa-301

FIG. 4. A Q-scan of the whitened output L1 data for the event
S190828l. The white grid lines mark the boundaries for the in-
spiral, intermediate and merger-ringdown stage of coalescence
in time (left to right) and frequency (bottom to top). A blob
of excess power can be seen overlapping the inspiral stage.
The instantaneous frequency of the simulated S190828l-like
signal is plotted on top of the Q-scan (red curve).

rameterized tests of GR [43], motivating us to reproduce302

the situation in our study.303304

On the other hand, one scattered-light glitch, shown in305

Fig. 1a, and one tomte glitch, shown in Fig. 1d, are cho-306

sen to overlap the signal. As seen from Fig. 5, scattered-307

light glitches (blue) and tomte glitches (red) have rel-308

atively high rates of occurrence throughout the O3 ob-309

serving run. The two classes of glitches differs greatly in310

morphology: tomte glitches have short duration with a311

median of 0.625 s and typically affect the data at ∼ 20312

Hz to ∼ 130 Hz, spanning the inspiral and intermedi-313

ate stages in frequency. Whereas scattered-light glitches314

have a longer duration with a median of 1.75 s, and a315

large population of H1 scattered-light glitches are local-316

ized at a frequency range of ∼ 30 Hz, intersecting the317

signal track during the early inspiral. The duration of318

four classes of commonly-seen glitches are retrieved from319

the search pipeline Gravity Spy [24] and plotted in Fig.320

5.321322

The S190828l-like signal is generated and injected into323

output data across multiple detectors during the times324

when the chosen H1 scattered-light or L1 tomte glitch325

were present. The injection are done coherently across326

detectors, taking into account the detector responses327

and the arrival time delays of the GW. The injection328

time of the simulated signal is slightly adjusted so that329

the glitches overlap with the inspiral, intermediate and330

merger-ringdown stage of the signal, producing in total331

six data samples of glitch-overlapped signals. We de-332

veloped and validated a specialized injection program to333

automate the above process, discussed in Appendix ??.334

The Q-scans of these six data samples are plotted in Fig.335

6.336
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FIG. 5. Left: A distribution of Hanford (H1) and Livingston (L1) detector glitches identified and classified by Gravity Spy at
95% confidence during the O3a and O3b observing runs. Different colors denote different classes of glitches. Glitches which
occur rarely (< 5% in O3) or at lower frequencies < 20 Hz are categorized into the “Others” class. Right: Probability densities
of the duration of four classes of glitches retrieved from Gravity Spy. The duration of glitches are plotted in logarithmic scale.
Tomte glitches are preferred over fast-scattering glitches in our study due to their shorter duration.

FIG. 6. Six data samples are prepared by injecting simulated IMRPhenomPv2 waveform generated with the maximum likelihood
parameters for S190828l coherently into detector outputs when a L1 tomte glitch (left) and a H1 scattered light glitch (right)
are present. By slightly adjusting the time of injection, the glitches are made to affect the inspiral (top row), intermediate
(middle row) and merger-ringdown (bottom row) stage respectively. The white grid lines mark the boundaries for the inspiral,
intermediate and merger-ringdown stage of coalescence in time (left to right) and frequency (bottom to top).

Appendix A: Injection Tool337

We have developed an injection program, injhelper,338

which automates the multi-step process of calculating de-339

tector responses and time delays, generating GW strain340

waveforms, retrieving detector output data and perform-341

ing injections. Under the hood, it is a wrapper which342

passes source parameters to LALSimulation [21] and ma-343

nipulates the output waveform using GWpy [44].344

The program is validated with two independent ways.345

“Blind” injections were performed using injhelper and346

were successfully recovered (see Fig. 7). Bayesian param-347

eter estimation were performed on injected data and the348

parameter values recovered are in fair agreement with the349

injected values (see Fig. 9).350

https://git.ligo.org/jack.kwok/TGR-with-glitches/-/tree/master/Injection_Helper
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H1 detector noise (right). Top: the estimated PSD (blue) are plotted with the design sensitivity (orange). Bottom:
matched-filtering was performed and the injection times are successfully retrieved from the SNR peaks. This indicates that
successful injections are performed by injhelper.
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FIG. 9. Parameter estimation was performed on real H1 and L1 detector noise containing an injection. We assume an
IMRPhenomPv2 model for the signal. Marginalized posteriors are plotted for chirp mass, mass ratio, effective spin (top left to
right), luminosity distance, right ascension and declination (bottom left to right). The red lines denote the injected value of
the parameter, while the black lines for each parameter (except right ascension and declination) correspond to 1σ from the
median. Injected values are seen to lie within, or lie near the boundary of the 1σ confidence interval. Bimodal distributions are
obtained for right ascension and declination since only two detectors are used, yet the injected values are close to the peaks.
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