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The following is a proposal that provides a framework for understanding the physical degrees of
freedom in a parameterized test of general relativity. In particular, we vary the post-Newtonian
(PN) coefficient, phenomenological coefficients, and the analytical black-hole perturbation theory
waveform parameters, and observe how this would affect the waveform and hence the physical
parameters. The physical parameters include the power radiated and the rate of angular momentum.
Although it is possible to map the dephasing coefficient to physical quantities, the inverse mapping
of the physical quantities to the dephasing coefficients is unknown. Therefore, this proposal presents
a method of obtaining this inverse mapping using the Gaussian Mixture Model (GMM).

I. INTRODUCTION

The detection of gravitational waves (GWs) by the
Advanced LIGO and Virgo [1–11] has opened new win-
dows in observational astrophysics and cosmology. More
specifically, it stands to test the limits of Einstein’s the-
ory of general relativity (GR). More recent work has
been focused on testing GR in the strong-field/highly-
relativistic regime. Such test could potentially reconcile
the deviations of GR with quantum field theory, through
examining the higher-energy corrections to the Einstein-
Hilbert action [12].

Of the many strong-field astrophysical events, this pro-
posal focuses on the coalescence of binary black holes
(BBHs). This is because, firstly, the gravitational fields
generated can be many orders of magnitude stronger than
any other astrophysical events, as the BBHs’ orbital sep-
aration can be smaller than the last stable orbit before
merging. Secondly, BBH coalescence gives one of the
cleanest signals for testing GR, as it is separated into
three distinct phases: the inspiral, merger, and ringdown
(IMR) phases [13].

A parametrized test is, simply put, a test where one
measures the deviation of some parameters from their
GR predictions. For parameterized tests of GR, the
phenomenological models are most ideal, as they have
a closed-form expression in the frequency domain and
hence can be more computationally efficient. In par-
ticular, we focus on doing a parameterized test of GR
on IMRPhenomPv2 [14–17]. IMRPhenomPv2 is a waveform
model that approximates a signal of a precessing binary.
It is used because it has good performance across the
parameter space [15]. The purpose of the parameterized
test is to understand the physical significance of vary-
ing the dephasing coefficients in the waveform and see
whether such changes have deviations from GR.

Throughout the entirety of this proposal, the geometric
unit convention is adopted, where c = G = 1.

II. PARAMETERIZED TEST OF GR

As mentioned in the Section I, a parameterized test
of GR is to search for digressions of observations from
the predictions of GR. To perform the parameterized
tests, we introduce fractional deviations δpi to the
IMRPhenomPv2 phase coefficients pi [18], namely

pi → (1 + δpi)pi. (1)

These fractional deviations are known as the dephasing
coefficients. The phasing of IMRPhenomPv2 consists of
three regimes. The first of which is the inspiral regime
which is parameterized by post-Newtonian (PN) coeffi-
cients [19] {ϕ0, . . . , ϕ7} and {ϕ5l, ϕ6l}. In this regime,
there are also phenomenological parameters {σ0, . . . , σ4}
that contribute to the high effective PN order. This cor-
rects for non-adiabaticity in the late inspiral phase and
for unknown high-order PN coefficients in the adiabatic
regime. The second regime, is the intermediate regime,
which is parameterized by the phenomenological coeffi-
cients {β0, . . . , β3}. Finally, there is the merger-ringdown
regime which is parameterized by a combination of the
phenomenological coefficients and the analytical black-
hole perturbation theory parameters {α0, . . . , α5} [13].
As one can see if δpi = 0 this corresponds to a theory
with no deviation with GR.

In FIG. 1, we have the phase evolution of an
IMRPhenomPv2 waveform with varied dephasing coeffi-
cient. A dephasing coefficient is chosen from each regime
to illustrate how the dephasing coefficient changes the
waveform and hence the physical parameters. More
specifically, FIG. 1 illustrates how the dephasing coef-
ficient changes the phase. In FIG. 2, we change the same
dephasing coefficients as those in FIG. 1, however this
time we plotted the strain data. This illustrates how the
dephasing coefficient actually changes the shape of the
GW waveform.
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FIG. 1. Phase of GW versus time for IMRPhenomPv2 with no
modification (blue line), δα2 = 10.0 (orange line), δχ4 = 10.0
(green line), and δβ3 = 10.0 (red line). Here it can be seen
that the change in dephasing coefficient alters the phase of
the waveform over time.
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FIG. 2. Strain versus time for IMRPhenomPv2 with no modifi-
cation (blue line), δα2 = 10.0 (orange line), δχ4 = 10.0 (green
line), and δβ3 = 10.0 (red line). One can see the change in
shape of waveform when plotting the strain data.

Throughout the entirety of this project, we will use
the parameterized test of TIGER (Test Infrastructure
for GEneral Relativity) [20, 21]. This infrastructure is
prevalent, as it does not require an alternative theory of
gravity to compare against. In addition to this, TIGER
is dependent on the measurement of parameterizable de-
viations, like the aforementioned deviation in dephasing
coefficients from a GR-consistent waveform model.

Let HGR be the hypothesis that some GW signal h is
consistent with GR. To test how this hypothesis deviates
from GR, we introduce another hypothesis HMG (MG

stands for modified gravity) which is a hypothesis that
the waveform model differs by one or more dephasing
coefficient. Since HGR and HMG are mutually exclusive,
and given some data d and information I, we can define
the Bayes factor [13]

B =
p(d|HMG, I)

p(d|HGR, I)
, (2)

where p(d|HGR, I) and p(d|HMG, I) are the posterior
probability densities of the data given hypothesis HGR

and HMG, respectively. If logB > 0, then the hypothe-
sis HMG is favored, on the other hand if logB < 0 the
hypothesis HGR is preferred [22]. Hence, we have a quan-
titative way of determining whether a waveform deviates
from GR. This can be computed using some Bayesian in-
ference libraries like bilby [23] or LALInference [24, 25].

III. PARAMETER ESTIMATION

In Ref. [13], the Bayesian statistics framework is used
to do parameter estimation. In such framework, the pos-
terior distribution for some parameter λ is [13, 24, 25]

p(λ|Hi, d, I) =
p(λ|Hi, I)p(d|Hi, λ, I)

p(d|I)
, (3)

where Hi is the hypothesis that corresponds to a wave-
form model in which δpi is a free parameter. In the equa-
tion above, d is the data, I is the background information,
p(λ|Hi, I) is the prior probability density for the free pa-
rameters, and p(d|Hi, λ, I) is the probability of the data.
p(d|Hi, λ, I) is defined as the likelihood function, which
can be written as [13, 24, 25]

p(d|Hi, λ, I) ∝ e− 1
2 〈d−h(λ)|d−h(λ)〉, (4)

where h(λ) is the signal model and the inner product is
defined as [13]

〈a|b〉 = 4R

∫ fhigh

flow

df
a∗(f)b(f)

Sn(f)
. (5)

In Eq. (5), fhigh is the high-frequency cutoff and flow is
the low-frequency cutoff. In the equation above, Sn(f) is
the power spectral density of noise. To obtain the pos-
terior density for parameter δpi, one has to marginalize
over all parameters other than δpi. These are also known
as the nuisance parameters.

p(δp|Hi, d, I) =

∫
d~θ p(~θ, δpi|Hi, d, I), (6)

where the integration is carried out over all nuisance pa-
rameters.
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IV. RATES OF ENERGY AND ANGULAR
MOMENTUM OF GWS

The physical parameters that we are interested in are
the rates of energy and angular momentum. We can
compute the energy and momentum using the Isaacson
stress-energy tensor [26, 27]

tµν = − 1

8π

〈
R(2)
µν −

1

2
ḡµνR

(2)

〉
, (7)

where R
(2)
µν is the Ricci tensor to quadratic order. R

(2)
µν

usually involves many terms quadratic in the metric per-
turbation, however we can drastically simplify this ex-
pression by performing integration by parts and using
the transverse-traceless (TT) gauge condition

R(2)
µν = −1

4

〈
∂µhαβ∂νh

αβ
〉
. (8)

Therefore the Isaacson stress-energy tensor can be writ-
ten explicitly as

tµν =
1

32π

〈
∂µh

TT
αβ ∂νh

αβ
TT

〉
(9)

To compute the energy carried by a GW, we take the
00-component of the Isaacson stress-energy tensor and
integrate over the volume V [26, 27]

dE

dt
=

1

16π

∫
S

dΩ r2
〈
ḣ2+ + ḣ2×

〉
, (10)

where h+ and h× are the plus and cross polarizations of
the GW, respectively. The overhead dot in Eq. (10) is
the derivative with respect to coordinate time. Another
useful expression is the energy spectrum, as it is much
easier to integrate over all frequency

dE

df
=
π

2
f2
∫
S

dΩ r2
(
|h̃+(f)|2 + |h̃×(f)|2

)
. (11)

On the other hand, to compute the rate of angular mo-
mentum, we compute the linear momentum and take the

cross product with the separation vector. The linear mo-
mentum is as follows[26, 27]

dPi
dt

=
1

32π

∫
dΩ r2

〈
ḣTT
ij ∂

kḣTT
ij

〉
. (12)

Therefore, the total rate of change in angular momentum
carried by the GWs can be written as

J i =
1

2
εijkJkl, (13)

where Jkl is the conserved charge associated with rota-
tion in the kl−plane. Using Noether’s theorem, we find
that the expression for rate of angular momentum is as
follows[26, 27]

dJi
dt

=
1

32π

∫
S

dΩ r2〈−εiklḣTT
ab x

k∂lhTT
ab + 2εiklḣTT

al h
TT
ak 〉.

(14)
To carry out the integration numerically, multipole ex-
pansion is performed on the rates of energy and angular
momentum[27].

V. TIMELINE

• 1st-2nd week: Calculate the energy/angular mo-
mentum of the inspiral part.

• 2nd-3rd week: Writing, plotting, and analyzing the
results, along with writing the first interim report.

• 4th-5th week: Perform the energy calculations but
for the post-inspiral and merger-ringdown part.

• 5th-7th week: Calculation of the angular momen-
tum of the entire waveform.

• 7th-8th week: Learn the statistics of the Gaussian
Mixture Model (GMM).

• 9th-10th week: Perform TIGER run and prepare
for final presentation.
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T. Sidery, R. Smith, M. Van Der Sluys, A. Vecchio,
W. Vousden, and L. Wade, Parameter estimation for
compact binaries with ground-based gravitational-wave
observations using the lalinference software library, Phys.
Rev. D 91, 042003 (2015).

[26] M. Maggiore, Gravitational Waves: Volume 1: Theory
and Experiments (Oxford University Press, 2007).

[27] M. Ruiz, M. Alcubierre, D. Núñez, and R. Takahashi,
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