

Xacobeo 2021

Rates of compact binary mergers from LIGO/Virgo observations

T. Dent

(IGFAE, University of Santiago de Compostela) for the LIGO Scientific & Virgo Collaborations

LIGO Document G2100014-v3

XUNTA DE GALICIA galicia

LIGO – Virgo collaborations

LIGO Scientific Collaboration

LSC-Virgo O₃ run : Where we are

- O3: 2019 Apr 1 Oct 1 (O3a)
 Nov 1 2020 Mar 27 (O3b)
- Many GW signals !
- 'GWTC-2': O3a catalog
 See talks of A. Effler,
 S. Sachdev in To1,

T01.00002: The LIGO Detectors: Sensitivity and Challenges Invited Speaker: Anamaria Effler

T01.00003: Compact Binaries in Advanced LIGO and Virgo's Third Observing Run Invited Speaker: Surabhi Sachdev

E01.00001: Tests of General Relativity with LIGO/Virgo Invited Speaker: Maximiliano Isi

> M.Isi in Eo1, many other L-V related talks

Approximate cumulative sensitivity ttps://arxiv.org/abs/2010.14527

Signals are all binary mergers (so far)...

T. Dent - Compact binary merger rates

Astrophysical models vs. GW detections

- Astrophysics modelling
 ⇒ expected merger
 distribution over
 redshift, masses,
 spins, ...
- Models do not predict individual merger parameters
- GW detections ⇒ distribution 'samples'

Dominik et al. Astrophys.J. 779 (2013) 72

Hazards of GW population analysis

Low # statistics

Measurement error

Selection bias

0.20 0.15 0.10 0.05 0.00

Noise contamination

Strategies & solutions

- Simplified / 'straw man' models
- **Bayesian hierarchical inference** ightarrow
- Search sensitivity estimation

LIGO, Phys. Rev. D 93, 112004 (2016)

 Search background estimation

10

LVC, Phys.Rev.X 6 (2016) 4, 041015

> 5*σ*

> 5*o*

 4σ 5c

Search Result

Strategies & solutions

- Simplified / 'straw man' models

 in future we will have large # statistics
- Bayesian hierarchical inference
- Search sensitivity estimation

Search background estimation

Compact binary merger parameters

- 2 × mass
- 6 × spin
- 3 × location (d/z, RA, dec)
- 3 × rotation ($\iota, \phi, \varphi_{\rm c}$)
- Time of merger $t_{\rm c}$

image credit : T. Callister

"Population properties of compact objects from [GWTC-2]"

Paper accepted, ApJL

https://dcc.ligo.org/LIGO-P2000077/public https://arxiv.org/abs/2010.14533

- Mass models & population properties
- Spin models & population properties
- Redshift dependence
- Summary rate estimates
- Outlier analysis

Mass models – power-law & beyond

 Use simple 'straw person' models to *describe* data (not derived from astro modelling !)

LVC, https://dcc.ligo.org/LIGO-P2000077/public

 O1-O2 results : p(m1) consistent with truncated power law, p(m2|m1) consistent with power law

BH mass spectrum has feature(s)!

Mass model	${\mathcal B}$	$\log_{10} \mathcal{B}$
Power Law + Peak	1.0	0.0
Multi Peak	0.5	-0.3
Broken Power Law	0.12	-0.92
TRUNCATED	0.01	-1.91
Power Law + Peak ($\delta_m = 0$)	0.87	-0.06
Broken Power Law + Peak	0.74	-0.13
Broken Power Law $(\delta_m = 0)$	0.35	-0.46
Power Law + Peak $(\lambda_{peak} = 0)$	0.05	-1.34

LVC, https://dcc.ligo.org/LIGO-P2000077/public

T. Dent - Compact binary merger rates

BH mass spectrum has feature(s) !

Mass model	${\mathcal B}$	$\log_{10} \mathcal{B}$
Power Law + Peak	1.0	0.0
Multi Peak	0.5	-0.3
Broken Power Law	0.12	-0.92
TRUNCATED	0.01	-1.91
Power Law + Peak ($\delta_m = 0$)	0.87	-0.06
Broken Power Law + Peak	0.74	-0.13
Broken Power Law $(\delta_m = 0)$	0.35	-0.46
Power Law + Peak $(\lambda_{\text{peak}} = 0)$	0.05	-1.34

T. Dent - Compact binary merger rates

Mass spectrum parameters

Minimum BH mass \bullet not well determined

30-40 M_{\odot}

Mass spectrum parameters

Astrophysical interpretation ...?

bust against the choice of inclusion of GW190521. A "pile-up" of black holes at $M_{\rm pile-up} \simeq 33 M_{\odot}$ is robustly favored by this model. We are not aware of any mechanism that could produce a pileup in the mass function in this mass range.

Baxter et al. arXiv:2104.02685

• Maximum mass >~70 M_{\odot} , large uncertainty

BH spin evidence

 $\chi_{\rm eff}$

Spins affect GW signal in two ways

- Orbit-aligned spins speed up or

slow down inspiral

ed up or

$$= \frac{\chi_1 \cos \theta_1 + q \,\chi_2 \cos \theta_2}{1+q}$$

 In-plane spins cause orbit to precess around total ang. mom.

$$\chi_{\rm p} = \max\left[\chi_1 \sin \theta_1, \left(\frac{4q+3}{4+3q}\right)q \,\chi_2 \sin \theta_2\right]$$

Schmidt, P., Hannam, M., & Husa, S. 2012, PhRvD,

 θ_1

 m_1

 χ_1

Spin magnitude / tilt inference

LVC, https://dcc.ligo.org/LIGO-P2000077/public

- Mostly small but nonzero spins
- Mostly small tilts (spins close to orbit-aligned) but *some* highly tilted / anti-aligned

Evidence for in-plane (precessing) spin

- No single binary merger has strong evidence for $\chi_p > 0$
- May be caused by BH formation kicks (isolated binaries)
- or dynamical formation, or ...

Evidence for tilts beyond 90°

- $\chi_{eff} < 0$ implies one or both spins *anti-aligned* with orbit
- ~12% to ~44% of binaries have such spins
- Suggests more than 1 formation channel active eg Zevin et al. Astrophys.J. 910 (2021) 2, 152

Redshift evolution

- Comoving rate probably increases with z
- Probably more slowly than M-D SFR ~(1+z)^{2.7}

T. Dent - Compact binary merger rates

Merger rate summary

- BBH rate (constant comoving) $R_{\text{BBH}} = 23.9^{+14.3}_{-8.6} \,\text{Gpc}^{-3} \,\text{yr}^{-1}$ - allowing redshift evolution $\mathcal{R}(z=0) = 19.3^{+15.1}_{-9.0} \,\text{Gpc}^{-3} \,\text{yr}^{-1}$
- BNS rate assuming masses uniform on (1,2.5) M_{\odot} $R_{\rm BNS} = 320^{+490}_{-240} \,{\rm Gpc}^{-3} {\rm yr}^{-1}$
- NSBH rate limit (O1-O2) 610 Gpc⁻³ y⁻¹ _{LVC, Phys. Rev. X 9, 031040 (2019)} (90% credible, 1.4+5 M_☉ systems)
 – to be updated with O3 data in upcoming publications
- Other merger rate limits : IMBH, sub-solar mass, eccentric binaries ...

LVC, Phys. Rev. D 100, 064064 (2019) LVC, Phys. Rev. Lett. 123, 161102 (2019) LVC, Astrophys. J. 883, 149 (2019)

Outlier analysis

- Events with apparently 'extreme' mass parameters
 - Consider impact of population model (~prior) on measured event masses
 - Compare with most extreme *expected* event
 - Check if inferred population is consistent under inclusion/exclusion of event

GW190521 – the heaviest BBH

• Masses (M $_{\odot}$) 95.3^{+28.7}_{-18.9} 69.0^{+22.7}_{-23.1}

- remnant is first directly detected IMBH

LVC, *Phys.Rev.Lett.* 125 (2020) 10, 101102 & *Astrophys.J.Lett.* 900 (2020) 1, L13

 Apply population prior to mass measurement (Power-law Peak)

 BBH distribution with/without event consistent

GW190814 – the 'mystery object'

• Primary ~23 M $_{\odot}$ BH, secondary 2.50–2.67 M_{\odot} — Either super-heavy NS or super-light BH

LVC, Astrophys.J.Lett. 896 (2020) 2, L44

- Clear outlier in secondary mass & mass ratio
- Probability <0.02% of seeing as small a m2 or m2/m1 over 45 events
- Indicates potential origin distinct from BBH population

Summary & outlook

- Detections up to O₃a : 'large' BBH population but so far only hints at astrophysical features
- Excess of BBH with mass around 33 $\rm M_{\odot}$
- Binary spins are not all orbit-aligned !
- 2 BNS ⇒ not yet a 'population'
- GW190814 challenges usual classifications
- O3b : 5 more months at ~equal sensitivity
- O4 : 2022+, with KAGRA : watch this space !

LVC public data products

GW Open Science Center data on GWTC-2

https://www.gw-openscience.org/eventapi/html/GWTC-2/

	Version	Release		Mass 1 (M_{\odot})	Mass 2 (M $_{\odot}$)	Network SNR	Distance (Mpc)		Total Mass (M $_{\odot}$)
Name			GPS ↓					Xeff	
GW190930_133541	v1	GWTC-2	1253885759.2	+12.4 12.3 _{-2.3}	+1.7 7.8 _{-3.3}	9.8	+360 760 ₋₃₂₀	+0.31 0.14 _{-0.15}	+8.9 20.3 _{-1.5}

 Data release : population model samples, notebook to reproduce figures

Related Rate/Pop talks

- Daniel Wysocki Compact binary populations following O3a
- Maya Fishbach Cecilia Payne-Gaposchkin Award Finalist (2021): *LIGO-Virgo's Biggest Black Holes and the Mass Gap*
- Vicky Kalogera *Filling in the Mass Gap: GW190814*
- Philippe Landry Distinguishing the Nature of the Lighter Compact Object in the Binary Merger GW190814
- Gayathri V. The Heaviest Black Holes of LIGO/Virgo
- Brendan O'Brien *LIGO-Virgo binary black holes in the pair-instability mass gap*
- Salvatore Vitale *New spin on LIGO-Virgo binary black holes*
- Vijay Varma Constraining recoil kicks for LIGO-Virgo binary black hole populations
- Javier Roulet Characterizing the Population of Binary Black Holes with Detections of Arbitrary Significance
- Nicholas DePorzio Distinguishing Black Hole Binary Formation Channels With Eccentricity Measurements and Other New Gravity Wave Probes

This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

30

BACKUP SLIDES

PowerLaw + Peak parameters

Figure 16. Posterior distribution for mass hyper-parameters for POWER LAW + PEAK. The fit excludes GW190814. The

ՄՆՈ

10

'Default' spin model parameters

LVC, https://dcc.ligo.org/LIGO-P2000077/public

T. Dent - Compact binary merger rates

'Default' spin model

Model spin magnitudes as Beta

$$\pi(\chi_{1,2}|\alpha_{\chi},\beta_{\chi}) = \text{Beta}(\alpha_{\chi},\beta_{\chi})$$

Tilts (cos θ) described by mixture :

 ζ * truncated Gaussian + (1 - ζ) * uniform

$$\pi(z|\zeta,\sigma_t) = \zeta G_t(z|\sigma_t) + (1-\zeta)\Im(z)$$

$$z = \cos \theta_{1,2}$$

'Multi Spin' parameters

- Investigate whether spin properties depend on mass
- Also allow secondary spin to differ from primary
- Trends but no conclusive evidence

GW190814 masses

LVC, https://dcc.ligo.org/LIGO-P2000077/public

m1-m2 values outside region covering expected detections (99%)