

UO LIGO Group

Graduate Students

Adrian Helmling-Cornell

Bruce Edelman

Benjamin Mannix

Gino Carrillo

Jaxen Godfrey

JD Merritt

Kara Merfeld

Matthew Ball

Philippe Nguyen

Sangeet Paul

Undergraduate Students

Alexis Vives

Allie Davis

Rachel Hur

Faculty

Ben Farr

Jim Brau

Ray Frey

Robert Schofield

glitschen

-A data-driven model for transient glitch mitigation.

GRB Afterglows

GRB afterglow modeling with hybridized spline/hydro simulations.

GW Clustering

Classification of detected GW sources using unsupervised ML algorithms.

Works with any posterior samples in any parameter space.

Parametric PSDs

Dynamic modeling of strain PSD.

Model: Cubic spline + Lorentzians.

Spline & Gap Populations

Non-parametric Perturbation to a Powerlaw Mass Spectrum with Cubic Splines

2-parameter PISN Mass Gap BBH Population Model B. Edelman *et al* 2021 *ApJL* **913** L23

Environmental noise measurement in aLIGO

UO responsible for development and maintenance of instrumentation (PEM) required to measure the non-GW environment (Schofield, students)

Measuring the GW background and GW candidate vetting

Environmental injections to determine ambient coupling (contamination) of environment to GW signals (Schofield, Nguyen, Ball, Helmling-Cornell, Merfeld, Frey)

P Nguyen et al 2021 Class. Quantum Grav. 38 145001

Finding of high-frequency LHO-LLO magnetic coherence

Most environmental noise is uncorrelated between sites. But global geophysical magnetism can be coherent. At low-frequency (< 50 Hz): Schumann resonances. We now see high frequency magnetic coherence between LIGO (and Virgo) sites, which we show is due to lightning. This can be a difficult-to-reduce background for stochastic GW searches. (Ball, Schofield, Frey)

LLO-LHO coherence measured by on-site LEMI magnetometers as a fn of frequency (blue). After vetoing of (much of) the time with lightning signals (orange).

GWs associated with GRBs

GW170817 + GRB 170817A was a watershed BNS merger + GRB detection.

We have continued to look for these types of events in O3. (Nguyen - O3a and O3b paper

writing teams)

Glitches and Cosmic Strings

One of these spectrograms is a blip glitch and one is a simulated GW signal from a cosmic string cusp. Which is which? Work to improve the O4 Burst search (Helmling-Cornell)

Magnetars and FRBs

- Fast Radio Bursts are a mysterious cosmic phenomenon. And magnetars are highly magnetized neutron stars which occasionally emit large x-ray bursts.
- The CHIME radio detector has found hundreds of FRBs (~100x increase)
- April 28, 2020: galactic FRB (first!) associated with known magnetar SGR 1935+2154
- In O3, searching for GWs associated with FRBs and galactic magentars (Merfeld, co-chair of paper writing team)

