Worst offenders in O3a/O3b

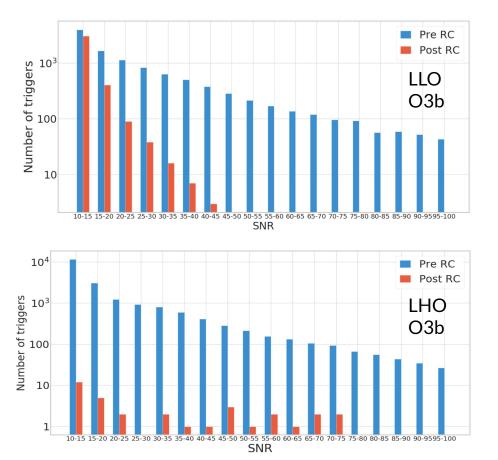
Sidd, TJ for DetChar

Detector characterization

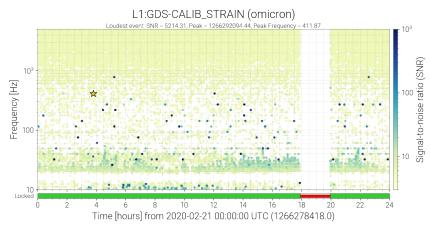
- Identify noise and noise sources in the detector and monitor its performance
- Development and maintenance of detchar tools required for data analysis
- Validation of gravitational wave signals
- Back and forth communication with the commissioning team to help improve detector's performance

Glitch categories in O3b

ML confidence: 0.95

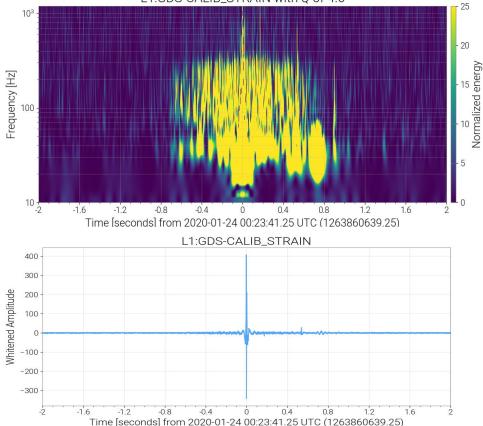

Glitch \$	Count -	Percent \$	÷
Scattered_Light	55216	72.6%	
Extremely_Loud	5308	7.0%	
Koi_Fish	3243	4.3%	1
Blip	3189	4.2%	1
Blip_Low_Frequency	1676	2.2%	L
Low_Frequency_Burst	1592	2.1%	Į.
Tomte	1261	1.7%	L
Fast_Scattering	1141	1.5%	I
Whistle	1137	1.5%	L
Low_Frequency_Lines	709	0.9%	

ML confidence: 0.95

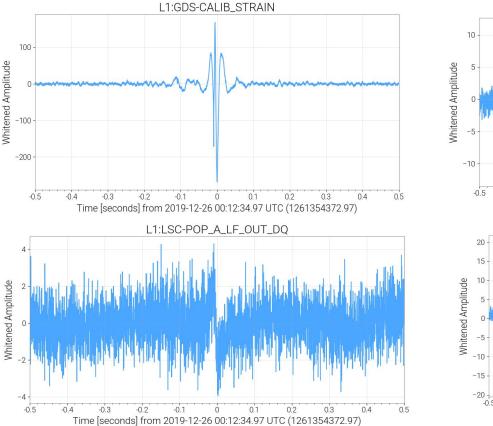

Glitch 🜩	Count -	Percent \$	\$
Scattered_Light	41779	33.6%	
Fast_Scattering	32230	25.9%	
Tomte	21364	17.2%	
Blip_Low_Frequency	7774	6.3%	•
Whistle	5165	4.2%	1
Extremely_Loud	3226	2.6%	I
Low_Frequency_Burst	2692	2.2%	I
Koi_Fish	2474	2.0%	I
Blip	2369	1.9%	I
Low_Frequency_Lines	1843	1.5%	1

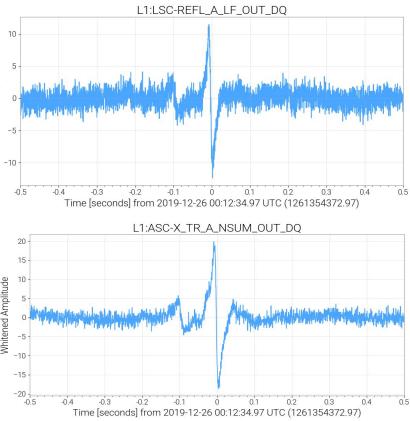
GravitySpy H1

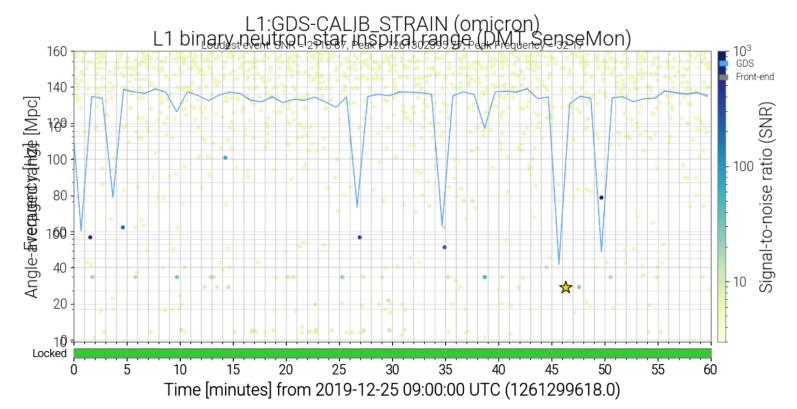
Scattered Light



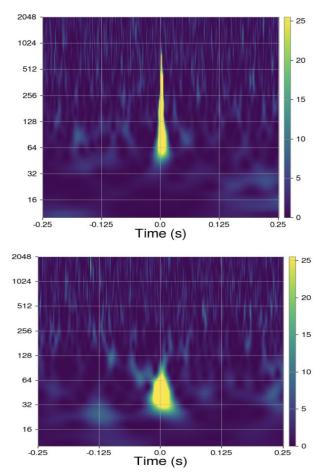
- Considerable reduction observed in Slow scattering noise at both L1 and H1 after RC tracking
- See <u>P2000172</u>, <u>G2000571</u> for more details
- Fast scattering is still a problem during trains and high anthropogenic noise


Loud glitches


L1:GDS-CALIB_STRAIN with Q of 4.6

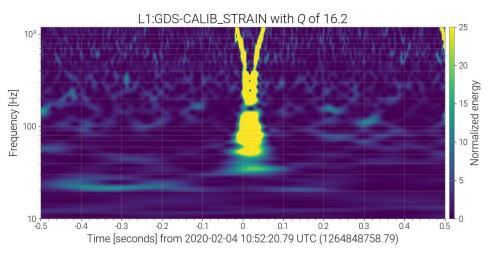

- Responsible for the large drops in range
- Occur with a rate of about 1.75 to 2.75 per hour (SNR > 200)
- Slight decrease in rate from O3a to O3b at both L1 and H1
- Common witnesses LSC_POP/LSC_REFL, TRX/TRY

Loud glitches

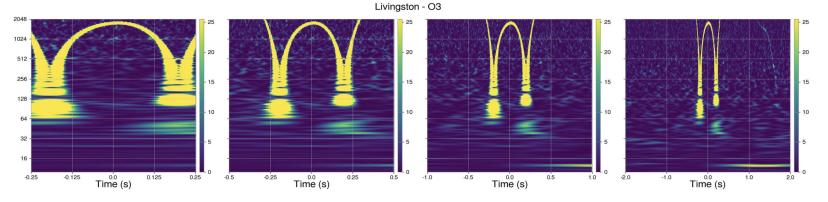


Loud glitches — Range drops

Blips and low frequency blips


- Short duration glitches with large frequency bandwidth O(100) Hz
- Look like gravitational wave signals of compact binaries with large total mass
- Coupling mechanism not well understood
- Identified by GravitySpy
- A subclass "Blip_low_frequency" recently added to GravitySpy
- See LIGO-<u>P1800403</u> for more details on investigations

Tomte



- Short duration glitches, duration longer than blips
- Coupling mechanism not well understood
- Identified by GravitySpy
- Glitch rate went down from ~ 9 per hour in the beginning of O3b to ~ 2 per hour during the end of O3b. See alog <u>comment</u>

Whistles

- Witness channels include POP/REFL, PRCL/SRCL
- Sub-categories U shaped, V shaped, double arch W shaped
- Changes in humidity change the ref cavity transmission. See alog <u>51451</u> and <u>51330</u>
- Plenty of whistle glitches on <u>Jan 10</u> and <u>Feb 4</u> at L1

What do we veto?

Missing data/bad calibration

Pre-lockloss data

Hardware injections

Unexpected activity on site (forklifts, LN2 trucks, crane running)

Gated times that exceed 3 seconds

Incorrect configurations (gain settings, shutters left open, etc.)

Camera shutter glitches

SQZ ASC saturations Chillers switching on/off

Earthquakes

Thunder

Parametric instability ringing up High wind High violins OMC DCPD (ADC) or ESD (DAC) overflows Loud whistles witnessed by **REFL/POP**

RF modulation noise

Why don't we veto more?

For O3, improvements to search pipelines have resulted in diminishing returns for CAT2 vetoes

Focus on CAT1 vetoes, times that are not considered nominal science mode data

Personpower - developing vetoes takes a lot of times and we have a large number of events to validate and/or retract

For each retraction, we are asked "why wasn't this vetoed?"

Low latency data quality is even harder, searches don't want to miss a real signal - we only veto very obvious mechanisms (OMC DCPD ADC overflows)

Contacting DetChar

Drop us an email at <u>detchar@ligo.org</u>

For summary page requests, either email the mailing list or file an issue at: <u>https://git.ligo.org/detchar/ligo-summary-pages/issues</u>

We have two weekly telecons: DetChar main call: Mondays at 11 AM CST DetChar working call: Thursdays at 11 AM CST

Specific issues that require follow-up can be tagged as DetChar in the alog or in FRS

At LLO, the LSU DetChar contingent is a great contact point