Sensitivity of the Gravitational Wave Detector Network to High Mass Binary Black Hole Mergers in Observing Run 3 and Beyond

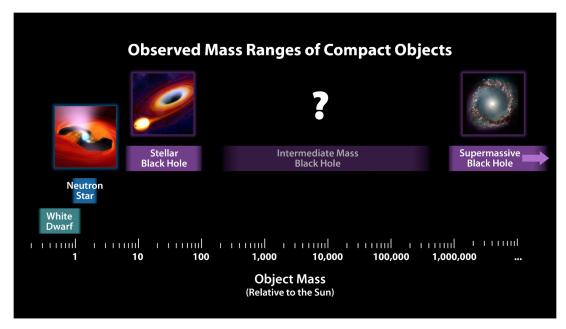
LIGO Summer Undergraduate Research Fellowship

Presenter:

Sabrina Barbaro (Boston University) (she/her)

Mentors:

Alan Weinstein (California Institute of Technology)
Richard Udall (California Institute of Technology)



LIGO T2100334-v1

Background/Motivation

- Intermediate Mass Black Hole Binary (IMBHB) mergers
- Pair Instability, Pair Instability Mass Gap
- GW190521: 64 on 85 solar masses
- Astrophysical implications for formation- want to observe more events

2

The Fate of the Most Massive Stars: Pair Instability

- Large stars are heated past 10⁹K
 - Photons dissociate into electronpositron pairs
 - electron-positron pairs provide less radiation pressure
- Pulsational vs. Supernova Remnants
 - 100-150Mo are in the pulsational range
 - 140-260Mo have no remnant

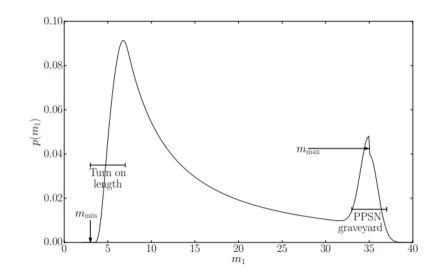


Image Credits: Colm Talbot and Eric Thrane

 I define the IMBHB mass range as ~ 65 to 250 M_☉

Goal: Determine The Sensitivity of the Detector Network to High Mass Systems

- Question: How sensitive is the detector network to IMBHB mergers?
 - With effects such as precession and higher order modes?
 - In O3? In the future? With more detectors?
- Express the sensitivity as a rate of events per spacetime volume

N = RVT

Number of Observed Events and Distance Sensitivity

$$N = RT \int dz \frac{dV_c}{dz} (1+z)^{-1} \epsilon(z|\theta)$$

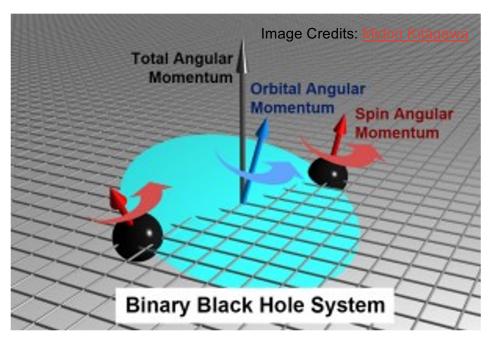
$$V_s = \int dz \frac{dV_c}{dz} \epsilon(z|\theta)$$

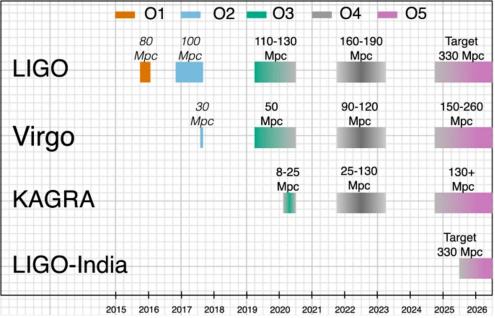
N = Number of Detected Events

 V_s = Sensitive Volume

dV_c/dz = Comoving Volume

R = Rate of IMBHB mergers (assumed constant)


T = Time (without dilation factor)


 $\varepsilon(z|\theta)$ = efficiency function

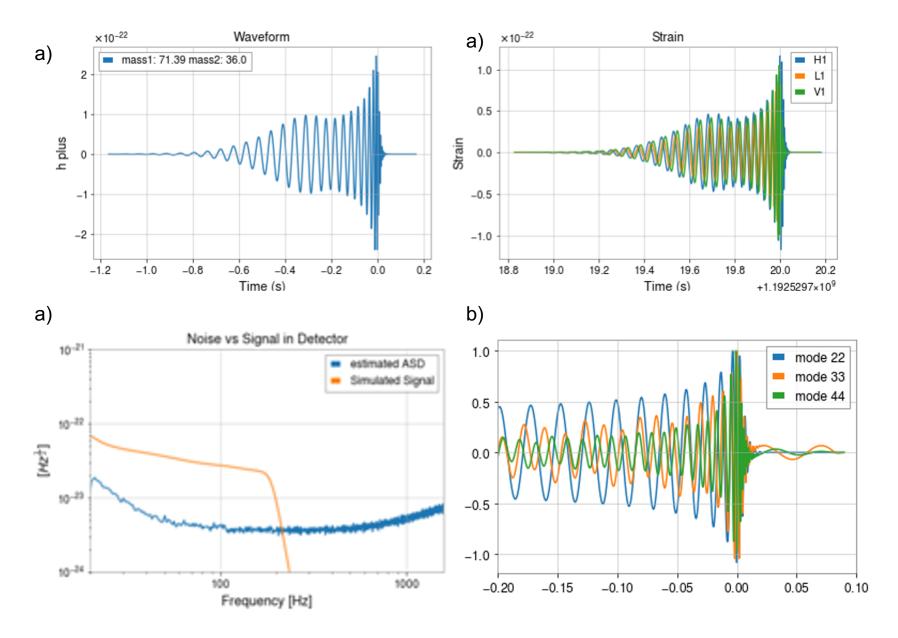
z = redshift

Parameters Affecting Detector Sensitivity: θ

- Masses, spins, precession, sky location, orbital orientation
 - Not eccentricity or tidal deformation
- Antenna pattern of the detectors
- Detectors in the network

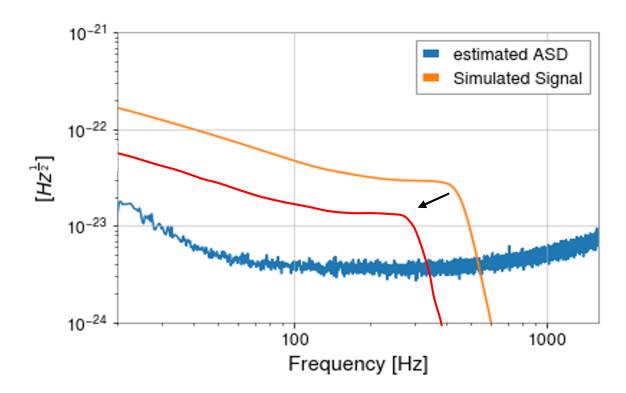
Averaged Parameters vs Sampled Parameters

Searching for overall sensitivity of the network

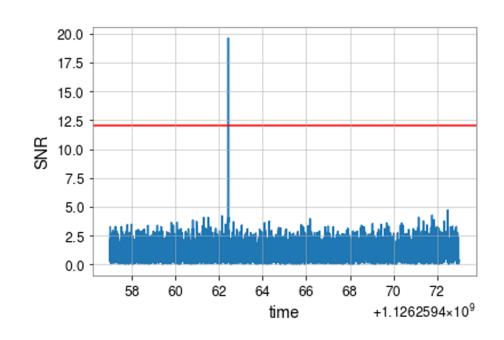

Average the Extrinsic Variables

- Sky location/orientation
 - Assume uniformly random
- Spin values
 - Assume gaussian distributions
- Presence of precession/higher order modes

Sampled


- Masses
- Precession
- Network Configurations
- Redshift/ luminosity distance

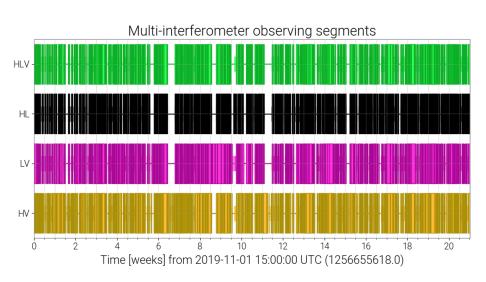
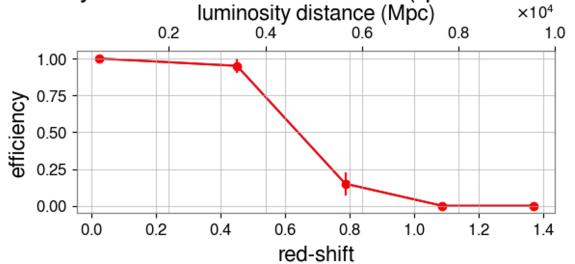
Methodology: How Parameters Affect the Waveform

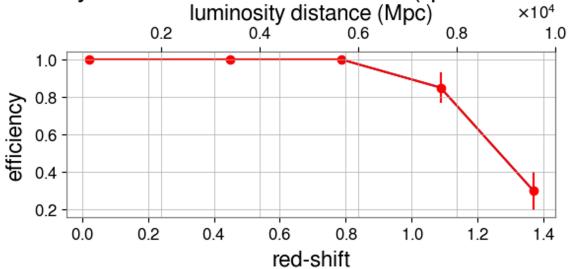

Redshift and Cosmology

- Frequency is shifted to lower wavelengths
 - Frequency band is 20-2000 Hz
 - Masses are therefore redshifted
- Time dilation of the rate per spacetime volume
 - Rate is proportional to the comoving volume

Simplifying Assumptions

- Power Spectral Densities are Estimates
- SNR Threshold is the basis for detection
- Duty Cycle is assumed to be 100%
- Precession and higher order modes are not used in search pipeline template banks


Image Credits: <u>Detchar Summary Pages</u>

Results: Efficiency Curves

Efficiency as a Function of Red-Shift (q = 0.17 mt = 100.0)

Efficiency as a Function of Red-Shift (q = 1.0 mt = 250.0)

No! Wrong Colloms!

Sensitive Distance by Total Mass

Sensitive Distance		
Parameters	Total Mass/ Mass Ratio	Sensitive Distance (z)
Net = O3, no precession/HOMs	$M_t = 50, q = 0.17$	0.63
Net = CE, no precession/HOMs	$M_t = 50, q = 0.17$	1.01
Net = CE, no precession/HOMs	$M_t = 50, q = 1$	1.30
Net = CE, precession/HOMs	$M_t = 50, q = 1$	1.30
Net = O3, no precession/HOMs	$M_t = 250, q = 1$	1.55
Net = CE, no precession/HOMs	$M_t = 250, q = 1$	1.56

$$V_s = \frac{4\pi}{3}D_s^3$$

Conclusion

- Precession/HOMs don't seem to significantly affect sensitivity
- IMBHB merger rates will help us infer the formation methods of high mass black holes
- Developing a sensitivity range for IMBHBs will be useful for further studies

Acknowledgements

Thank you to those that made this project possible:

My mentors Alan Weinstein and Richard Udall

LIGO Summer Undergraduate Research Fellowship National Science Foundation

My fellow SURF students!