LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T2100299-v2 LIGO
8/16/2021

Test Procedure for IO Interface Backplane

Marc Pirello, Daniel Sigg

Distribution of this document:
LIGO Scientific Collaboration

This is an internal working note of the LIGO Laboratory.

California Institute of Technology
LIGO Project - MS 18-34 1200 E. California Blvd.
Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834
E-mail: info@ligo.caltech.edu
LIGO Hanford Observatory
P.O. Box 159

Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

Massachusetts Institute of Technology
LIGO Project - NW22-295
185 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014
E-mail: info@ligo.mit.edu
LIGO Livingston Observatory
P.O. Box 940

Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189
http://www.ligo.caltech.edu/

1 Introduction

The following Test Procedure describes the test of proper operation of the PCIe Timing Interface.

\square
\square

2 Test Equipment

- Voltmeter
- Oscilloscope
- Fiber from a Timing Master/Fanout (optional),
- Windows PC with open motherboard with at least 1 PCIe slot free. Alternatively, use a PC with a PCIe extender like the Adnaco.
- Extra PC ATX power supply
- Adapter: Dual PSU power supply 24-pin adapter cable for ATX motherboard, and
- 2 test adapter board for backplane, D2100184.
- Breakout Boards - DB25 if needed

3 Preparations

- PC needs to run Windows $10,64-$ bit, no secure boot.
- Install the device driver for LIGO Timing.
- Install the LIGOTimingApp program.
- Install a PCIe timing board in the PC and make sure the driver is loaded (it should show up in the Device Manager as "Timing > LIGO Timing Device").

4 Caution

When connecting test adapters, backplanes and daughter cards, it is important that the correct FPGA program is loaded. Otherwise, it is possible to short two outputs together which can potentially damage the board.

- The backplane, D20000297, daughter board, D2000331, and the GPS expansion module, D2000301, require the FPGA timing code, E2000337.

5 Backplane Test

Setup the backplane with the extra ATX power supply and with the dual PSU Power Supply 24pin adapter cable. Turn on the power.

1) Check the voltages and LEDs on the backplane.

TP7 (+12V) \qquad TP3 (+3.3V) \qquad
TP10 (+5 V) \qquad
LED DS 1 (green) \qquad LED DS2 (green) \qquad
LED DS3 (green) \qquad
2) Insert PCIe board into PC, connect the DB37 cable.

Run the LIGO Timing App program and make sure it is running.
Set the frequencies of the backplane slots (Converter tab) to 16, 17, 18, 19, 20, 0, 15, $-1,14$, and 13. Enable all slots. Set Out1 and Out 2 in the fields with white background.

1: Device driver connected \qquad
Make sure the backplane is enabled.
2: All enabled \qquad
3: All running \qquad Nominal: green
4: Press watchdog button, and check the watchdog go green for ~ 2 sec.
5: Watchdog indicator \qquad Nominal: 2sec-green

6: Short pins $1 \& 2$ on P3 header \qquad Nominal: Temp Alarm goes red

3) Install two backplane adapter boards into slots 1 and 2, then equip them with DB25 breakout boards.

Toggle Slot 1/ADC DT: \qquad Nominal: Turns off $1^{\text {st }}$ LED in slot 1

Toggle Slot 2/ADC DT: \qquad Nominal: Turns off $1^{\text {st }}$ LED in slot 2

Toggle slot 1/DAC DT: \qquad Nominal: Turns off $2^{\text {nd }}$ LED in slot 1

Toggle slot 2/DAC DT: \qquad Nominal: Turns off $2^{\text {nd }}$ LED in slot 2

Toggle slot 1/Bit 1: \qquad Nominal: Turns on $3^{\text {rd }}$ LED in slot 1

Toggle slot 2/Bit 1: \qquad Nominal: Turns on $3{ }^{\text {rd }}$ LED in slot 2

Toggle slot 1/Bit 2: \qquad Nominal: Turns on $4^{\text {th }}$ LED in slots $1 \& 2$

Toggle $1^{\text {st }}$ switch in slot 1 : \qquad Nominal: ADC Mon 1 comes on in slot 1

Toggle $1^{\text {st }}$ switch in slot 2 : \qquad Nominal: ADC Mon 1 comes on in slot 2

Toggle $2^{\text {nd }}$ switch in slot 1 : \qquad Nominal: ADC Mon 2 comes on in slot 1

Toggle $2^{\text {nd }}$ switch in slot 2 : \qquad Nominal: ADC Mon 2 comes on in slot 2

Toggle $3^{\text {rd }}$ switch in slot 1 : \qquad Nominal: DAC Mon 1 comes on in slot 1

Toggle $3^{\text {rd }}$ switch in slot 2 : \qquad Nominal: DAC Mon 1 comes on in slot 2

Use a clip to probe the pins on the DB25 breakouts. Repeat after toggling "Use LVDS". Pin 13 can be used as a ground.

Pin 1/slot 1: \qquad Nominal: 65536 Hz with LVDS on

Pin $2 /$ slot 1 : \qquad Nominal: 65536 Hz with LVDS on

Pin 3/slot 1: \qquad Nominal: 131072 Hz with LVDS on

Pin 4/slot 1 : \qquad Nominal: 65536 Hz with LVDS off

Pin 5/slot 1: \qquad Nominal: 65536 Hz with LVDS off

Pin 1/slot 2: \qquad Nominal: 131072 Hz with LVDS on

Pin 2/slot 2: \qquad Nominal: 65536 Hz with LVDS on

Pin 3/slot 2: \qquad Nominal: 131072 Hz with LVDS on

Pin 4/slot 2: \qquad Nominal: 131072 Hz with LVDS off

Pin 5/slot 2: \qquad Nominal: 131072 Hz with LVDS off

With an Ohmmeter check short between pin 8 on slots $1 \& 2$: \qquad
With an Ohmmeter check short between pin 21 on slots $1 \& 2$: \qquad
With a scope check for DuoTone on pin 7 in slot 1: \qquad
With a scope check watchdog on pin 25 in slot 1 (press watchdog button!): \qquad
With a scope check watchdog on pin 25 in slot 2 (press watchdog button!): \qquad
4) Install two backplane adapter boards into slots 3 and 4, then equip them with DB25 breakout boards.

Toggle Slot 3/ADC DT: \qquad Nominal: Turns off $1^{\text {st }}$ LED in slot 3

Toggle Slot 4/ADC DT: \qquad Nominal: Turns off $1^{\text {st }}$ LED in slot 4

Toggle slot 3/DAC DT: \qquad Nominal: Turns off $2^{\text {nd }}$ LED in slot 3

Toggle slot 4/DAC DT: \qquad Nominal: Turns off $2^{\text {nd }}$ LED in slot 4

Toggle slot 3/Bit 1: \qquad Nominal: Turns on $3^{\text {rd }}$ LED in slot 3

Toggle slot 4/Bit 1: \qquad Nominal: Turns on $3^{\text {rd }}$ LED in slot 4

Toggle slot 3/Bit 2: \qquad Nominal: Turns on $4^{\text {th }}$ LED in slots $3 \& 4$

Toggle ${ }^{\text {st }}$ switch in slot 3 : \qquad Nominal: ADC Mon 1 comes on in slot 3

Toggle $1^{\text {st }}$ switch in slot 4: \qquad Nominal: ADC Mon 1 comes on in slot 4

Toggle $2^{\text {nd }}$ switch in slot 3 : \qquad Nominal: ADC Mon 2 comes on in slot 3

Toggle $2^{\text {nd }}$ switch in slot 4: \qquad Nominal: ADC Mon 2 comes on in slot 4

Toggle $3^{\text {rd }}$ switch in slot 3 : \qquad Nominal: DAC Mon 1 comes on in slot 3

Toggle $3^{\text {rd }}$ switch in slot 4: \qquad Nominal: DAC Mon 1 comes on in slot 4

Use a clip to probe the pins on the DB25 breakouts. Repeat after toggling "Use LVDS". Pin 13 can be used as a ground.

Pin 1/slot 3: \qquad Nominal: 262144 Hz with LVDS on

Pin 2/slot 3: \qquad Nominal: 262144 Hz with LVDS on

Pin 3/slot 3: \qquad Nominal: 524288 Hz with LVDS on

Pin 4/slot 3: \qquad Nominal: 262144 Hz with LVDS off

Pin 5/slot 3: \qquad Nominal: 262144 Hz with LVDS off

Pin 1/slot 4: \qquad Nominal: 524288 Hz with LVDS on

Pin 2/slot 4: \qquad Nominal: 262144 Hz with LVDS on

Pin 3/slot 4: \qquad Nominal: 524288 Hz with LVDS on

Pin 4/slot 4: \qquad Nominal: 524288 Hz with LVDS off

Pin 5/slot 4: \qquad Nominal: 524288 Hz with LVDS off

With an Ohmmeter check short between pin 8 on slots $3 \& 4$: \qquad
With an Ohmmeter check short between pin 21 on slots $3 \& 4$: \qquad
With a scope check watchdog on pin 25 in slot 1 (press watchdog button!): \qquad
With a scope check watchdog on pin 25 in slot 2 (press watchdog button!): \qquad
5) Install two backplane adapter boards into slots 5 and 6, then equip them with DB25 breakout boards.

Toggle Slot 5/ADC DT: \qquad Nominal: Turns off $1^{\text {st }}$ LED in slot 5

Toggle Slot 6/ADC DT: \qquad Nominal: Turns off $1^{\text {st }}$ LED in slot 6

Toggle slot 5/DAC DT: \qquad Nominal: Turns off $2^{\text {nd }}$ LED in slot 5

Toggle slot 6/DAC DT: \qquad Nominal: Turns off $2^{\text {nd }}$ LED in slot 6

Toggle slot 5/Bit 1: \qquad Nominal: Turns on $3^{\text {rd }}$ LED in slot 5

Toggle slot 6/Bit 1: \qquad Nominal: Turns on $3{ }^{\text {rd }}$ LED in slot 6

Toggle slot 5/Bit 2: \qquad Nominal: Turns on $4^{\text {th }}$ LED in slots $5 \& 6$

Toggle $1^{\text {st }}$ switch in slot 5 : \qquad Nominal: ADC Mon 1 comes on in slot 5

Toggle $1^{\text {st }}$ switch in slot 6 : \qquad Nominal: ADC Mon 1 comes on in slot 6

Toggle $2^{\text {nd }}$ switch in slot 5 : \qquad Nominal: ADC Mon 2 comes on in slot 5

Toggle $2^{\text {nd }}$ switch in slot 6 : \qquad Nominal: ADC Mon 2 comes on in slot 6

Toggle $3^{\text {rd }}$ switch in slot 5 : \qquad Nominal: DAC Mon 1 comes on in slot 5

Toggle $3^{\text {rd }}$ switch in slot 6 : \qquad Nominal: DAC Mon 1 comes on in slot 6

Toggle $4^{\text {th }}$ switch in slot 6: \qquad Nominal: X1 goes off (backplane tab)

Use a clip to probe the pins on the DB25 breakouts. Repeat after toggling "Use LVDS". Pin 13 can be used as a ground.

Pin 1/slot 5: \qquad Nominal: 1048576 Hz with LVDS on

Pin 2/slot 5: \qquad Nominal: 1048576 Hz with LVDS on

Pin 3/slot 5: \qquad Nominal: 1 Hz with LVDS on

Pin 4/slot 5: \qquad Nominal: 1048576 Hz with LVDS off

Pin 5/slot 5: \qquad Nominal: 1048576 Hz with LVDS off

Pin 1/slot 6: \qquad Nominal: 1 Hz with LVDS on

Pin 2/slot 6: \qquad Nominal: 1048576 Hz with LVDS on

Pin 3/slot 6: \qquad Nominal: 1 Hz with LVDS on

Pin 4/slot 6: \qquad Nominal: 1 Hz with LVDS off

Pin 5/slot 6: \qquad Nominal: 1 Hz with LVDS off

With an Ohmmeter check short between pin 8 on slots $5 \& 6$: \qquad
With an Ohmmeter check short between pin 21 on slots $5 \& 6$: \qquad
With a scope check watchdog on pin 25 in slot 1 (press watchdog button!): \qquad
With a scope check watchdog on pin 25 in slot 2 (press watchdog button!): \qquad
6) Install two backplane adapter boards into slots 7 and 8, then equip them with DB25 breakout boards.

Toggle Slot 7/ADC DT: \qquad Nominal: Turns off $1^{\text {st }}$ LED in slot 7

Toggle Slot 8/ADC DT: \qquad Nominal: Turns off $1^{\text {st }}$ LED in slot 8

Toggle slot 7/DAC DT: \qquad Nominal: Turns off $2^{\text {nd }}$ LED in slot 7

Toggle slot 8/DAC DT: \qquad Nominal: Turns off $2^{\text {nd }}$ LED in slot 8

Toggle slot 7/Bit 1: \qquad Nominal: Turns on $3{ }^{\text {rd }}$ LED in slot 7

Toggle slot 8/Bit 1: \qquad Nominal: Turns on $3^{\text {rd }}$ LED in slot 8

Toggle slot 7/Bit 2: \qquad Nominal: Turns on $4^{\text {th }}$ LED in slots $7 \& 8$

Toggle $1^{\text {st }}$ switch in slot 7 : \qquad Nominal: ADC Mon 1 comes on in slot 7

Toggle $1^{\text {st }}$ switch in slot 8 : \qquad Nominal: ADC Mon 1 comes on in slot 8

Toggle $2^{\text {nd }}$ switch in slot 7: \qquad Nominal: ADC Mon 2 comes on in slot 7

Toggle $2^{\text {nd }}$ switch in slot 8 : \qquad Nominal: ADC Mon 2 comes on in slot 8

Toggle $3^{\text {rd }}$ switch in slot 7 : \qquad Nominal: DAC Mon 1 comes on in slot 7

Toggle $3^{\text {rd }}$ switch in slot 8 : \qquad Nominal: DAC Mon 1 comes on in slot 8

Toggle $4^{\text {th }}$ switch in slot 8 : \qquad Nominal: X3 goes off (backplane tab)

Use a clip to probe the pins on the DB25 breakouts. Repeat after toggling "Use LVDS". Pin 13 can be used as a ground.

Pin 1/slot 7: \qquad Nominal: 32768 Hz with LVDS on

Pin $2 /$ slot 7 : \qquad Nominal: 32768 Hz with LVDS on

Pin 3/slot 7: \qquad Nominal: 0.5 Hz with LVDS on

Pin $4 /$ slot 7 : \qquad Nominal: 32768 Hz with LVDS off

Pin $5 /$ slot 7 : \qquad Nominal: 32768 Hz with LVDS off

Pin 1/slot 8 : \qquad Nominal: 0.5 Hz with LVDS on

Pin $2 /$ slot 8 : \qquad Nominal: 32768 Hz with LVDS on

Pin 3/slot 8: \qquad Nominal: 0.5 Hz with LVDS on

Pin 4/slot 8 : \qquad Nominal: 0.5 Hz with LVDS off

Pin 5/slot 8 : \qquad Nominal: 0.5 Hz with LVDS off

With an Ohmmeter check short between pin 8 on slots $7 \& 8$: \qquad
With an Ohmmeter check short between pin 21 on slots $7 \& 8$: \qquad
With a scope check watchdog on pin 25 in slot 1 (press watchdog button!): \qquad
With a scope check watchdog on pin 25 in slot 2 (press watchdog button!): \qquad
7) Install two backplane adapter boards into slots 9 and 10, then equip them with DB25 breakout boards.

Toggle Slot 9/ADC DT: \qquad Nominal: Turns off $1^{\text {st }}$ LED in slot 9

Toggle Slot 10/ADC DT: \qquad Nominal: Turns off $1^{\text {st }}$ LED in slot 10

Toggle slot 9/DAC DT: \qquad Nominal: Turns off $2^{\text {nd }}$ LED in slot 9

Toggle slot 10/DAC DT: \qquad Nominal: Turns off $2^{\text {nd }}$ LED in slot 10

Toggle slot 9/Bit 1: \qquad Nominal: Turns on $3^{\text {rd }}$ LED in slot 9

Toggle slot 10/Bit 1: \qquad Nominal: Turns on $3{ }^{\text {rd }}$ LED in slot 10

Toggle slot 9/Bit 2: \qquad Nominal: Turns on $4^{\text {th }}$ LED in slots $9 \& 10$

Toggle $1^{\text {st }}$ switch in slot 9 : \qquad Nominal: ADC Mon 1 comes on in slot 9

Toggle $1^{\text {st }}$ switch in slot 10 : \qquad Nominal: ADC Mon 1 comes on in slot 10

Toggle $2^{\text {nd }}$ switch in slot 9 : \qquad Nominal: ADC Mon 2 comes on in slot 9

Toggle $2^{\text {nd }}$ switch in slot 10 : \qquad Nominal: ADC Mon 2 comes on in slot 10

Toggle $3^{\text {rd }}$ switch in slot 9 : \qquad Nominal: DAC Mon 1 comes on in slot 9

Toggle $3^{\text {rd }}$ switch in slot 10 : \qquad Nominal: DAC Mon 1 comes on in slot 10

Use a clip to probe the pins on the DB25 breakouts. Repeat after toggling "Use LVDS". Pin 13 can be used as a ground.

Pin 1/slot 9: \qquad Nominal: 16384 Hz with LVDS on

Pin 2/slot 9: \qquad Nominal: 16384 Hz with LVDS on

Pin 3/slot 9: \qquad Nominal: 8192 Hz with LVDS on

Pin 4/slot 9: \qquad Nominal: 16384 Hz with LVDS off

Pin 5/slot 9: \qquad Nominal: 16384 Hz with LVDS off

Pin 1/slot 10: \qquad Nominal: 8192 Hz with LVDS on

Pin 2/slot 10 : \qquad Nominal: 16384 Hz with LVDS on

Pin 3/slot 10 : \qquad Nominal: 8192 Hz with LVDS on

Pin 4/slot 10 : \qquad Nominal: 8192 Hz with LVDS off

Pin 5/slot 10: \qquad Nominal: 8192 Hz with LVDS off

With an Ohmmeter check short between pin 8 on slots $9 \& 10$: \qquad
With an Ohmmeter check short between pin 21 on slots $9 \& 10$: \qquad
With a scope check watchdog on pin 25 in slot 1 (press watchdog button!): \qquad
With a scope check watchdog on pin 25 in slot 2 (press watchdog button!): \qquad

6 Pass/Fail

Pass: \qquad

Fail: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

