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Introduction

What are we looking for?
What does the data look like?
How do we search?

o Matched filtering Me, in case my camera
o Coincidence doesn’t work

o Significance
e What if we are wrong in our signal assumptions?
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What we focus on

Compact Binary Coalescence

4 Image credit: NASA via ligo.org
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There are two types of searches, online and offline

e Online searches are low-latency searches which aim to get quick results in order to get
rapid alerts of events

e Offline searches use archived data using more computationally expensive techniques to
get deeper searches into the data

What searches are there?

e Templated searches: @ Pyc B c
—_

GstLAL - Online and Offline, Iscsoft.docs.ligo.org /gstlal
o PyCBC - Online and Offline, pycbc.org

—_
o  MBTA - Online and Offline, T. Adams et al (2016) —_— st LA L
o SPIIR - Online only, Q. Chu (2017) g

o IAS - Offline only, Venumadhav et al. (2020)
e Non-templated search ( WB:

o

©  c¢WB - Online and Offline gwburst.gitlab.io


https://lscsoft.docs.ligo.org/gstlal/
https://pycbc.org/
https://gwburst.gitlab.io/

What are we looking for?
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What will the signals from these systems look like in the data?

The signal from a binary system made up of black holes will be
described by fifteen parameters

e Intrinsic parameters:

o Component spins in each direction:s,_s,_s,_s, s, S

Ix "1y "1z “2x "2y "2z

e [xtrinsic Parameters:

o Location: Right Ascension and Declination
Inclination angle between line of sight and orbital plane, :
Polarisation angle,
Phase at coalescence
Luminosity distance, D, \ 2 (not to scale)
Time of coalescence

o O O O O

Detector
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The above parameters and Einstein’s GR equations exactly describe the
dynamics of the system”

However these cannot be solved analytically - so we need to use approximate
analytical solutions or numerical relativity

Analytical Solutions Numerical solutions

e Perturbative approach can be used
e Example: effective one body
e Loses accuracy as closer to merger

Directly solves equations
Very expensive

Can model collision
Some inaccuracy

8 *Provided GR stands, e.g. Abbott et al Phys.Rev.D 100 (2019) 10, 104036
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In order to search the parameter space
efficiently, we make certain assumptions about
the systems to simplify the analysis

Effect of masses on waveforms

GW150914

e The component masses and spins have LVT151012 4
most impact on waveform (m1, m2)
. . . . GW151226 =
e We use templates with spins aligned with
the binary angular momentum (slz, s2z) cw170104
We use face-on-binaries Gw170814 |

e Location, polarisation, phase, distance
and time can be reconstructed after the . : . . : . . . . : . :
. 0 5 10 15 20 25 30 35 40 45 50 55
event 1s fOUDd time observable (seconds)
e Parameter Estimation can be used to
reconstruct the waveform more

accurately
9 LIGO/University of Oregon/Ben Farr

GW170817 s

LIGO/University of Oregon/Ben Farr
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Effect of spins on waveforms

In order to search the parameter space
efficiently, we make certain assumptions about
the systems to simplify the analysis === Aligned spin
s Z€r0 Spin

e The component masses and spins have s=== Auili-alighed spiD
most impact on waveform (ml, m2)

e We use templates with spins aligned with
the binary angular momentum (slz, s2z)
We use face-on-binaries

e Location, polarisation, phase, distance
and time can be reconstructed after the
event is found

e Parameter Estimation can be used to
reconstruct the waveform more
accurately

Frequency (Hz)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
Time from merger (s)

10
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Developing and improving compact binary signal modelling is a large field
of research, which has made very rapid progress

Current waveform models are good enough for most purposes

There are still areas for improvement (e.g. high-mass ratio signals,
misaligned spins, extremal spins, exotic objects or non-GR waveforms)
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What does the data look like?
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—— LIGO Hanford
——— LIGO Livingston
107%° 4 — Virgo
Many lines in the data, not such an issue for ] &
transient searches, but can be an issue for g
continuous wave searches k 10~ :
=
: - =
To an okay approximation, the detector data 2 10-22 4
is colored Gaussian noise - standard Gaussian =
noise just with certain frequencies louder

than others 10723 4

10-24- ————rrrr —rr
10t 102 103

Frequency [Hz]

13 Image from Abbott et al (2020) GWTC-2 2010.14527
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14 Image from Abbott et al (2020) GWTC-2 2010.14527



Non-Gaussian glitches

Scattered Light




1. The noise curves are complex, with many lines
2. Sensitivity is highly non-stationary
3. Non-Gaussian artefacts regularly appear in the data

16
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How do we search in the data?
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We know what the signal looks like But it is buried in detector noise
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18 Adapted from GWOSC tutorial
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Optimal for signals:
e in stationary Gaussian noise

e with known PSD
(Wainstein and Zubakov, 1962)

0@
sth) = 4R /
10719 ( | ) O S h(f ) The data

1
—— LIGO Hanford
S i LIGO Livingston
10 34— Virgo
= |
T 107"
Ny ]
=,
§ 1072 1 ' |
= : PSD
102 4 ol
T A Signal templates
10" 10 10°
19
Frequency [Hz]



We want to maximise over some parameters and include others in our standard SNR calculation

_ < s(HP*(f))

Maximise over orientation and sky location

o [,

Include coalescence time

(S|h) _ 4 /OOO g(-gl}z;()f)e—%ﬂftcdf

20
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As mentioned earlier, the parameters with
most impact on the signal waveform are the _ T T T T 111
masses and aligned spins of the components

We place templates within the bank
randomly, but only if the match (h|h) between
templates is below a specific threshold.

Mass 2 [M ]

10t |
This means that we end up with a bank which :
should match well to any signal within this
parameter space

0
The template on the right has been used for 10700 10?

the PyCBC-Broad search for many recent Mass 1 [Mo ]
publications, and contains ~400k templates
21 Image credit: Dal Canton and Harry (2017)
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We end up obtaining a time series of SNR values for each |~ " s® s(f)R(f))
e : : (s|h) = 4R ————df
template. The peaks in this time series are triggers 0 Sy (f)
8
10.0 T
—— H1 whitened h(t)
—— Template(t)
7.5
6
5.0
: 4
g -2.5
é 2
-5.0
s(t)
0
29 -10.0 o A . ; i —'4 —I2 (IJ i 4

Time since 1135136350.6477 Time since 1135136350.6477



7EIGO
\ﬁRGO)

1024
SNR is optimal if data is Gaussian. Data is not 519 -
Gaussian = %
T 236 . %
1. Splitinto frequency bins and check that g 128 g
the relative amount of power in each bin & 64 F 1075
is correct (right) = [ 4 - S
2. Check for power above the final 1024
frequency of the signal (below
. y gnal( ) - 10-80 60 -40-20 0 20 40 60 80 100"

10° 256 Time [milliseconds]

128

D
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Normalized energy

w
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Wit (el e Images: Nitz 2018 (left),
Harry 2019 (above, ODW 1)

23 -0.10 B 0.00
Time (s)
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.. . . . . PSD variation
Basic idea to cope with non-statlonarlty 1S to mm statistic in window:

459
keep remeasuring the power-spectral density
(~every 512s)

Detectors can rapidly change sensitivity - this
means that the PSD estimates used in
matched filtering can be incorrect

Frequency [Hz]

Develop a test for how rapidly the PSD is
changing, if it is changing too much,
down-weight the trigger (or remove if really
high)

S Mozzon et al (2020)

24 1.0 1.5 2.0 2.5
PSD Variation Statistic
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~—— Signal area = 8.27 x 10~* §?

Noise triggers are not correlated between e paE |
detectors st || Wt ting s = 124103 2

0.01 A

Therefore the fact that triggers are seen in
multiple detectors simultaneously is a good
discriminator

0.00 A

-V time difference, 6

|
e
o
=2

T T T T T T T
—0.03  —0.02 —0.01 0.00 0.01 0.02 0.03
L-V time difference, oty

We insist that the triggers are within
light-travel-time between each pair of
coincident detectors (plus a bit extra for
timing noise)
Image credits: G Sanders (2003 left),

25 Davies et al (2020 above)
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We use a ranking statistic based on the
ratio of signal vs noise rate densities.
This means we can incorporate extra
information, e.g. tests for signal-like
properties of the events. We check for:

e Are the time differences, SNR ratio
and phase differences between
triggers consistent with signals?

e [s the instantaneous sensitive
volume bigger or smaller than usual?

JEIGO
ks
KAGRA
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We time-shift the data of one
detector relative to the others

Coincidences in time shifts are our
background

Assumes that noise triggers are not
correlated between detectors (safe)

How many background triggers are
ranked higher than the foreground?
This is our false alarm rate

Do we include triggers from
foreground events in the background?

LIGO Hanford

LIGO Livingston

Virgo
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Time-shifted
Foreground background

Image: Davies et al 2020
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What if we are wrong?
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Lots of simulated signals

Manual checks for unusual
data or background features
before checking actual results

Decisive Optimal SNR

102 A

101 4

100 =

10!

Chirp Mass

104

102

10°

104

1074

False Alarm Rate (yr—1), Exclusive
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Detector 1 Detector 2
Data Data

We search a lot of templates, and do a lot of
background analysis - need to be parallel

Apply gating (" Apply gating Apply gating
. veto windows to veto windows to veto windows to
S e arC e S C a n u S e remove excursions remove excursions ams remove excursions
° in the data. in the data. in the data.

!
. . R R . . 4 Matched filter data\ ( Matched filter dala\

e Open science grid: https: //opensciencegrid.org |msees:| |memess|
goneato tiggers. geneae g

e GPUs =T ]

N
Calculate y2test Calculate y2test
on SNR maxima on SNR maxima

Matched filter data
with template bank.
Threshold over SNR
and cluster to
generate triggers.

Calculate z2test
on SNR maxima

Condor workflows managed by Pegasus .

HTCondsr

2 High Throughput Computing Use time shifts to calculate the
false-alarm rate of coincident
triggers. Resulting triggers are
background noise, used to
estimate the significance
of foreground triggers.

Pegasus

30 Usman et al (2016)


https://opensciencegrid.org

31

We don’t only rely on matched-filtering

Our search makes a number of assumptions
Maybe our waveform models are wrong?
Maybe general relativity is wrong?

Maybe we have astrophysical sources that were not expected, or are not
easily modelled (supernovae)?
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Example: cWB Klimenko et al. (2008)

e Create g-transform spectrograms of data at all times (Remember Laura Nuttall’s talk for
g-transform explanation)

e Look for features standing out from the noise

Look for consistent morphology in both observatories

e We can impose CBC-like morphology, e.g. increasing frequency with time

__ 512 5
N 83
L 256 o
> o=
S 128 5
] 4©
S 64 N
£ 2%
32 0 g
0.30 0.35 0.40 0.45 0.30 0.35 0.40 0,45 =
Time (s) Time (s)

32 Image: B.P Abbott et al Phys. Rev. Lett. 116, 061102 (2016)
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33 LIGO -Virgo / Frank Elavsky, Aaron Geller / Northwestern
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Predictions from GR allow us to search for

gravitational waves from compact binary mergers
using large numbers of waveform templates
LIGO-Virgo noise features present challenges for
identification of gravitational-wave signals
Current searches rely on matched-filtering, with
signal tests to account for non-Gaussianities
Also use unmodelled searches to catch the
unexpected

We have found lots already - let’s find more!
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