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This paper investigates the physical degrees of freedom in a parameterized test of general relativity.
In particular, we vary the post-Newtonian (PN) coefficients, the phenomenological coefficients, and
the analytical black-hole perturbation theory waveform parameters, and observe how this would
affect the waveform and hence the physical parameters. The physical parameters include the energy
radiated and the rate of angular momentum. Although it is possible to map the dephasing coefficients
to physical quantities, the inverse mapping of the physical quantities to the dephasing coefficients
is unknown.

I. INTRODUCTION

The detection of gravitational waves (GWs) by the
Advanced LIGO and Virgo [1–11] has opened new win-
dows in observational astrophysics and cosmology. More
specifically, it stands to test the limits of Einstein’s the-
ory of general relativity (GR). More recent work has
been focused on testing GR in the strong-field/highly-
relativistic regime. Such tests could potentially reconcile
the deviations of GR with quantum field theory, through
examining the higher-energy corrections to the Einstein-
Hilbert action [12].

Of the many strong-field astrophysical events, this
paper focuses on the coalescence of binary black holes
(BBHs). This is because, firstly, the gravitational fields
generated can be many orders of magnitude stronger than
any other astrophysical event, as the BBHs’ orbital sep-
aration can be smaller than the last stable orbit before
merging. Secondly, BBH coalescence gives one of the
cleanest signals for testing GR, as it is separated into
three distinct phases: the inspiral, merger, and ringdown
(IMR) phases [13].

A parametrized test is where one measures the devia-
tion of some parameters from their GR predictions. For
parameterized tests of GR, the phenomenological models
are most ideal, as they have a closed-form expression in
the frequency domain and hence analysis on them can be
more computationally efficient. In particular, we focus
on doing a parameterized test of GR on IMRPhenomPv2
[14–17]. IMRPhenomPv2 is a waveform model that approx-
imates a signal of a precessing binary. It is used because
it has good performance across the parameter space [15].
For details see Appendix. The purpose of the parame-
terized test is to understand the physical significance of
varying the dephasing coefficients in the waveform and
see whether such changes have deviations from GR.
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Throughout the entirety of this paper, the geometric
unit convention is adopted, where c = G = 1.

II. THEORY

A. Parameterized Test of GR

As mentioned in the Section I, a parameterized test
of GR is to search for deviations of observations from
the predictions of GR. To perform the parameterized
tests, we introduce fractional deviations δpi to the
IMRPhenomPv2 phase coefficients pi [18], namely

pi → (1 + δpi)pi. (1)

These fractional deviations are known as the dephasing
coefficients. The phasing of IMRPhenomPv2 consists of
three regimes. The first of which is the inspiral regime
which is parameterized by post-Newtonian (PN) coeffi-
cients [19] {χ0, . . . , χ7} and {χ5l, χ6l}. In this regime,
there are also phenomenological parameters {σ0, . . . , σ4}
that contribute to the high effective PN order. This
corrects for non-adiabaticity in the late inspiral phase
and unknown high-order PN coefficients in the adiabatic
regime. The second regime, is the intermediate regime,
which is parameterized by the phenomenological coeffi-
cients {β0, . . . , β3}. Finally, there is the merger-ringdown
regime which is parameterized by a combination of the
phenomenological coefficients and the analytical black-
hole perturbation theory parameters {α0, . . . , α5} [13].
As one can see if δpi = 0 this corresponds to a theory
with no deviation from GR.

In FIG. 1, we have the phase evolution of an
IMRPhenomPv2 waveform with varied dephasing coeffi-
cients. A dephasing coefficient is chosen from each regime
to illustrate how the dephasing coefficient changes the
waveform and hence the physical parameters. More
specifically, FIG. 1 illustrates how the dephasing coef-
ficient changes the phase. In FIG. 2, we change the same
dephasing coefficients as those in FIG. 1, however this
time we plotted the strain data. This illustrates how the

https://orcid.org/0000-0003-0246-9681
https://orcid.org/0000-0003-1561-6716
https://orcid.org/0000-0002-0928-6784
https://orcid.org/0000-0003-4297-7365
mailto:leif.lui@ligo.org
mailto:ka-lok.lo@ligo.org
mailto:alan.weinstein@ligo.org
mailto:tjonnie.li@ligo.org


2

dephasing coefficient changes the shape of the GW wave-
form. Note that, the deviations of dephasing coefficients
in FIG. 1 and FIG. 2 have been exaggerated to make the
deviations more visible. Such high deviations have been
ruled out with observations [1, 14, 20].
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FIG. 1. Phase of GW versus time for IMRPhenomPv2 with no
modification (blue line), δα2 = 10.0 (orange line), δχ4 = 10.0
(green line), and δβ3 = 10.0 (red line).
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FIG. 2. Strain versus time for IMRPhenomPv2 with no modifi-
cation (blue line), δα2 = 10.0 (orange line), δχ4 = 10.0 (green
line), and δβ3 = 10.0 (red line).

Throughout the entirety of this project, we will use
the parameterized test of TIGER (Test Infrastructure for
GEneral Relativity) [21, 22]. This infrastructure is pre-
ferred, as it is a theory-agnostic test of GR. This means
that the infrastructure does not require an alternative
theory of gravity to compare against. In addition to
this, TIGER is dependent on the measurement of param-
eterizable deviations, like the aforementioned deviation

in dephasing coefficients from a GR-consistent waveform
model.

Let HGR be the hypothesis that some GW signal h is
consistent with GR. To test how this hypothesis deviates
from GR, we introduce another hypothesis HMG (MG
stands for modified gravity) which is a hypothesis that
the waveform model differs by one or more dephasing
coefficients. Since HGR and HMG are mutually exclusive,
and given some data d and information I, we can define
the Bayes factor [13]

B =
p(d|HMG, I)

p(d|HGR, I)
, (2)

where p(d|HGR, I) and p(d|HMG, I) are the posterior
probability densities of the data given hypotheses HGR

and HMG, respectively. If logB > 0, then the hypoth-
esis HMG is favored, on the other hand if logB < 0
the hypothesis HGR is preferred [23]. Hence, we have
a quantitative way of determining whether a waveform
deviates from GR. This can be computed using some
Bayesian inference software packages like bilby [24] or
LALInference [25, 26].

B. Parameter Estimation

In Ref. [13], the Bayesian statistics framework is used
to do parameter estimation. In such framework, the pos-
terior distribution for some parameter λ is [13, 25, 26]

p(λ|Hi, d, I) =
p(λ|Hi, I)p(d|Hi, λ, I)

p(d|I)
, (3)

where Hi is the hypothesis that corresponds to a wave-
form model in which δpi is a free parameter. In Eq. (3), d
is the data, I is the background information, p(λ|Hi, I) is
the prior probability density for the free parameters, and
p(d|Hi, λ, I) is the probability of the data. p(d|Hi, λ, I) is
defined as the likelihood function, which can be written
as [13, 25, 26]

p(d|Hi, λ, I) ∝ e− 1
2 〈d−h(λ)|d−h(λ)〉, (4)

where h(λ) is the signal model and the inner product is
defined as [13]

〈a|b〉 = 4R

∫ fhigh

flow

df
a∗(f)b(f)

Sn(f)
. (5)

In Eq. (5), fhigh is the high-frequency cutoff and flow is
the low-frequency cutoff. In the equation above, Sn(f) is
the power spectral density of noise. To obtain the pos-
terior density for parameter δpi, one has to marginalize
over all parameters other than δpi. These are also known
as the nuisance parameters.

p(δp|Hi, d, I) =

∫
d~θ p(~θ, δpi|Hi, d, I), (6)

where the integration is carried out over all nuisance pa-
rameters.
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C. Rates of Energy and Angular Momentum of
GWs

The physical parameters that we are interested in are
the rates of energy and angular momentum. We can
compute the energy and momentum using the Isaacson
stress-energy tensor [27, 28]

tµν = − 1

8π

〈
R(2)
µν −

1

2
ḡµνR

(2)

〉
, (7)

where R
(2)
µν is the Ricci tensor to quadratic order. R

(2)
µν

usually involves many terms quadratic in the metric per-
turbation, however we can drastically simplify this ex-
pression by performing integration by parts and using
the transverse-traceless (TT) gauge condition

R(2)
µν = −1

4

〈
∂µhαβ∂νh

αβ
〉
. (8)

Therefore the Isaacson stress-energy tensor can be writ-
ten explicitly as

tµν =
1

32π

〈
∂µh

TT
αβ ∂νh

αβ
TT

〉
. (9)

To compute the energy carried by a GW, we take the
00-component of the Isaacson stress-energy tensor and
integrate over the volume V [27, 28]

dE

dt
= lim
r→∞

1

16π

∫
S

dΩ r2
〈
ḣ2

+ + ḣ2
×

〉
, (10)

where h+ and h× are the plus and cross polarizations of
the GW, respectively. The overhead dot in Eq. (10) is
the derivative with respect to coordinate time. Another
useful expression is the energy spectrum, as it is much
easier to integrate over all frequencies

dE

df
= lim
r→∞

π

2
f2

∫
S

dΩ r2
(
|h̃+(f)|2 + |h̃×(f)|2

)
. (11)

On the other hand, to compute the rate of angular mo-
mentum, we compute the linear momentum and take the
cross product with the separation vector. The linear mo-
mentum is as follows [27, 28]

dPi
dt

= lim
r→∞

1

32π

∫
dΩ r2

〈
ḣTT
ij ∂

kḣTT
ij

〉
. (12)

Therefore, the total rate of change in angular momentum
carried by the GWs can be written as

J i =
1

2
εijkJkl, (13)

where Jkl is the conserved charge associated with rota-
tion in the kl−plane. Using Noether’s theorem, we find
that the expression for rate of angular momentum is as
follows [27, 28]

dJi
dt

= lim
r→∞

1

32π

∫
S

dΩ r2〈−εiklḣTT
ab x

k∂lhTT
ab

+2εiklḣTT
al h

TT
ak 〉.

(14)

To carry out the integration, multipole expansion is per-
formed on the rates of energy and angular momentum
[28].

D. A Multipole Expansion of Energy

In Eq. (10), h+ and h× are dependent on t, the orbital
phase φ, and the angle between the angular momentum
~J and line of sight n̂, namely θ. To obtain an analytic
expression for the integral over solid angle Ω, we separate
h+ and h× into a time-dependent part and an angular
part. This can be done using spin-weighted spherical
harmonics sY`m. For outgoing GWs, we are concerned
with the spin s = −2 [28],

h+ − ih× =
∑
l,m

−2Ylm(θ, φ)hl,m(t)

≈ −2Y22(θ, φ)h2,2(t) + −2Y2−2(θ, φ)h2,−2(t),

(15)

where the second line has been truncated, because for
aligned-spin binaries, the h2,2 and h2,−2 modes are the
leading order terms. Taking the time derivative of Eq.
(15) and multiplying this expression by its complex con-
jugate, we obtain the following expression

ḣ2
+ + ḣ2

× =|−2Y22|2|ḣ2,2|2 + −2Y22 −2Y
∗
2−2ḣ2,2ḣ

∗
2,−2

+ −2Y
∗
22 −2Y2−2ḣ

∗
2,2ḣ2,−2 + |−2Y2−2|2|ḣ2,−2|2.

(16)

With this, the task at hand is to calculate h2,2 and h2,−2.
To do so, we first need to determine the spin-weighted
spherical harmonics. Using the Wigner D matrix, −2Y22

and 2Y22 in the θ and φ representation is as follows

−2Y22(θ, φ) =

√
5

64π
(1 + cos θ)2e2iφ, (17)

−2Y2−2(θ, φ) =

√
5

64π
(1− cos θ)2e−2iφ. (18)

Notice that −2Y22(0, 0) = −2Y2−2(0, π) = 1
2

√
5
π and

−2Y2−2(0, 0) = −2Y22(0, π) = 0 . Therefore, to solve for
h2,2 and h2,−2, we simply calculate h+−ih× at θ = φ = 0,
and φ = 0, θ = π. This can be done using PyCBC and
LALSimulation. Doing so we find that

h2,2(t) =

√
4π

5
[h+(t, 0, 0)− ih×(t, 0, 0)], (19)

and

h2,−2(t) =

√
4π

5
[h+(t, π, 0)− ih×(t, π, 0)]. (20)

Since we are considering non-precessing binaries, θ con-
tain no time dependence. Therefore, to integrate Eq.
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(15) over solid angle, we simply compute the following
integrals,∫

S

dΩ |−2Y22|2 =

∫
S

dΩ |−2Y2−2|2 = 1, (21)

and∫
S

dΩ −2Y
∗
22 −2Y2−2 =

∫
S

dΩ −2Y22 −2Y
∗
2−2 =

1

6
. (22)

Using the results from Eq. (21) and Eq. (22), we can
integrate Eq. (16) over solid angle to obtain the instan-
taneous power

dE

dt
= lim
r→∞

r2

16π

〈
|ḣ2,2|2 + |ḣ2,−2|2

+
1

6

(
ḣ∗2,2ḣ2,−2 + ḣ2,2ḣ

∗
2,−2

)〉
.

(23)

III. RESULTS

A. Effects of Varying the Intrinsic Parameters

To calculate ḣ2,2, ḣ2,−2, ḣ∗2,2, and ḣ∗2,−2, we use nu-
merical methods. More specifically, we use the central
difference method to calculate the time derivatives of the
arrays. The algorithm for the central difference method
is as follows [29]

f ′(x) ≈
f(x+ 1

2δ)− f(x− 1
2δ)

2δ
, (24)

where f is the function for which the derivative is taken
with respect to variable x, and δ is the step size. The
central difference method is comparatively more accurate
than the forward and backward difference methods. This
is because, the forward and backward difference methods
have truncation errors of order O(δ), whereas the central
difference method has a truncation error of order O(δ2)
[29].

After computing ḣ2,2, ḣ2,−2, ḣ∗2,2, and ḣ∗2,−2, we have
obtained the instantaneous power. To better depict the
evolution of energy over time, we use the cumulative
trapezoidal method to numerically calculate the integral
of power over time, namely the cumulative energy. The
algorithm for the cumulative trapezoidal rule is as follows
[30] ∫ b

a

f(x)dx ≈
N∑
k=1

f(xk−1) + f(xk)

2
∆xk, (25)

where f is the function being integrated with respect to
variable x over the interval [a, b], {xk} is the partition
of [a, b] such that a = x0 < x1 < · · · < xN−1 < xN =
b, and ∆xk = xk + xk−1 is the kth sub interval [30].
There are indeed more accurate methods of obtaining the
cumulative energy, however given a large number of data

points, the cumulative trapezoidal rule yields sufficiently
accurate results for calculating the integral. This can be
seen in FIG. 3-5, as the energy versus time graph yields
somewhat smooth functions. From here, we vary the
intrinsic physical parameters (i.e. total mass M , mass
ratio q, spins s1z and s2z, etc.) and see how the energy
evolves over time.
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FIG. 3. The radiated energy of GW versus time in linear
scale for IMRPhenomPv2 with constant mass ratio q = 1.00
and varying total mass.
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FIG. 4. The radiated energy of GW versus time in linear scale
for IMRPhenomPv2 with varying mass ratio and constant total
mass of M = 150 M�.
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FIG. 5. The radiated energy of GW versus time in linear
scale for IMRPhenomPv2 with varying spin. Here, m1 = 35.0
M� and m2 = 31.5 M�.

It is important to note that the waveforms used in plot-
ting FIG. 3-5 have been tapered to exclude any unphys-
ical artifacts that comes with the IMRPhenomPv2 wave-
form. As seen from FIG. 3-5, the total mass M , the mass
ratio q, and spins s1z, s2z, increases with the radiated en-
ergy of the GW. From FIG. 3-5, it is also apparent that
a change in total mass M , mass ratio q, and spins s1z

and s2z, has a major effect on the cumulative energy in
the intermediate phase and the merger-ringdown phase.
However, more interestingly, it seems that the variation
of cumulative energy in the inspiral phase has little to
no variation when plotting the cumulative energy versus
time graph. To better illustrate the change in energy
during the inspiral phase, we plot the y-axis of FIG. 3-5
in logarithmic scale.
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FIG. 6. The radiated energy of GW versus time for
IMRPhenomPv2 with constant mass ratio q = 1.00 and vary-
ing total mass in logarithmic scale.
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FIG. 7. The radiated energy of GW versus time for
IMRPhenomPv2 with varying mass ratio and constant total
mass of M = 150 M� in logarithmic scale.
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FIG. 8. The radiated energy of GW versus time for
IMRPhenomPv2 with varying spin in logarithmic scale. Here,
m1 = 35.0 M� and m2 = 31.5 M�.

From FIG. 6-8, we can see that during the inspiral
phase there are small deviations in the total energy ra-
diated by the GW. In FIG. 6, during times −6.0 s .
t . −0.5 s, we can see that the total energy radiated
decreases with the total mass. This has an opposite cor-
relation to that of the merger-ringdown phase, as indi-
cated in FIG. 3, where the total mass increases with the
GW energy. In FIG. 7, during the inspiral regime, q also
increases with the radiated energy. In FIG. 8, we can see
a similar trend, as the spin increases with the radiated
energy in the inspiral regime. Overall our results seem to
be physically sensible, however we will verify its validity
in subsequent sections.
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B. Effects of Varying the Dephasing Coefficients

The goal in this subsection is to see how the energy
evolves over time with varying dephasing coefficients.
The dephasing coefficients that we focus on are the ones
that affect the inspiral phase, namely δχi. For a better
display of the results, we do not plot all the energy versus
time graph for all δχi. Instead, we plot two graphs of en-
ergy versus time, one that corresponds to a low PN order
and one that corresponds to a high PN order. Here, we
choose δχ1 which corresponds to 0.5 PN order, and δχ7

which corresponds to 3.5 PN order.
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FIG. 9. Total energy of GW versus time with m1 = m2 = 60
M�, no spin, and varying δχ1.
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FIG. 10. Total energy of GW versus time with m1 = m2 = 60
M�, no spin, and varying δχ7.

As shown in FIG. 9 and FIG. 10, the radiated energy
has little to no change in the merger-ringdown phase, but

has a noticeable change in the inspiral and intermediate
phase. This is expected as the δχi dephasing coefficients
are associated with the inspiral phase. For a visualization
of the change in energy during the inspiral phase, we can
plot FIG. 9 and FIG. 10 in logarithmic scale.
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FIG. 11. Total energy of GW versus time with m1 = m2 = 60
M�, no spin, and varying δχ1 in logarithmic scale.
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FIG. 12. Total energy of GW versus time with m1 = m2 = 60
M�, no spin, and varying δχ7 in logarithmic scale.

From FIG. 11 and FIG. 12, we can see a general trend
that the higher the dephasing coefficient, the higher the
energy during the inspiral phase. Moreover, notice the
line for |δχ1| = 1 and |δχ7| = 1, we can see that there
is a larger deviation from the GR-predicted waveform
for |δχ1| = 1. This implies that when the dephasing
coefficient varies, the higher the PN order, the smaller the
deviation from the GR-predicted waveform. Again, the
large deviations in dephasing coefficients have been ruled
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out by observation [1, 14, 20], and the sole purpose of
plotting them is to better visualize the change in energy.

IV. ANALYSIS AND DISCUSSION

For a quantitative relation between intrinsic parame-
ters and the energy, we plot the total energy versus the
intrinsic parameters.
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FIG. 13. Total energy of GW versus total mass with constant
mass ratio q = 1.0 and no spin. The dots represent the total
energy obtained using the numerical calculations in Section
III, and the line represent the line of best fit through linear
regression.
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FIG. 14. Total energy of GW versus mass ratio with constant
total mass and no spin in linear scale. The dots represent
the total energy obtained using the numerical calculations in
Section III, and the line represent the line of best fit through
polynomial regression.
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FIG. 15. Total energy of GW versus spin with m1 = 35.0
M� and m2 = 31.5 M�. The dots represent the total en-
ergy obtained using the numerical calculations in Section III,
and the line represent the line of best fit through polynomial
regression.

As seen from FIG. 13, using linear regression, the total
mass increases in a linear manner with the total energy
radiated. The linear fit seems to be ideal for FIG. 13, as
R2 = 0.9974. On the other hand, from FIG. 14, we can
see that the total energy radiated by the GW increases
quartically with the mass ratio. The quartic fit seems to
be ideal for FIG. 14, as R2 = 1.000. However, it is impor-
tant to note that the use of polynomial regression in FIG.
14, is only valid for mass ratio in the range 0.2 ≤ q ≤ 1.0.
This is because, as mass ratio increases, we expect the
gradient of total energy versus total mass/mass ratio to
decrease and get closer to zero as q → ∞. However,
quartic expressions only have a zero gradient at a max-
ima or minima. Therefore, it is also correct to say that
the quartic expressions in FIG. 14 are only the best fit
lines for the given data. If one were to extrapolate, one
would have to plot the new points and repeat the polyno-
mial regression for the new data set. Similar to FIG. 13,
FIG. 15 shows that the total energy radiated by a GW
increases linearly with the spin of the BHs. The linear fit
seems to be ideal, as R2 = 0.9984 and R2 = 0.9988 for
the linear regression of s1z and s2z data, respectively.

Apart from the aforementioned quantitative analysis,
it is important to verify whether our results make phys-
ical sense. To do so, we compare the total radiated en-
ergy with that of real GW signals. To clarify, the LIGO-
Virgo-KAGRA (LVK) teams do not directly measure the
energy, the calculations done by the LVK analysis team
for real events are inferred using Eq. (10). Therefore,
we are merely checking our calculations with the cal-
culations done by the LVK analysis team. We can see
from FIG. 3, the total energy radiated for a binary sys-
tem with constant mass ratio q = 1.0, and total mass
of M = 60 M�, is ∼ 2.5 M�c

2. Comparing this to the
results of GW150914, which has component masses of
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m1 = 35.6+4.8
−3.0 M� and m2 = 30.6+3.0

−4.4 M�, mass ratio of

q = 0.85+0.17
−0.17, and a total radiated energy of E = 3.1+0.4

−0.4

M�c
2 [1]. With this, given that the results in FIG.

3 yields a mass ratio, radiated energy, and total mass
within the margin of error for the results of GW150914,
it can be reasonably inferred that the results obtained in
FIG. 3 are accurate. From FIG. 4, it is apparent that
the total radiated energy of a binary system with mass
ratio q = 0.75, and total mass 150 M�, is ∼ 6.5 M�c

2.
This binary system is most similar to that of GW190521,
where the component masses are m1 = 85+21

−14 M� and

m2 = 66+17
−18 M�, the mass ratio is q = 0.78+0.36

−0.32, and the

total radiated energy is E = 7.6+2.2
−1.9 M�c

2 [10]. Again,
one can infer that the results in FIG. 4 are accurate,
as the mass ratio, total mass, and radiated energy are
within the margin of error for the results of GW190521.
For FIG. 5, we compare the results to that of an improved
analysis on GW150914 with a fully spin-precessing wave-
form model [31]. In this analysis, the total mass, mass
ratio, and radiated energies are the same as GW150914,
but the spin associated with the primary and secondary
masses are s1z = 0.26+0.52

−0.24 and s2z = 0.32+0.54
−0.29, respec-

tively [31]. From FIG. 5, we can see that a binary system
with m1 = 35.0 M�, m2 = 31.5 M�, s1z = 0.30, and
s2z = 0.30, yields a total radiated energy of ∼ 3.5 M�c

2.
With this, it is apparent that the results from FIG. 5
agrees with the results obtained from Ref. [31], as the
component masses, spins, and total energy are within
the margin of error. Overall, the results seem to make
physical sense, as they conform to the data gathered from
observations.

Now we turn our attention to varying the dephasing
coefficients. In FIG. 13-15, we chose to plot the total ra-
diated energy versus the intrinsic parameter, as the goal
is to see how the total energy evolved in time with varying
intrinsic parameters. However, from FIG. 11 and FIG.
12, we can see that it is not sensible to plot the total
radiated energy versus the dephasing coefficients. This
is because, the total radiated energy (the peak energy of
the waveform) in the merger-ringdown regime has very
small variations when varying δχi, which make sense as
δχi only affects the waveform in the inspiral phase. This
small variation will lead to complications in later stages,
as it is hard to bound δχi using small variations in phys-
ical parameters. Therefore the more sensible approach
to bound δχi by the energy, is to plot the dimensionless
quantity |E−EGR|/EGR during the inspiral phase, where
E is the cumulative radiated energy for varying δχi and
EGR is the GR predicted cumulative radiated energy. To
do so, we restrict the radiated energies to those in the
region of time t/M ≤ −2892. However, the restricted re-
gion of time t/M ≤ −2892 is exclusive to the case where
m1 = m2 = 60 M�, q = 1.00, and s1z = s2z = 0. For
different set of intrinsic parameters, one would have to
change this time restriction such that the variation in en-
ergy is sufficiently large. To illustrate how the PN order
affects the total energy of the GW during the inspiral

phase, we plot the energy versus δχ1 and δχ7 as exam-
ples. For a better visualization of the results, we plot the
peak energy of the GW during the inspiral phase versus
δχi in logarithmic scale, as in logarithmic scale, there is
a large variation in energy when changing δχi during the
inspiral phase.
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FIG. 16. |E − EGR|/EGR for times t/M ≤ −2892 versus δχ1

with m1 = m2 = 60 M� and no spin in logarithmic scale.
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FIG. 17. |E − EGR|/EGR for times t/M ≤ −2892 versus δχ7

with m1 = m2 = 60 M� and no spin in logarithmic scale.

As seen in FIG. 16 and FIG. 17, the graph of |E −
EGR|/EGR versus δχi during the inspiral phase exhibits
a bimodal behavior. As expected one of the mode oc-
curs at δχi = 0, however a second mode implies that
there is a degeneracy in energy with the GR-predicted
energy value. For lower PN order, the modes are closer
to each other. This implies that dephasing coefficients
which correspond to a lower PN order are more sensitive
to changes in radiated energy.
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V. FUTURE WORK

By varying the intrinsic parameters and the dephasing
coefficients corresponding to the inspiral part, we saw
how such variation affects the evolution of energy over
time. In the future, we will focus on extending simi-
lar analyses provided in this paper to the intermediate
and merger-ringdown phases. From there, we plan to
use these physical quantities, namely energy, and angular
momentum, along with the GMM to coherently constrain
the dephasing parameters.
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VII. APPENDIX

A. Appendix A: The Frequency Dependence of
IMRPhenomPv2

TABLE I. The frequency dependence of IMRPhenomPv2 de-
phasing coefficients used in parameterized tests of GR. The
table is reproduced from TABLE I of Ref. [32].

Stage of Dephasing Frequency (f)
Coalescence Coefficient (δpi) Dependence

Inspiral δχ0 f−
5
3

Inspiral δχ1 f−
4
3

Inspiral δχ2 f−1

Inspiral δχ3 f−
2
3

Inspiral δχ4 f−
1
3

Inspiral δχ5l ln(f)

Inspiral δχ6 f
1
3

Inspiral δχ6l f
1
3 ln(f)

Inspiral δχ7 f
2
3

Intermediate δβ2 ln(f)
Intermediate δβ3 f−3

Merger-Ringdown δα2 f−1

Merger-Ringdown δα3 f
3
4

Merger-Ringdown δα4 arctan(af + b)

B. Appendix B: IMR Waveforms for BBHs with
Non-Precessing Spins

The analytical waveform for BBHs with non-precessing
spin in the frequency domain, can be written as follows
[20],

h(f) = A(f) · e−iΦ(f), (26)

where

A(f) = Cf−
7
6

1


f ′7/6

(
1 +

∑3
i=2 αiv

i
)
, if f < f1

wmf
′− 2

3

(
1 +

∑2
i=1 εiv

i
)

if f1 ≤ f < f2

wrL(f, f2, σ) if f2 ≤ f < 3,

(27)
and

Ψ(f) = 2πft0 + ϕ0 +
3

128ηv5

(
1 +

7∑
k=2

vkψk

)
. (28)

In Eq. (27) and Eq. (28), f ′ = f/f1, v = (πMf)
1
3 ,

ε1 = 14547χ − 1.8897, ε2 = −1.8153χ + 1.6557, C is
a constant that depends on the sky-location, orienta-
tion and the component masses, α2 = − 323

224 + 451
168η and

α3 =
(

27
8 −

11
16η
)
χ are the PN corrections to the ampli-

tude of the Fourier domain for modes l = 2, m = ±2 [33],
t0 is the time of arrival of the signal at the detector and ρ0

is the corresponding phase, L(f, f2, σ) is the Lorentzian
function with width σ centered around frequency f2, wm
and wr are the normalization constants which are se-
lected such that A(f) is continuous across the transition
frequencies f2 and f1, and f3 is a cutoff frequency such
that the signal power above f3 is negligible. The phe-
nomenological parameter ψk and µk = {f1, f2, σ, f3} can
be written in terms of the physical parameters of the
binary

ψk = ψ0
k +

3∑
i=1

N∑
j=0

xijk η
iχj , (29)

πMµk = µ0
k

3∑
i=1

N∑
j=0

yijk η
iχj , (30)

whereN = min(3−i, 2) while x(ij) and y(ij) are tabulated
in TABLE II. It is important to note that the results in
TABLE II are not originally produced by the authors of
this paper, but instead reproduced from Ref. [20]. For
further details of IMR waveforms for BBHs with non-
precessing spins, please refer to the original paper in Ref.
[20].

https://www.gw-openscience.org
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TABLE II. Phenomenological parameters describing the analytical waveforms. In test-mass limit, they reduce to the appropriate
quantities given by perturbative calculations [33–35]. The test-mass limit of f1 is a fit to the frequency of the last stable orbit
[34].

Test-mass limit (ψ0
k) x(10) x(11) x(12) x(20) x(21) x(30)

ψ2
3715
756

-920.9 429.1 135 6742 -1053 −1.34× 104

ψ3 −16π + 113
3
χ 1.702× 104 -9566 2182 −1.214× 105 2.075× 104 2.386× 105

ψ4
15293365
508032

− 405
8
χ2 −1.254× 105 7.507× 104 1.338× 104 8.735× 105 −1.657× 105 −1.694× 106

ψ6 0 −8.898× 105 6.31× 105 5.068× 104 5.981× 106 −1.415× 106 −1.128× 107

ψ7 0 8.696× 105 −6.71× 105 −3.008× 104 −5.838× 106 1.514× 106 1.089× 107

Test-mass limit (µ0
k) y(10) y(11) y(12) y(20) y(21) y(30)

f1 1− 4.455(1− χ)0.217 + 3.521(1− χ)0.26 0.6437 0.827 -0.2706 -0.05822 -3.935 -7.092
f2

1
2

[
1− 0.63(1− χ)0.3

]
0.1469 -0.1228 -0.02609 -0.0249 0.1701 2.325

σ 1
4
[1− 0.63(1− χ)0.3](1− χ)0.45 -0.4098 -0.03523 0.1008 1.829 -0.02017 -2.87

f3 0.3236 + 0.04894χ+ 0.01346χ2 -0.1331 -0.08172 0.1451 -0.2714 0.1279 4.922

[1] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Observation of gravitational waves
from a binary black hole merger, Phys. Rev. Lett. 116,
061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), GW151226: Observation of grav-
itational waves from a 22-solar-mass binary black hole
coalescence, Phys. Rev. Lett. 116, 241103 (2016).

[3] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tion), GW170104: Observation of a 50-solar-mass binary
black hole coalescence at redshift 0.2, Phys. Rev. Lett.
118, 221101 (2017).

[4] B. P. Abbott et al., GW170608: Observation of a 19
solar-mass binary black hole coalescence, The Astrophys-
ical Journal 851, L35 (2017).

[5] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), GW170814: A three-detector ob-
servation of gravitational waves from a binary black hole
coalescence, Phys. Rev. Lett. 119, 141101 (2017).

[6] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), GW170817: Observation of gravi-
tational waves from a binary neutron star inspiral, Phys.
Rev. Lett. 119, 161101 (2017).

[7] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), GWTC-1: A gravitational-wave
transient catalog of compact binary mergers observed by
ligo and virgo during the first and second observing runs,
Phys. Rev. X 9, 031040 (2019).

[8] R. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), GW190412: Observation of a
binary-black-hole coalescence with asymmetric masses,
Phys. Rev. D 102, 043015 (2020).

[9] B. P. Abbott et al., GW190425: Observation of a com-
pact binary coalescence with total mass ∼ 3.4 m �, The
Astrophysical Journal 892, L3 (2020).

[10] R. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), GW190521: A binary black hole
merger with a total mass of 150 M⊙, Phys. Rev. Lett.
125, 101102 (2020).

[11] R. Abbott et al., GW190814: Gravitational waves from
the coalescence of a 23 solar mass black hole with a 2.6
solar mass compact object, The Astrophysical Journal

896, L44 (2020).
[12] K. S. Stelle, Renormalization of higher-derivative quan-

tum gravity, Phys. Rev. D 16, 953 (1977).
[13] J. Meidam, K. W. Tsang, J. Goldstein, M. Agathos,

A. Ghosh, C.-J. Haster, V. Raymond, A. Samajdar,
P. Schmidt, R. Smith, K. Blackburn, W. Del Pozzo, S. E.
Field, T. Li, M. Pürrer, C. Van Den Broeck, J. Veitch,
and S. Vitale, Parametrized tests of the strong-field dy-
namics of general relativity using gravitational wave sig-
nals from coalescing binary black holes: Fast likelihood
calculations and sensitivity of the method, Phys. Rev. D
97, 044033 (2018).

[14] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer,
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