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This paper provides a framework for understanding the physical degrees of freedom in a param-
eterized test of general relativity. In particular, we vary the post-Newtonian (PN) coefficients, the
phenomenological coefficients, and the analytical black-hole perturbation theory waveform param-
eters, and observe how this would affect the waveform and hence the physical parameters. The
physical parameters include the energy radiated and the rate of angular momentum. Although it is
possible to map the dephasing coefficients to physical quantities, the inverse mapping of the physi-
cal quantities to the dephasing coefficients is unknown. Therefore, this paper presents a method of
obtaining this inverse mapping using the Gaussian Mixture Model (GMM).

I. INTRODUCTION

The detection of gravitational waves (GWs) by the
Advanced LIGO and Virgo [1–11] has opened new win-
dows in observational astrophysics and cosmology. More
specifically, it stands to test the limits of Einstein’s the-
ory of general relativity (GR). More recent work has
been focused on testing GR in the strong-field/highly-
relativistic regime. Such tests could potentially reconcile
the deviations of GR with quantum field theory, through
examining the higher-energy corrections to the Einstein-
Hilbert action [12].

Of the many strong-field astrophysical events, this
paper focuses on the coalescence of binary black holes
(BBHs). This is because, firstly, the gravitational fields
generated can be many orders of magnitude stronger than
any other astrophysical event, as the BBHs’ orbital sep-
aration can be smaller than the last stable orbit before
merging. Secondly, BBH coalescence gives one of the
cleanest signals for testing GR, as it is separated into
three distinct phases: the inspiral, merger, and ringdown
(IMR) phases [13].

A parametrized test is, simply put, a test where one
measures the deviation of some parameters from their
GR predictions. For parameterized tests of GR, the
phenomenological models are most ideal, as they have
a closed-form expression in the frequency domain and
hence can be more computationally efficient. In par-
ticular, we focus on doing a parameterized test of GR
on IMRPhenomPv2 [14–17]. IMRPhenomPv2 is a waveform
model that approximates a signal of a precessing binary.
It is used because it has good performance across the
parameter space [15]. The purpose of the parameterized
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test is to understand the physical significance of vary-
ing the dephasing coefficients in the waveform and see
whether such changes have deviations from GR.

Throughout the entirety of this paper, the geometric
unit convention is adopted, where c = G = 1.

II. THEORY

A. Parameterized Test of GR

As mentioned in the Section I, a parameterized test
of GR is to search for deviations of observations from
the predictions of GR. To perform the parameterized
tests, we introduce fractional deviations δpi to the
IMRPhenomPv2 phase coefficients pi [18], namely

pi → (1 + δpi)pi. (1)

These fractional deviations are known as the dephasing
coefficients. The phasing of IMRPhenomPv2 consists of
three regimes. The first of which is the inspiral regime
which is parameterized by post-Newtonian (PN) coeffi-
cients [19] {χ0, . . . , χ7} and {χ5l, χ6l}. In this regime,
there are also phenomenological parameters {σ0, . . . , σ4}
that contribute to the high effective PN order. This cor-
rects for non-adiabaticity in the late inspiral phase and
for unknown high-order PN coefficients in the adiabatic
regime. The second regime, is the intermediate regime,
which is parameterized by the phenomenological coeffi-
cients {β0, . . . , β3}. Finally, there is the merger-ringdown
regime which is parameterized by a combination of the
phenomenological coefficients and the analytical black-
hole perturbation theory parameters {α0, . . . , α5} [13].
As one can see if δpi = 0 this corresponds to a theory
with no deviation with GR.

In FIG. 1, we have the phase evolution of an
IMRPhenomPv2 waveform with varied dephasing coeffi-
cients. A dephasing coefficient is chosen from each regime
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to illustrate how the dephasing coefficient changes the
waveform and hence the physical parameters. More
specifically, FIG. 1 illustrates how the dephasing coef-
ficient changes the phase. In FIG. 2, we change the same
dephasing coefficients as those in FIG. 1, however this
time we plotted the strain data. This illustrates how the
dephasing coefficient changes the shape of the GW wave-
form. Note that, the deviations of dephasing coefficients
in FIG. 1 and FIG. 2 have been exaggerated to make the
deviations more visible. Such high deviations have been
ruled out with observations [1, 14, 20].
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FIG. 1. Phase of GW versus time for IMRPhenomPv2 with no
modification (blue line), δα2 = 10.0 (orange line), δχ4 = 10.0
(green line), and δβ3 = 10.0 (red line).
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FIG. 2. Strain versus time for IMRPhenomPv2 with no modifi-
cation (blue line), δα2 = 10.0 (orange line), δχ4 = 10.0 (green
line), and δβ3 = 10.0 (red line).

Throughout the entirety of this project, we will use
the parameterized test of TIGER (Test Infrastructure for

GEneral Relativity) [21, 22]. This infrastructure is pre-
ferred, as it is a theory-agnostic test of GR. This means
that the infrastructure does not require an alternative
theory of gravity to compare against. In addition to
this, TIGER is dependent on the measurement of param-
eterizable deviations, like the aforementioned deviation
in dephasing coefficients from a GR-consistent waveform
model.

Let HGR be the hypothesis that some GW signal h is
consistent with GR. To test how this hypothesis deviates
from GR, we introduce another hypothesis HMG (MG
stands for modified gravity) which is a hypothesis that
the waveform model differs by one or more dephasing
coefficients. Since HGR and HMG are mutually exclusive,
and given some data d and information I, we can define
the Bayes factor [13]

B =
p(d|HMG, I)

p(d|HGR, I)
, (2)

where p(d|HGR, I) and p(d|HMG, I) are the posterior
probability densities of the data given hypotheses HGR

and HMG, respectively. If logB > 0, then the hypoth-
esis HMG is favored, on the other hand if logB < 0
the hypothesis HGR is preferred [23]. Hence, we have
a quantitative way of determining whether a waveform
deviates from GR. This can be computed using some
Bayesian inference software packages like bilby [24] or
LALInference [25, 26].

B. Parameter Estimation

In Ref. [13], the Bayesian statistics framework is used
to do parameter estimation. In such framework, the pos-
terior distribution for some parameter λ is [13, 25, 26]

p(λ|Hi, d, I) =
p(λ|Hi, I)p(d|Hi, λ, I)

p(d|I)
, (3)

where Hi is the hypothesis that corresponds to a wave-
form model in which δpi is a free parameter. In the equa-
tion above, d is the data, I is the background information,
p(λ|Hi, I) is the prior probability density for the free pa-
rameters, and p(d|Hi, λ, I) is the probability of the data.
p(d|Hi, λ, I) is defined as the likelihood function, which
can be written as [13, 25, 26]

p(d|Hi, λ, I) ∝ e− 1
2 〈d−h(λ)|d−h(λ)〉, (4)

where h(λ) is the signal model and the inner product is
defined as [13]

〈a|b〉 = 4R

∫ fhigh

flow

df
a∗(f)b(f)

Sn(f)
. (5)

In Eq. (5), fhigh is the high-frequency cutoff and flow is
the low-frequency cutoff. In the equation above, Sn(f) is
the power spectral density of noise. To obtain the pos-
terior density for parameter δpi, one has to marginalize
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over all parameters other than δpi. These are also known
as the nuisance parameters.

p(δp|Hi, d, I) =

∫
d~θ p(~θ, δpi|Hi, d, I), (6)

where the integration is carried out over all nuisance pa-
rameters.

C. Rates of Energy and Angular Momentum of
GWs

The physical parameters that we are interested in are
the rates of energy and angular momentum. We can
compute the energy and momentum using the Isaacson
stress-energy tensor [27, 28]

tµν = − 1

8π

〈
R(2)
µν −

1

2
ḡµνR

(2)

〉
, (7)

where R
(2)
µν is the Ricci tensor to quadratic order. R

(2)
µν

usually involves many terms quadratic in the metric per-
turbation, however we can drastically simplify this ex-
pression by performing integration by parts and using
the transverse-traceless (TT) gauge condition

R(2)
µν = −1

4

〈
∂µhαβ∂νh

αβ
〉
. (8)

Therefore the Isaacson stress-energy tensor can be writ-
ten explicitly as

tµν =
1

32π

〈
∂µh

TT
αβ ∂νh

αβ
TT

〉
. (9)

To compute the energy carried by a GW, we take the
00-component of the Isaacson stress-energy tensor and
integrate over the volume V [27, 28]

dE

dt
= lim
r→∞

1

16π

∫
S

dΩ r2
〈
ḣ2+ + ḣ2×

〉
, (10)

where h+ and h× are the plus and cross polarizations of
the GW, respectively. The overhead dot in Eq. (10) is
the derivative with respect to coordinate time. Another
useful expression is the energy spectrum, as it is much
easier to integrate over all frequencies

dE

df
= lim
r→∞

π

2
f2
∫
S

dΩ r2
(
|h̃+(f)|2 + |h̃×(f)|2

)
. (11)

On the other hand, to compute the rate of angular mo-
mentum, we compute the linear momentum and take the
cross product with the separation vector. The linear mo-
mentum is as follows [27, 28]

dPi
dt

= lim
r→∞

1

32π

∫
dΩ r2

〈
ḣTT
ij ∂

kḣTT
ij

〉
. (12)

Therefore, the total rate of change in angular momentum
carried by the GWs can be written as

J i =
1

2
εijkJkl, (13)

where Jkl is the conserved charge associated with rota-
tion in the kl−plane. Using Noether’s theorem, we find
that the expression for rate of angular momentum is as
follows [27, 28]

dJi
dt

= lim
r→∞

1

32π

∫
S

dΩ r2〈−εiklḣTT
ab x

k∂lhTT
ab

+2εiklḣTT
al h

TT
ak 〉.

(14)

To carry out the integration, multipole expansion is per-
formed on the rates of energy and angular momentum
[28].

D. A Multipole Expansion of Energy

In Eq. (10), h+ and h× are dependent on t, the orbital
phase φ, and the angle between the angular momentum
~J and line of sight n̂, namely θ. To obtain an analytic
expression for the integral over solid angle Ω, we separate
h+ and h× into a time-dependent part and an angular
part. This can be done using spin-weighted spherical
harmonics sY`m. For outgoing GWs, we are concerned
with the spin s = −2 [28],

h+ − ih× = −2Y22(θ, φ)h2,2(t) + −2Y2−2(θ, φ)h2,−2(t),
(15)

where h2,2 and h2,−2 are time-dependent complex vari-
ables. For the waveform that we are concerned with,
namely IMRPhenomPv2, the (2, 2)- and (2,−2)-modes are
the leading order terms. Therefore, Eq. (15) has been
truncated to exclude higher-order multipoles. Taking the
time derivative of Eq. (15) and multiplying this expres-
sion by its complex conjugate, we obtain the following
expression

ḣ2+ + ḣ2× =|−2Y22|2|ḣ2,2|2 + −2Y22 −2Y
∗
2−2ḣ2,2ḣ

∗
2,−2

+ −2Y
∗
22 −2Y2−2ḣ

∗
2,2ḣ2,−2 + |−2Y2−2|2|ḣ2,−2|2.

(16)

With this, the task at hand is to calculate h2,2 and h2,−2.
To do so, we first need to determine the spin-weighted
spherical harmonics. Using the Wigner D matrix, −2Y22
and 2Y22 in the θ and φ representation is as follows

−2Y22(θ, φ) =

√
5

64π
(1 + cos θ)2e2iφ, (17)

−2Y2−2(θ, φ) =

√
5

64π
(1− cos θ)2e−2iφ. (18)

Notice that −2Y22(0, 0) = −2Y2−2(0, π) = 1
2

√
5
π and

−2Y2−2(0, 0) = −2Y22(0, π) = 0 . Therefore, to solve for
h2,2 and h2,−2, we simply calculate h+−ih× at θ = φ = 0,
and φ = 0, θ = π. This can be done using PyCBC and
LALSimulation. Doing so we find that

h2,2(t) =

√
4π

5
[h+(t, 0, 0)− ih×(t, 0, 0)], (19)
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and

h2,−2(t) =

√
4π

5
[h+(t, π, 0)− ih×(t, π, 0)]. (20)

Since we are considering non-precessing binaries, θ con-
tain no time dependence. Therefore, to integrate Eq.
(15) over solid angle, we simply compute the following
integrals,∫

S

dΩ |−2Y22|2 =

∫
S

dΩ |−2Y2−2|2 = 1, (21)

and∫
S

dΩ −2Y
∗
22 −2Y2−2 =

∫
S

dΩ −2Y22 −2Y
∗
2−2 =

1

6
. (22)

Using the results from Eq. (21) and Eq. (22), we can
integrate Eq. (16) over solid angle to obtain the instan-
taneous power

dE

dt
= lim
r→∞

r2

16π

〈
|ḣ2,2|2 + |ḣ2,−2|2

+
1

6

(
ḣ∗2,2ḣ2,−2 + ḣ2,2ḣ

∗
2,−2

)〉
.

(23)

III. RESULTS

A. Effects of Varying the Intrinsic Parameters

To calculate ḣ2,2, ḣ2,−2, ḣ∗2,2, and ḣ∗2,−2, we use nu-
merical methods. More specifically, we use the central
difference method to calculate the time derivatives of the
arrays. The algorithm for the central difference method
is as follows [29]

f ′(x) ≈
f(x+ 1

2δ)− f(x− 1
2δ)

2δ
, (24)

where f is the function for which the derivative is taken
with respect to variable x, and δ is the step size. The
central difference method is comparatively more accurate
than the forward and backward difference methods. This
is because, the forward and backward difference methods
have truncation errors of order O(δ), whereas the central
difference method has a truncation error of order O(δ2)
[29].

After computing ḣ2,2, ḣ2,−2, ḣ∗2,2, and ḣ∗2,−2, we have
obtained the instantaneous power. To better depict the
evolution of energy over time, we use the cumulative
trapezoidal method to numerically calculate the integral
of power over time, namely the cumulative energy. The
algorithm for the cumulative trapezoidal rule is as follows
[30] ∫ b

a

f(x)dx ≈
N∑
k=1

f(xk−1) + f(xk)

2
∆xk, (25)

where f is the function being integrated with respect to
variable x over the interval [a, b], {xk} is the partition of
[a, b] such that a = x0 < x1 < · · · < xN−1 < xN = b, and
∆xk = xk + xk−1 is the kth sub interval [30]. The cu-
mulative trapezoidal rule is used because the algorithm
is much simpler to implement in code. There are indeed
more accurate methods of obtaining the cumulative en-
ergy, however given a large number of data points, the
cumulative trapezoidal rule yields sufficiently accurate
results for calculating the integral. This can be seen in
FIG. 3-5, as the energy versus time graph yields some-
what smooth functions. From here, we vary the intrinsic
physical parameters (i.e. total mass M , mass ratio q, and
spins s1z, s2z) and see how the energy evolves over time.
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FIG. 3. The radiated energy of GW versus time in linear
scale for IMRPhenomPv2 with constant mass ratio q = 1.00
and varying total mass.
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FIG. 4. The radiated energy of GW versus time in linear scale
for IMRPhenomPv2 with varying mass ratio and constant total
mass of M = 150 M�.
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FIG. 5. The radiated energy of GW versus time in linear
scale for IMRPhenomPv2 with varying spin. Here, m1 = 35.0
M� and m2 = 31.5 M�.

As seen from FIG. 3 and FIG. 4, the total mass M
and the mass ratio q increases with the radiated energy
of the GW. Similarly, from FIG. 5, it is apparent that
the radiated energy of the GW increases with spin. From
FIG. 3-5, it is apparent that a change in total mass M ,
mass ratio q, and spins s1z and s2z, has a major effect
on the cumulative energy in the merger-ringdown phase.
However, more interestingly, it seems that the variation
of cumulative energy in the inspiral phase has little to
no variation when plotting the cumulative energy versus
time graph. To better illustrate the change in energy
during the inspiral phase, we plot the y-axis of FIG. 3-5
in logarithmic scale.
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FIG. 6. The radiated energy of GW versus time for
IMRPhenomPv2 with constant mass ratio q = 1.00 and vary-
ing total mass in logarithmic scale.
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FIG. 7. The radiated energy of GW versus time for
IMRPhenomPv2 with varying mass ratio and constant total
mass of M = 150 M� in logarithmic scale.
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FIG. 8. The radiated energy of GW versus time for
IMRPhenomPv2 with varying spin in logarithmic scale. Here,
m1 = 35.0 M� and m2 = 31.5 M�.

From FIG. 6-8, we can see that during the inspiral
phase there are small deviations in the total energy radi-
ated by the GW. In FIG. 6, during times −0.38 s ≤ t ≤
0.05 s, we can see that the total energy radiated decreases
with the total mass. This has an opposite correlation to
that of the merger-ringdown phase, as indicated in FIG.
3, where the total mass increases with the GW energy. In
FIG. 7, for times t < −0.13 s, we can see that the total
energy radiated decreases with the mass ratio. Again,
this has an opposite correlation to that of the merger-
ringdown phase, as indicated in FIG. 4, where the mass
ratio increases with the GW energy. In FIG. 8, we can
see that at times t < −0.35 s, the total energy decreases
with the spin. Once more, this has an opposite correla-
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tion to that of the merger-ringdown phase, as indicated
in FIG. 5, where the spin increases with the GW energy.

IV. ANALYSIS AND DISCUSSION

For a more quantitative relation between the total
mass, mass ratio, spin and energy. we plot the total
energy versus the intrinsic parameters.

0 50 100 150 200 250 300 350 400
Total Mass (M¯)

3

4

5

6

7

8

9

10

11

12

To
ta

l E
ne

rg
y 

(M
¯
c2

)

E(M) = − 8.684× 10−10M 4 − 4.873× 10−7M 3 − 1.804× 10−4M 2

+6.665× 10−2M− 6.097× 10−2, R 2 = 0.9999

Total energy varying M

FIG. 9. Total energy of GW versus total mass with constant
mass ratio and no spin. The dots represent the total energy
obtained using the numerical calculations in Section III, and
the line represent the line of best fit through polynomial re-
gression.
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FIG. 10. Total energy of GW versus mass ratio with constant
total mass and no spin in linear scale. The dots represent
the total energy obtained using the numerical calculations in
Section III, and the line represent the line of best fit through
polynomial regression.
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FIG. 11. Total energy of GW versus spin with m1 = 35.0
M� and m2 = 31.5 M�. The dots represent the total en-
ergy obtained using the numerical calculations in Section III,
and the line represent the line of best fit through polynomial
regression.

As seen from FIG. 9, using polynomial regression, the
total mass increases in a quartic manner with the total
energy radiated. Similarly, from FIG. 10, we can see that
the total energy radiated by the GW also increases quar-
tically with the mass ratio. The quartic fit seems to be
ideal, as R2 = 1.000 for the polynomial regression in FIG.
9 and FIG. 10. The only underlying difference between
the two are the coefficients in front of the polynomial.
However, it is important to note that the use of poly-
nomial regression in FIG. 9 and FIG. 10, are only valid
for total mass in the range 30 M� ≤ M ≤ 330 M�, and
mass ratio in the range 0.2 ≤ q ≤ 1.0. This is because,
as the total mass and mass ratio increases, we expect the
gradient of total energy versus total mass/mass ratio to
decrease and get closer to zero as q → ∞ and M → ∞.
However, quartic expressions only have a zero gradient
at a maxima or minima. Therefore, it is also correct to
say that the quartic expressions in FIG. 9 and FIG. 10
are only the best fit lines for the given data. If one were
to extrapolate, one would have to plot the new points
and repeat the polynomial regression for the new data
set. Unlike, FIG. 9 and FIG. 10, FIG. 11 shows that the
total energy radiated by a GW increases linearly with
the spin of the BHs. The linear fit seems to be ideal, as
R2 = 0.9982 and R2 = 0.9989 for the linear regression of
s1z and s2z data, respectively.

Apart from a quantitative analysis, it is important to
verify whether our results make physical sense. To do so,
we compare the total radiated energy with that of real
GW signals. To clarify, the LIGO-Virgo-KAGRA (LVK)
teams do not directly measure the energy, the calcula-
tions done by the LVK analysis team for real events are
inferred using Eq .(10). Therefore, we are merely check-
ing our calculations with the calculations done by the
LVK analysis team. We can see from FIG. 3, the to-
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tal energy radiated for a binary system with constant
mass ratio q = 1.0, and total mass of M = 60 M�, is
∼ 3.5M�c

2. Comparing this to the results of GW150914,
which has component masses of m1 = 35.6+4.8

−3.0 M� and

m2 = 30.6+3.0
−4.4 M�, mass ratio of q = 0.85+0.17

−0.17, and a

total radiated energy of E = 3.1+0.4
−0.4 M�c

2 [1]. With
this, given that the results in FIG. 3 yields a mass ra-
tio, radiated energy, and total mass within the margin of
error for the results of GW150914, it can be reasonably
inferred that the results obtained in FIG. 3 are accurate.
From FIG. 4, it is apparent that the total radiated en-
ergy of a binary system with mass ratio q = 0.75, and
total mass 150 M�, is ∼ 6.7 M�c

2. This binary system is
most similar to that of GW190521, where the component
masses are m1 = 85+21

−14 M� and m2 = 66+17
−18 M�, the

mass ratio is q = 0.78+0.36
−0.32, and the total radiated energy

is E = 7.6+2.2
−1.9 M�c

2 [10]. Again, one can infer that the
results in FIG. 4 are accurate, as the mass ratio, total
mass, and radiated energy are within the margin of er-
ror for the results of GW190521. For FIG. 5, we compare
the results to that of an improved analysis on GW150914
with a fully spin-precessing waveform model [31]. In this
analysis, the total mass, mass ratio, and radiated energies
are the same as GW150914, but the spin associated with
the primary and secondary masses are s1z = 0.26+0.52

−0.24
and s2z = 0.32+0.54

−0.29, respectively [31]. From FIG. 5,
we can see that a binary system with m1 = 35.0 M�,
m2 = 31.5 M�, s1z = 0.30, and s2z = 0.30, yields a total
radiated energy of ∼ 4.6 M�c

2. With this, it is apparent
that the results from FIG. 5 agrees with the results ob-
tained from Ref. [31], as the component masses, spins,
and total energy are within the margin of error. Overall,
the results seem to make physical sense, as they conform
to the data gathered from observations.

V. FUTURE WORK

In the future, we plan to first do similar analyses by
varying the dephasing coefficients and see how the energy
evolves over time. In particular, we will focus on the de-
phasing coefficients in the inspiral phase, and then later
extend this to the intermediate and merger-ringdown
phase. After this, we vary the intrinsic parameters (such
as total mass, mass ratio, and spin) and the dephasing
coefficients to see how they affect the evolution of angular
momentum. From there, we plan to use these physical

quantities, namely energy, and angular momentum, along
with the GMM to coherently constrain the dephasing pa-
rameters.
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VII. APPENDIX

A. Appendix A: The Frequency Dependence of
IMRPhenomPv2

Phase of Dephasing Frequency (f)
Coalescence Coefficient (δpi) Dependence

Inspiral δχ0 f−
5
3

Inspiral δχ1 f−
4
3

Inspiral δχ2 f−1

Inspiral δχ3 f−
2
3

Inspiral δχ4 f−
1
3

Inspiral δχ5l ln(f)

Inspiral δχ6 f
1
3

Inspiral δχ6l f
1
3 ln(f)

Inspiral δχ7 f
2
3

Intermediate δβ2 ln(f)
Intermediate δβ3 f−3

Merger-Ringdown δα2 f−1

Merger-Ringdown δα3 f
3
4

Merger-Ringdown δα4 arctan(af + b)

TABLE I. The frequency dependence of IMRPhenomPv2 de-
phasing coefficients used in parameterized tests of GR [1].
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